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Abstract: Suitable carriers are crucial to RNAi applications for cancer genotherapy and T-cell
immunotherapy. In this research, we selected two extensively-investigated biocompatible inorganic
nanoparticle carriers, i.e., layered double hydroxide (LDH) and lipid-coated calcium phosphate
(LCP) and then compared their efficacy for siRNA delivery in T cells, in order to understand which
carrier is more efficient in delivering functional programmed cell death protein 1 siRNA (PD-1
siRNA) to suspended T lymphocytes. Both LDH and LCP nanoparticles quickly delivered gene
segment to mouse T cell lines (EL4), while the LCP nanoparticles exhibited more cellular uptake and
higher PD-1 gene silence efficiency. We further demonstrated that LCP nanoparticles successfully
reduced the expression of PD-1 in human ex vivo tumor infiltrating lymphocytes (TILs). Thus,
LCP nanoparticles can be used as a better nano-carrier for gene therapy in lymphocytes, especially in
regards to TIL-related cancer immunotherapy.

Keywords: layered double hydroxide (LDH) nanoparticle; lipid-coated calcium phosphate (LCP)
nanoparticle; programmed cell death protien-1 (PD-1); human tumor infiltrating lymphocytes (TILs);
PD-1 gene silencing; EL4 cells

1. Introduction

RNAi technology has been now examined for enhanced cancer immunotherapy in combination
with other therapies [1–4]. For example, silencing programmed death ligand 1 (PD-L1) on the surface
of cancer cells is able to induce higher T-cell immunity and enhance the therapeutic efficacy in
combination with photodynamic therapy [4]. To this end, many research inquiries have been conducted
to knockdown PD-L1 expression on tumor cells, while silencing programmed death 1 (PD-1) on the
surface of T cells is rarely investigated. An efficient siRNA delivery vehicle is necessary to knockdown
the expression of PD-L1 on tumor cells or PD-1 on the T cells. For gene delivery, many types of
nanoparticles (NPs), such as polymeric NPs (PEI), biomolecular NPs (PLGA and BSA), and inorganic
NPs (Au, carbon, and SiO2) are extensively investigated [5], while two inorganic nanoparticles
(NPs), i.e., layered double hydroxide (LDH) [6–10] and lipid-coated calcium phosphate (LCP) [11–15],
both with many suitable properties, appear as efficient delivery vehicles for the functional siRNA.

LDH is a group of anionic clay materials that have attracted increasing attention in recent years
for biomedical applications, such as gene delivery, vaccine delivery, and drug delivery [6–10,16,17].
In particular, MgAl-LDH nanoparticles (NPs) have been demonstrated as efficient vehicles for the
delivery of genes and drugs to cells [6–10,16], which are biocompatible, have a high loading capacity,
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and release target biomolecules in a pH-dependent manner [17,18]. More advantages of LDH NPs
as delivery vehicles include the low toxicity, protection of payloads, and their high cellular delivery
efficacy [7,10,17,19]. These properties enable LDH NPs to become a good option for the cellular
delivery of DNAs or RNAs. Furthermore, to overcome poor colloidal stability due to aggregation in
biological media for in vivo applications, we recently developed an approach to coating bovine serum
albumin (BSA) on LDH nanoparticles (BSA-LDH), which colloidally stabilizes the LDH NPs in various
electrolyte solutions and media [20,21].

On the other hand, calcium phosphate (CaP), which is the main inorganic component in bones,
has excellent properties as a nanocarrier of DNA and siRNA for gene therapy in the nanomaterial form,
as reported elsewhere in the last decades [5,22]. Recently, by stabilizing the CaP NPs with a lipid bilayer,
Huang et al. developed LCP NPs that naturally possess a colloidal stability in electrolyte solutions and
biological media. LCP NPs have been demonstrated to significantly improve siRNA delivery when
compared with their lipid/protamine/DNA (LPD) formulation [13,23]. We have recently shown that
LCP NPs improved the cellular uptake of siRNA and they significantly inhibited the growth of human
breast cancer cells in vitro with our optimized LCP NPs [14,15,24].

Both LDH and LCP NPs appear as good siRNA delivery systems. However, which one is more
efficient has not been investigated and reported yet. Therefore, in this study, we compared the
capability of LDH and LCP NPs in delivering murine PD-1 siRNA into EL4 T cells. EL4 T cells are
cancerous lymphocytes, with high PD-1 expression, which are a suitable model for comparing the
delivery systems in terms of the silence efficacy of target gene PD-1. Thus, the objectives of this research
were to: (1) reveal the time-dependent and dosage-dependent cellular uptake of LDH NPs, BSA-LDH
NPs, and LCP NPs by EL4 cells; (2) understand the factors that affect the siRNA delivery efficacy in
terms of target PD-1 mRNA silence and protein expression reduction in EL4; and, (3) confirm that
the selected better system works on a human T cell, i.e., tumor infiltrating lymphocyte (TIL). Here,
TILs were isolated from breast cancer patients with high PD-1 expression and then transfected with
the selected system to confirm the efficient knockdown of PD-1 gene expression. Our findings in this
research suggest a set of optimal parameters and a better delivery system for PD-1 silence on TILs as
well as other cancer cells and lymphocytes.

2. Materials and Methods

2.1. Chemicals and Reagents

All of the samples were prepared under sterile conditions. Sodium hydroxide pellets,
magnesium chloride hexahydrate (MgCl2·6H2O), and aluminum chloride hexahydrated (AlCl3·6H2O)
were purchased from Ajax Finechem (Taren Point, NSW, Australia), and Sigma-Aldrich (Castle
Hill, NSW, Australia), respectively. dsDNA-Cy5 was purchased from GeneWorks (San
Diego, CA, USA). PD-1 siRNA (sense: 5′-AGAcGuAAGcAGuGuuGAAdTsdT-3′ and antisense:
5′-UUcAAcACUGCUuACGUCUdTsdT-3′ for EL4, and sense 5′-AGAccuuGAuAcuuucAAAd-TsdT-3′

and antisense 5′-UUUGAAAGuAUcAAGGUCUdTsdT-3′ for human TILs), and other chemicals and
reagents were purchased from Sigma-Aldrich (Castle Hill, NSW, Australia) if not illustrated specifically.
Water used in experiments was deionized Milli-Q water.

2.2. LDH NP Preparation

Mg2Al-Cl-LDH NPs were synthesized by the co-precipitation-hydrothermal method, which had
been well established in our group [25,26]. Briefly, a mixture of MgCl2 (0.70 M) and AlCl3 (0.30 M)
with a total volume of 10 mL was quickly added to 40 mL of NaOH solution (0.45 M) within 5 s,
under vigorous stirring. After 10 min stirring, the slurry was separated via centrifugation and then
re-dispersed in 40 mL of deionized water. The resultant suspension was moved into a stainless steel
autoclave with a Teflon lining and then heated at 100 ◦C for 16 h. The final mass concentration of LDH
was approximately 10 mg/mL, with the yield of ~60%.
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BSA were added to stabilize LDH particles in medium, as reported previously [21]. Two milliliters
of 4 mg/mL LDH suspension was added into 2 mL of 10 mg/mL BSA solution (dissolved in
deionized Milli-Q water) drop by drop under vigorously magnetic stirring for 30 min to ensure
saturated absorption.

Specifically, Cy5-dsDNA/siRNA was loaded directly onto LDH NPs by adding to the LDH
suspension at the LDH/dsDNA or siRNA mass ratio of 10:1, which was then diluted to the designed
volume for cellular uptake or cell transfection after 15 min incubation at room temperature.

2.3. LCP NPs Preparation

LCP NPs were prepared by a modified two-step method that was based on the previous
reports [13,24]. The anionic lipid coated calcium phosphate (CaP) core was synthesized by a
water-in-oil microemulsion method and then the CaP core was coated with a second lipid layer
to form the bilayer lipid-coated CaP (LCP) nanoparticles (NPs) by the film-rehydration method. Briefly,
the first microemulsion (solution 1a) was prepared by mixing 75 µL of 5 M CaCl2 and 50 µL of H2O
with 5 mL of premixed cyclohexane/Igepal CO-520 (70/30, v/v). The second microemulsion (solution
1b) containing sodium phosphate was prepared by adding 75 µL of 50 mM Na2HPO4 and 50 µL of
H2O into another 5 mL of oil phase. Subsequently, the second microemulsion was added with 50
µL of 20 mM DOPA in chloroform and then with the first microemulsion drop by drop, which was
followed by stirring for another 15 min. The CaP-DOPA cores were harvested by adding 10 mL of
absolute ethanol and centrifuging at 10,000× g for 20 min, and then being washed with 10 mL ethanol
three times. The collected CaP core particles were then dispersed in 1 mL of CHCl3 and mixed with
DOTAP/DOPC/cholesterol (2:1:3). After evaporation under reduced pressure, the lipid film was then
hydrated in PBS buffer (pH = 7.4) to obtain LCP NPs, which were normally well dispersed under
gentle ultrasound treatment. Similarly, Cy5-dsDNA or siRNA was loaded in LCP NPs by adding
the same amount of Cy3-dsDNA or siRNA (15 µL, 100 µM) in both CaCl2 and Na2HPO4 solutions
(75 µL), followed by the same preparation procedures. The dsDNA/siRNA loading capacity was
approximately 58 µg/mg (LCP), as reported previously [24].

2.4. Characterization of LDH, BSA-LDH and LCP NPs

The particle size distribution and zeta potential of as-prepared LDH, BSA-LDH, and LCP NPs
was determined by photon correlation spectroscopy (PCS, Zetasizer Nano ZS, MALVERN Instruments,
Malvern, UK) using Non-Invasive Backscatter optics (NIBS). For Transmission electron microscope
(TEM) imaging, LDH, BSA-LDH, and LCP solution was air-dried on a copper grid. The images were
obtained on a JEOL 1010A transmission electron microscope (Tokyo, Japan) at an acceleration voltage
of 200 kV.

2.5. Cell Culture and FACS Analysis

EL4 cells, which constitutively produce PD-1, a widely studied Mouse lymphoma cell line,
was used as the cancer cell model in this study. Normally, EL4 cells were cultured in DMEM that was
supplemented by 10% (v/v) FBS at 37 ◦C in 5% CO2 atmosphere.

As-cultured EL4 cells were collected by centrifugation. After three washes with 2% FCS/PBS, the
cells were fixed in 2% paraformaldehyde/PBS. For FACS analysis of PD-1 expression, the cells were
then stained with PD-1 antibody (Cell Signal Technology, 1:500 dilution), and then analyzed in a BD
Accuri™ C6 (San Jose, CA, USA) flow cytometer with CFlow Sampler software (Becton Dickinson,
Mountain View, CA, USA).

2.6. Tumor infiltrating lymphocyte Isolation and Characterization

Tumor infiltrating lymphocytes (TILs) were isolated from breast cancer biopsy specimens by
mincing the tissue into small pieces and then digesting them with collagenase type IV (0.1 mg/mL)
(Sigma-Aldrich, Castle Hill, NSW, Australia) for 2 h, followed by culture in X-VIVO-15 medium (Lonza,
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Basel, Switzerland) containing 5% human AB serum and recombinant human IL-2 (150 IU/mL) in
24-well plates, followed by an expansion using a rapid expansion protocol (REP) [27,28]. Once a
sufficient number of T cells (>1 × 107) was generated, they were cryopreserved for later expansion.
A REP for “young TILs” that was previously used in melanoma patients was followed. Cryopreserved,
pre-REP TILs from patients were thawed and then further expanded to treatment levels using an
anti-CD3 antibody (OKT-3, 30 ng/mL, R&D Systems, Minneapolis, MN, USA), rhIL-2 (BD PharMingen,
San Jose, CA, USA), and irradiated feeder cells, as previously described [28]. The expanded TILs were
fixed and then labelled with human CD4 and CD8 antibody conjugates, followed by labelling human
PD-1 antibody conjugate and being subjected to FACS analysis.

2.7. Delivery of dsDNA and siRNA to EL4 and TILs

About 1 × 106 cells EL4 cells or TILs were seeded in the wells of six-well plates and then
mixed with LDH-PD-1-siRNA/Cy5-dsDNA or LCP-PD-1-siRNA/Cy5-dsDNA at 37 ◦C for a period
of time (0–8 h) at 20–80 nM of siRNA or dsDNA. The culture medium was then replaced with the
fresh medium and transfected EL4 or TILs were cultured for another 72 h at 37 ◦C, 5% CO2. After
transfection, the cells were collected and the PD-1 expression level was determined by RT-PCR, ELISA
assay, and FACS, respectively.

2.8. Western Blotting

The relative PD-1 concentration in cell lysates was estimated using the Pierce™ BCA Protein Assay
Kit (Thermo Fisher Scientific, Waltham, MA, USA). The samples (roughly 10 µg total protein per well)
were mixed with protein-loading buffer (Bio-Rad, Hercules, CA, USA) containing 2-mercaptoethanol.
After denaturation by 5-min boiling, the samples were loaded on 4–15% Mini-PROTEAN® TGX™
Precast Gels SDS polyacrylamide gel (Bio-Rad). Gels were blotted onto polyvinylidene difluoride
(PVDF) membranes for 90 min at 80 V, the proteins were transferred onto PVDF membranes and
then blocked for non-specific binding with TBST (0.05% (v/v) Tween-20 in TBS pH 7.4) plus 5%
BSA for 1 h at RT. PD-1 RabMab antibodies (ab205921) (Abcam, Cambridge, UK; at dilution of
1:800–1000) was applied overnight at 4 ◦C. The membrane was washed with TBST and then incubated
with HRP-conjugated secondary antibodies (Goat anti-rabbit IgG H&L (HRP), ab97051) (Abcam,
Cambridge, UK; at dilution 1:5000) for 2 h. After washing, the protein bands were visualized using
Clarity™ Western ECL Substrate (Bio-Rad) and then analyzed using ImageJ v1.40 software (Hercules,
CA, USA).

2.9. Real-Time PCR

All real-time PCR assays were conducted according to the manufacturer’s instructions. In brief,
1.2 mL of trizol/chloroform (1:5, v/v) was added to lyse cells and the supernatant was then collected
by centrifugation (12,500 rpm, 15 min). Subsequently, 2.4 mL of isopropanol was added and the
supernatant was centrifuged for another 15 min at 12,500 rpm. The collected pellet was washed with
70% ethanol. After drying the pellet, 50 µL of H2O was added to resuspend the total RNA. Reverse
transcription reactions were performed in 20 µL as the manufacturer instructed and the cDNA was
diluted with 80 µL of H2O. For each well, 3.5 µL of cDNA solution that was mixed with 8.5 µL of PCR
Master-Mixture. After centrifugation, real time PCR was conducted (Real Time PCR, iCycler iQTM,
Bio-Rad, Hercules, CA, US).

2.10. Statistical Analysis

Data are presented as the mean ± SEM or the mean ± SE and analyzed by two-way ANOVA
using GraphPad Prism software. All of the cell tests were done in triplicate. A p-value < 0.05 was
considered to be significant. * p < 0.05; ** p < 0.01; *** p < 0.001.
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3. Results

3.1. Physicochemical Properties of LDH and LCP NPs

Homogeneously dispersed Mg2Al-Cl-LDH NPs had a narrow particle size distribution
(Figure 1A,D), with the equivalent mean hydrodynamic diameter of 110 nm and the polydispersity
index (PDI) of 0.099. The LDH NP suspension was transparent, with a zeta potential of 35 mV. The TEM
image (Figure 1A) shows that LDH crystallites were well crystallized, with a typical hexagonally
shaped morphology. These observations are consistent with previous reports [25,26]. As also shown in
Figure 1B,E, bovine serum albumin (BSA) coated LDH (BSA-LDH with the BSA/LDH mass ratio of
5:2 and the LDH concentration of 2.0 mg/mL) had an average size of 176 nm with a PDI of 0.229 and a
zeta potential of about −20 mV. These data mean that LDH NPs were well coated with BSA and then
colloidablly stabilized with BSA, which is consistent with previous reports [20,21]. The TEM image in
Figure 1B clearly shows that BSA-LDH (5:2) nanocomplexes were nearly mono-dispersed in PBS. The
size increase suggests that LDH-BSA NPs were slightly aggregated via the BSA bridging effect [20].
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Figure 1. Particle morphology and particle size distribution. The upper penal shows the morphology
of the nanoparticles used in this study (A) Mg2Al-Cl-LDH; (B) bovine serum albumin (BSA) on layered
double hydroxide nanoparticles (BSA-LDH) in PBS; and, (C) lipid-coated calcium phosphate (LCP).
The lower panel shows the size distributions of the corresponding nanoparticles (NPs) in the upper
panel (i.e., (A,D); (B,E); and, (C,F)).

The average size of LCP NPs was about 40 nm after the CaP cores were coated with the lipid
bilayer (Figure 1C,F), with a zeta potential of 18 mV [24]. The LCP NPs were well dispersed and
sphere-like particles, as observed by TEM (Figure 1C). The TEM image confirmed the typical structure
of LCPs, containing a CaP core and a coating lipid membrane [23,24]. When the dsDNA or siRNA was
loaded (58 µg/mg CaP), the average particle size was similar, while the zeta potential was reduced to
about 14 mV [24].

These data indicate that the LDH, BSA-LDH, and LCP nanoparticles that were used in this study
possess the typical physicochemical properties of LDH and LCP NPs, as reported previously [20,24].
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3.2. Cellular Uptake of LDH, BSA-LDH and LCP NPs

Cy5-dsDNA was bound to LDH or encapsulated within LCP NPs and used as the dye tag
to quantify the cellular uptake. As shown in Figure 2A, different uptake behaviors by EL4 were
observed. For LDH and BSA-LDH, the peak of uptake percentage was achieved at 2–4 h (~50% and
~40%, respectively), with the uptake amount then being slightly decreased. Although EL4 cells were
suspended, more LDH-dsDNA was taken up by EL4 than LDH-BSA-dsDNA, which is probably
due to the positive zeta potential of LDH-dsDNA (10:1, 20–30 mV) [29], in comparison with that of
LDH-BSA-dsDNA (more negative than−20 mV after dsDNA was loaded onto LDH-BSA). The amount
decrease after 4 h might be due to the metabolization of Cy5-dsDNA released into the cytosol after
endocytosis of LDH-Cy5-DNA.

For LCP NPs, the cellular uptake reached the saturation at 4 h (68%) and was maintained for
another 4 h. When compared with LDH and BSA-LDH, LCP NPs have a 20–30% higher uptake
amount. This increase is largely attributed to the monodispersed stability of LCPs in medium and the
positive surface charges, which provides more chances for the NP attachment to the negatively-charged
membrane of suspended EL4 cells, leading to a higher cellular uptake.
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Figure 2. Cellular uptake profile of LDH and LCP NPs. (A) The fluorescence-activated cell sorting
(FACS) results show the positive cell percentage vs. the time course (culture time) for EL4 cells treated
with LDH-dsDNA, BSA-LDH-dsDNA and LCP-dsDNA hybrids at 40 nM of Cy-dsDNA. (B) The FACS
results show the positive cell percentage vs. the treatment dose for EL4 cells treated with LDH-dsDNA,
BSA-LDH-dsDNA and LCP-dsDNA hybrids for 4 h. All of the tests were done in triplicate.

As shown in Figure 2B, LCP NPs also showed a consistently higher cellular uptake at three
Cy5-dsDNA doses (20, 40, and 80 nM). The positive cell percentage in the BSA-LDH NPs treated group
was 20%, 55%, and 71%, which was then increased to 24%, 61%, and 79% for the LDH NPs treated
group, and 35%, 75%, and 91% for the LCP NPs treated group, respectively. Based on these data,
we therefore conclude that LCP NPs are more effective in delivering dsDNA into EL4 cells.

3.3. PD-1 Expression and Gene Silence in EL4 Cells

To examine the delivery efficacy of LCP and LDH NPs for gene silence in EL4, we firstly analyzed
PD-1 expression level in EL4 cells. EL4 cells were labelled with mouse CD4 and CD8 antibody
conjugates, followed by labelling murine PD-1 antibody conjugate. The FACS data shows that 57.4%
CD4+ EL4 cells and 32.0% CD8+ EL4 cells were PD-1 positive cells (Figure 3A). Overall, EL4 cells had
a relatively high percentage of cells that were PD-1 positive.
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EL4 cells were then treated with LDH-, BSA-LDH- and LCP-siRNA-PD-1 at 80 nM of siRNA-PD-1.
As displayed in Figure 3B, the PD-1 mRNA expression in EL4 was decreased by 13% and 29% using
BSA-LDH-siRNA-PD-1 and LDH-siRNA-PD-1, respectively. In sharp contrast, 72% PD-1 mRNA
expression was reduced in EL4 cells using LCP-siRNA-PD-1. Consistently, the PD-1 protein expression
level was downregulated to 80%, 78%, and 22% while using BSA-LDH-siRNA-PD-1, LDH-siRNA-PD-1,
and LCP-siRNA-PD-1 nanohybrids (Figure 3C), respectively. The PD-1 gene silence, both in terms of
mRNA and protein expressions, is actually consistent with the cellular uptake of these LDH and LCP
NPs by EL4 cells (Figure 2), which all suggest that LCP NPs are a more effective delivery system for
EL4 cell uptake and gene silence. Note that the scramble siRNA that was delivered by LCP did not
cause the knockdown of the target PD-1 gene (data not shown).
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similarly. All tests were done in triplicate, with the SEM being listed in the parenthesis.

3.4. PD-1 Expression and Gene Silence in Human TILs

Human TILs from breast cancer patients were isolated and then expanded in vitro. The cells were
labelled with anti-human CD4 and CD8 antibody conjugates and PD-1 expression was also labelled
with a specific fluorescence antibody. The CD4+ and CD8+ cells were gated for PD-1 expression.
The FACS data shows that CD4 and CD8 positive cells had a similar PD-1 positive cell percentage
(71.3% vs. 68.0%) (Figure 4).
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Figure 4. PD-1 expression in human tumor infiltrating lymphocytes (TILs). FACS results show the
PD-1 positive cells in CD4 and CD8 cell populations from TILs.

The expanded TILs were then treated with LCP-siRNA-PD-1 NPs to downregulate the expression
of PD-1 mRNA and the PD-1 protein. As shown in Figure 5A, the PD-1 mRNA percentage was
significantly decreased from 73% to 33% when the siRNA-PD-1 concentration was increased from
20 to 80 nM. As shown in Figure 5B, the PD-1 protein expression level was obviously reduced at the
siRNA-PD-1 of 40 nM (by 32%), and even more at 80 nM (by 62%). The efficient silence of PD-1 gene
can be largely attributed to the high delivery efficacy of LCP NPs for siRNA to T cells, as discussed
previously [24].
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Figure 5. Down-regulation of PD-1 in TILs using LCP NPs. (A) Real-time PCR data for the knockdown
efficiency of PD-1 mRNA in TILs treated with LCP+si-PD-1 at the concentration from 20 to 80 nM for
4 h; (B) Western-blot showing reduction of PD-1 expression in TILs treated similarly. The tests were
done in triplicate, with the SEM listed in the parenthesis. (C) Flow cytometry of TILs before and after
treatment with LCP-si-PD-1 at 40 nM. All of the tests were done in triplicate.

TILs that were treated with LCP-siRNA-PD-1 at 80 nM of siRNA-PD-1 also showed a significant
reduction of the PD-1 protein expressed on the TIL cell surface. As displayed in Figure 5C, the peak
shifted from 2480 to 960 in terms of the mean florescent intensity, in consistence with 60% reduction of
the PD-1 protein expression under similar conditions (Figure 5B). All of the data indicate that siRNA
delivered by LCP NPs in this study can effectively downregulate PD-1 expression by T cells, such as
EL4 and TILs.

4. Discussion

RNAi therapy always requires the efficient delivery to target cells. As demonstrated previously,
both LDH and LCP NPs have high biocompatibility, good biodegradability, and low toxicity.
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As reported, the cell viability is >90% at the concentration of >200 µg/mL [24,30]. Thus, both can be
effective and safe siRNA carriers for PD-1/PD-L1-based immunotherapy. In this work, both LDH
and LCP NPs were further demonstrated to facilitate the delivery of dsDNA and siRNA to EL4 cells
(Figure 2), cancerous lymphocytes that are homogeneously suspended in culture medium. The cellular
uptake of various nanoparticles usually undergoes the clathrin-mediated endocytosis. Different from
polymeric (such as polyethyleneimide) and biomolecular (such as BSA) NPs, which escape from
the lysosomal pathway during endocytosis [31], LDH and LCP NPs escape from the endosomal
pathway [9,12,17,32]. This is due to the anti-acidification of LDH (simplified as Mg2Al(OH)6Cl·1.5H2O,
MW 240) and LCP (CaHPO4·0.5H2O, MW 145) materials when the endosome is acidified to later
endosome, but before it is fused with the lysosome, because both NPs may dissolve within the
endosome in the following ways:

Mg2Al(OH)6Cl·1.5H2O + 6H+ → 2Mg2+ + Al3+ + Cl− + 7.5H2O (1)

CaHPO4·0.5H2O + H+ → Ca2+ + H2PO4
− (2)

The dissolution of LDH and LCP NPs leads to the increase of dissolved salt concentration, which
causes the influx of water into the endosome due to the osmotic pressure. The continuous influx of
water increases the volume and finally bursts the endosome, releasing NPs into the cytosol. As reflected
in Figure 2, both LDH-Cy5-dsDNA and LCP-Cy5-dsDNA NPs were quickly taken up by EL4 cells in
the first 2–3 h, and the maximum uptake was achieved at around 3 h.

Relatively, the LCP NPs delivered more Cy5-dsDNA into EL4 cells than LDH NPs (70% vs. 40–50%
positive cell population, Figure 2), which could be attributed to their smaller size (40 vs. 110–170 nm,
Figure 1). As reported elsewhere, cells take up NPs with the size of 50 nm much more quickly than
that of 100–200 nm [16,33]. Moreover, the anti-acidification in Equation (A2) generates stronger ionic
strength than in Equation (A1) per unit H+ number (e.g., 1 mmol) (Appendix A), which leads to more
water influx and thus quicker escape from the endosome. The endosome escape is superior to the
lysosome escape in protection and sustainable release of the payload. In the lysosomal pathway, most
of the NP-siRNA hybrids are digested in lysosome, and a considerable amount of siRNA is destroyed,
while in the endosome pathway, most of the siRNAs are still associated with NPs and then protected
when they escape from the endosome. These associated siRNAs can be sustainably released in the
cytosol for the continuous silencing of target gene, while there is less siRNA available for the release
from polymer-siRNA hybrids after the lysosomal escape.

More interestingly, LCP-siRNA NPs more efficiently silenced the PD-1 gene expression in EL4
cells, in comparison with LDH NPs (Figure 3). Apart from the quick uptake by EL4 cells, there may be
two other reasons. The main reason is that a unit H+ number releases more siRNA in the LCP NP form
than in the LDH NP form. As explained in the Appendix A, 1 mmol of H+ is able to dissolve 145 mg of
LCP and thus release 8.4 mg of siRNA for silence, while this amount of H+ can only dissolve 40 mg of
LDH and thus release 4.0 mg of siRNA in the current experimental conditions. This estimation suggests
that the functional siRNA released from LCP-siRNA hybrids is two times as that from LDH-siRNA
hybrids during the endosome escape. On the other hand, the solubility of CaHPO4 is ca. 200 mg/L,
while that of LDH is 50–100 mg/L [16] at the neutral pH, so more functional siRNA can be released
from LCP-siRNA hybrids (11.6 mg/L siRNA) than from LDH-siRNA hybrids (5–10 mg/L siNRA)
after they are delivered to the cytosol with the nearly neutral pH. Thus, these two factors, together
with the quicker cellular uptake, enable LCP-siNRA hybrids to more efficiently release functional
siRNA in the cytosol and knockdown the target PD-1 gene expression (Figure 3), seemingly being
3–4 times higher at the siRNA dose of 80 nM. When compared with optimized functional LDH-siRNA
formulations (LDH:siRNA mass ratio = 5:1) reported previously [34], the current LCP NPs appear as
more cost-effective siRNA carriers and vehicles for cellular delivery. As an example for confirmation,
LCP NPs were further used to deliver the functional siRNA to human TILs and effectively knockdown
the PD-1 gene expression (Figure 5).
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In summary, the current research has demonstrated that LCP NPs are more efficient siRNA
delivery vehicles than LDH in terms of cellular delivery efficacy and the knockdown efficiency of
target gene expression.

5. Conclusions

In conclusion, we compared two inorganic nanoparticles, i.e layered double hydroxide (LDH) and
lipid-coated calcium phosphate (LCP), which are both safe and effective vectors for siRNA delivery
in many cell types regarding the delivery efficacy of functional siRNA (PD-1 siRNA) into suspended
T lymphocytes (EL4) and silencing the target gene. We found that LCP NPs showed a more cellular
uptake and higher PD-1 gene silence efficiency in mouse T cell line EL4 than LDH and BSA-LDH NPs.
We further found that LCP NPs significantly reduced the expression of PD-1 in human ex vivo TILs,
indicating the feasibility of using LCP NPs for gene therapy in lymphocytes, especially for TIL-related
cancer immunotherapy.
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Abbreviations

BSA bovine serum albumin
TIL tumor infiltrating lymphocyte
LCP lipid-coated calcium phosphate
LDH layered double hydroxide
NP Nanoparticle
PD-1 programmed cell death protien-1
PDI polydispersity index
PD-L1 programmed cell death protien-1 ligand
TEM transmission electron microscope

Appendix A

The estimated release amount of siRNA per unit H+ mmol:

Mg2Al(OH)6Cl·1.5H2O + 6H+ → 2Mg2+ + Al3+ + Cl− + 7.5H2O (A1)

CaHPO4·0.5H2O + H+ → Ca2+ + H2PO4
− (A2)

Based on these two Equations, 1 mmol H+ can dissolve 1/6 mmol of Mg2Al(OH)6Cl·1.5H2O (MW = 240) or
1 mmol of CaHPO4·0.5H2O (MW = 145), which leads to an ionic strength of 5 for CaHPO4·0.5H2O, but only 3 for
Mg2Al(OH)6Cl·1.5H2O if this dissolution occurs in 1 mL water.

As siRNA was loaded at LDH/siRNA mass ratio of 10:1 in the experiment, so 1 mmol of H+ would be able
to dissolve 40 mg of LDH and thus release 4.0 mg of siRNA.

Since siRNA was about 5.8 wt.% in LCP, so 1 mmol of H+ could dissolve 145 mg of LCP and release nearly
8.4 mg of siRNA.
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