
 

Nanomaterials 2019, 9, 301; doi:10.3390/nano9020301 www.mdpi.com/journal/nanomaterials 

Article 

Thermo-Electro-Mechanical Vibrations of Porous 

Functionally Graded Piezoelectric Nanoshells 

Yun Fei Liu 1 and Yan Qing Wang 1,2,* 

1 Department of Mechanics, College of Sciences, Northeastern University, Shenyang 110819, China; 

lyfboook@163.com 
2 Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, 

Shenyang 110819, China 

* Correspondence: wangyanqing@mail.neu.edu.cn 

Received: 29 January 2019; Accepted: 17 February 2019; Published: 20 February 2019  

Abstract: In this work, we aim to study free vibration of functionally graded piezoelectric material 

(FGPM) cylindrical nanoshells with nano-voids. The present model incorporates the small scale 

effect and thermo-electro-mechanical loading. Two types of porosity distribution, namely, even 

and uneven distributions, are considered. Based on Love’s shell theory and the nonlocal elasticity 

theory, governing equations and corresponding boundary conditions are established through 

Hamilton’s principle. Then, natural frequencies of FGPM nanoshells with nano-voids under 

different boundary conditions are analyzed by employing the Navier method and the Galerkin 

method. The present results are verified by the comparison with the published ones. Finally, an 

extensive parametric study is conducted to examine the effects of the external electric potential, the 

nonlocal parameter, the volume fraction of nano-voids, the temperature rise on the vibration of 

porous FGPM cylindrical nanoshells. 

Keywords: functionally graded piezoelectric nanoshells; nano-void; Love’s shell theory; nonlocal 
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1. Introduction 

Piezoelectric materials are characterized by the excellent coupling between the electric and 

mechanical fields. Applying mechanical load to piezoelectric materials generates an electric field, 

while putting piezoelectric materials in an electric field creates mechanical strain in them. This 

two-way property has made piezoelectric materials ideal for making actuators and sensors [1–4]. 

Besides, the two-way action of turning mechanical energy to electric energy and vice versa has made 

piezoelectric materials useful in resonant ultrasonic inspection and micro/nano piezoelectric power 

generators [5–7]. 

Unfortunately, there are some deficiencies such as low resistance to external loads, creeping in 

high temperature, and high stress concentration in homogeneous piezoelectric materials. In order to 

eliminate these problems, functionally graded piezoelectric materials (FGPMs) were proposed. The 

concept of functionally graded materials was first proposed in the 1980s [8]. Functionally graded 

materials are generally composed of two different materials, and are characterized by continuous 

variations in both mechanical properties and material composition in one or more dimension(s). 

Likewise, FGPMs are generally composed of two different piezoelectric materials. They have many 

advantages such as multifunctionality, ability to control deformation, and minimization or removal 

of stress. Hence, FGPMs have received wide engineering applications [9–13]. In FGPMs, owing to 

the technical issues, nano-voids or porosities may occur within materials. It is reported that a 
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considerable number of nanopores appeared in the functionally graded material during the 

preparation process by the non-pressure sintering technique [14]. Thus, it is necessary to consider 

the porosity effect on vibration characteristics of porous FGPM structures. 

With the rapid development in nanotechnology, the FGPMs have potential to be used in 

functional and structural elements in micro/nano electromechanical systems. It is known that FGPM 

nanostructures possess significant mechanical, thermal, electrical, and other physical properties. 

Piezoelectric nanostructures have the dimension ranging from a few nanometers to several 

hundred nanometers. On this scale, the size effect was observed in both experiments and 

simulations [15–18]. One of effective nonclassical continuum theories considering size effect for 

piezoelectric nanostructures is Eringen’s nonlocal theory [19–21]. Ke et al. [22] used this theory to 

analyze free vibration of piezoelectric nanobeams subjected to thermo-mechanical-electro loading. 

Afterwards, the vibration of functionally graded piezoelectric nanoplates using the nonlocal 

elasticity theory was studied by Jandaghian and Rahmani [23]. The thermo-mechanical-electric 

vibration of FGPM nanoplates was studied by Jandaghian and Rahmani [24]. The vibration and 

buckling analyses of the piezoelectric nanobeams were carried out by Liang et al. [25]. Yan and Jiang 

[26] studied the surface effects on the vibration and buckling of the piezoelectric nanoplates. It is 

noted that all the above-mentioned studies concentrated on the piezoelectric nano beams or plates. 

Cylindrical nanoshells possess specific functions in micro/nano electromechanical system. The 

size-dependent dynamic analysis of nanoshells, however, is limited in the open literature. Among 

them, the free vibration of magneto-electro-elastic cylindrical nanoshells was investigated by 

Ghadiri and Safarpour [27]. Fang et al. [28] conducted the free vibration analyses of piezoelectric 

nano double-shells. The instability and vibration of functionally graded nanoshells with internal 

fluid flow were analyzed by Ansari et al. [29]. In framework of the nonlocal elasticity theory, Sun et 

al. [30] analyzed the bucking of functionally graded cylindrical nanoshells. Ke et al. [31] studied the 

free vibration of piezoelectric nanoshells under an electric voltage. 

In this article, vibration behavior of porous FGPM nanoshells subjected to the thermal and 

electrical loads is studied for the first time. Governing equations are derived from Hamilton’s 

principle by using the nonlocal elasticity theory and Love’s thin shell theory. Then, natural 

frequencies of the nanoshells are evaluated by the Navier technique and the Galerkin technique. 

Detailed results are shown to explore the influences of several key factors on vibration 

characteristics of FGPM nanoshells with nano-voids. 

2. Preliminaries 

2.1. Nonlocal Elasticity Theory for FGPMs 

In Eringen’s nonlocal elastic theory [19–21], nonlocal constitutive equations are written as 

[19,32]: 
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in which i, j, l, k = 1, 2, 3; εij, σij, ui, Ei and Di denote the components of the strain, stress, displacement, 

electric field, and electric displacement, respectively; ekij, cijkl, pi, βij and sik represent the components of 

the piezoelectric tensor, elasticity tensor, pyroelectric vector, thermal modulus tensor and the 

dielectric tensor, respectively; denotes the mass density;   and ΔT are the electric potential and 
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temperature change, respectively;  0 0, / ex x e a l   is the nonlocal kernel function; 0 / ee a l  

represents the scale parameter; x’ represents all material point coordinates except x point in the area;
 

x x  represents the Euclidean Distance. 

Equivalent differential forms can be used to represent the overall constitutive relation as 

follows [20]: 

2 2
0( )ij ij ijkl kl kij k ije a c e E T          (5) 

2 2
0( )i i ikl kl ik k iD e a D e s E p T       (6) 

in which 
2  is the Laplace Operator. 

2.2. Nonlocal Porous FGPM Cylindrical Nanoshell Model 

Consider a porous FGPM cylindrical nanoshell composed of PZT-5H and PZT-4. Figure 1 

shows the geometry of the nanoshell with the thickness h, the middle-surface radius R and the 

length L. The FGPM nanoshell is supposed to contain nano-voids that disperse evenly (FGPM-I) or 

unevenly (FGPM-II) along the thickness direction. Additionally, the nanoshell is subjected to a 

uniform temperature change ΔT and electric potential ( , , , )x z t  . U(x, θ t), V(x, θ, t) and W(x, θ, 

t) are displacements of points at the middle plane of the shell in x-, θ- and z-axes directions, 

respectively. 

The sum of PZT-5H and PZT-4 volume fractions is V4 + V5H = 1 [33]; For PZT-4, the volume 

fraction can be written as [34–36]: 

4
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 (7) 

where the parameter N ∈ [0, ∞) represents the power-law index. 

For the FGPM-I nanoshell, the general material properties are given by [37] 
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where z is the distance from the mid-surface of the FGPM cylindrical nanoshell; P4 and P5H are 

material properties of PZT-4 and PZT-5H, respectively; α is the porosity volume fraction. 

Therefore, the elastic constants cij, the piezoelectric constants eij, the mass density ρ, and the 

dielectric constants sij of the FGPM-I nanoshell can be expressed as: 
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Figure 1. Schematic of a porous functionally graded piezoelectric material (FGPM) circular 

cylindrical nanoshell. 

For the FGPM-II nanoshell, on the other hand, the material properties in Equations (9)–(12) can 

be replaced by [38] 
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According to the Kirchhoff–Love hypothesis, the displacement fields are [39]: 
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in which t is time, and ( , , , )u x z t , ( , , , )v x z t  and ( , , , )w x z t  are the displacements of an arbitrary 

point along the x-, θ- and z-axes, respectively. 

Using Love’s first approximation shell theory, the strain-displacement relations can be written 

as [40]: 
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Following Wang [41], the distribution of electric potential along the thickness of the FGPM 

nanoshell is assumed as: 
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in which / h  ; V0 represents the initial external electric voltage applied to the FGPM nanoshell; 

Φ(x, θ, t) represents the spatial and time variation of the electric potential in the x-direction and 

θ-direction. 

Using Equation (23), the electric field components Ei are given by 
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For the porous FGPM cylindrical nanoshell, the nonlocal constitutive relationship (5) and (6) 

can be given by [42,43] 
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The strain energy s  of the porous FGPM cylindrical nanoshell is expressed as follows: 
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in which the resultant forces and the moments can be respectively calculated as 
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Moreover, the work F  done by external forces can be written as: 
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in which ( ExN , EN  )and ( TxN , TN  ) are the electrical and thermal forces induced by the uniform 

external electric voltage V0 and uniform temperature rise ΔT, respectively. They are given by 
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Using Hamilton’s principle [44,45]: 
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1
0 or

1 1
0

x x
x x

x

M M W
W n N

x R x

M M N W
n

R R x R



  




 

   
   

   

   
    

   

 
(44) 

0 or 0x
x x

MW
M n n

x R





  


 (45) 

2
0 or 0x

x

M MW
n n

R R
 




  


 (46) 

2

2

cos( )
0 or cos( ) d 0

h

h x x

z
z D n D n z

R z
 


 



 
    

  (47) 

where nx and nθ denote the direction cosines of the outward unit normal to the boundaries of the 

mid-plane. 

From Equation (27), we obtain the following equations: 

 
2 2

2 2 12 12
0 11 11 31 12 2 2x x x

A BU V W W
N e a N A W B F N

x R x R
 

 

    
        

    
 (48) 

 
2 2

2 2 22 11
0 12 12 32 12 2 2

A BU V W W
N e a N A W B F N

x R x R
  

 

    
         

    
 (49) 

 
2

2 2 66
0 66

21
x x

BV U W
N e a N A

R R x
    

   
     

    
 (50) 

 
2 2

2 2 12 12
0 11 11 312 2 2x x

D BW W V U V
M e a M D B E

x R x R


  

     
         

     

 (51) 

 
2 2

2 2 22 11
0 12 12 322 2 2

D BW W V U V
M e a M D B E

x R x R
  

  

     
         

     
 (52) 

 
2

2 2 66
0 66

2 1
x x

D W V U V
M e a M B

R x x R x
   

     
         

      
 (53) 

   
2 22

0 11

2

1 cos d
h

h xe a D z z X
x






   
    (54) 

 
 2 2 222

0

2

cos
1 d

h

h

z X
e a D z

R z R


 



   
     (55) 
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 
2 2

2 2 322
0 31 2 2 2

2

31 33

1 sin( )d

1

h

h z

EW W V
e a D z z E

x R

V U
F X

R x

 
 






               

  
   

  

  
(56) 

where 

 

22 2 2
11 11 1111 11 11

2 2 2

22 2 2
12 12 1212 12 12

2 2 2

22 2 2
22 22 2222 22 22

2 2 2

6666

2

( )d , ( ) d , ( ) d

( )d , ( ) d , ( ) d

( )d , ( ) d , ( ) d

( )

h h h

h h h

h h h

h h h

h h h

h h h

h

A c z z B c z z z D c z z z

A c z z B c z z z D c z z z

A c z z B c z z z D c z z z

A c z

  

  

  



  

  

  



  

  

  

  

  

  

 22 2 2
66 6666 66

2 2

2 2
31 3131 31

2 2

2 2
32 3232 32

2 2

22
11 2211 22

2

d , ( ) d , ( ) d

( ) sin( )d ( ) sin( )d

( ) sin( )d ( ) sin( )d

cos
( )cos ( )d , ( )

h h h

h h

h h

h h

h h

h h

h

h

z B c z z z D c z z z

F e z z z E e z z z z

F e z z z E e z z z z

X s z z z X s z

   

   



 

 

 



 

 

 

 

  

 

 



 

 

 

 

 

2

2

2

2
2

3333

2

( )
d

( ) sin( ) d

h

h

h

h

z
z

R z

X s z z z



 





 
  





 
 

 

Substituting Equations (48)–(56) into Equations (37)–(40) gives 

 

2 2 3 3
12 12

11 11 312 3 2 2

2 2 3 2
2 266 66

0 12 2 2 2

21
1 0

A BU V W W W
A B F

x R x x x R x x

A BU V W U
e a I

R R x R x t



 

  

      
     

        

                    

 (57) 

2 2 3 2 2
66 12 22

66 2 2 2 2

3 3 3 2
6612 11

312 3 3 2 2 2

2 2 3 3 2
66 12 22

2 2 2 4 3 2

21

1
2

1

B A AU V W U V W
A

R x x R x R x R

DB BW W W V
F

R x R R R x x

B D DU V W W V

R R x x R x R

    



   

   

        
       

           

     
     

       

      
      

        

 
2 2 2

232 12 11
0 12 2 3 2 2

21 0
E B BU V V

e a I
R R x R t



  





         
    




 
(58) 
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4 4 3 2 3 3
12 12

11 31 114 2 2 2 2 2 3 2

4 3 3 3
66

662 2 2 2 2

4 4 3 2 3
22

12 32 122 2 2 2 4 3 2

2 1
2

1

D BW W V U V
D E B

x R x x x x R x

D W V U V
B

R R x x R x x

DW W V U
D E B

R x R



  

   



   

      
      

         

       
        

           

     
      

     

   

3
11

2 3

2 2
22 11

12 12 312 2 2

2 2 2
2 21

0 1 0 12 2 2 2

2 2

1

1 1 0x

B V

x R

A BU V W W
A W B F

R x R x R

NW W W
e a N e a I

x R t


 


 



 
 

   

     
       

     

                 
 



 

(59) 

2 2 2 2
3222

11 33 31 312 2 2 2 2 2

1
0

EX W V U V W
X X F E

x R R x R x

 


   

        
          

        

 (60) 

The electric potential at both ends of the FGPM nanoshell is assumed to be zero. Then, the 

associated boundary conditions are expressed as 

2

2
= = 0

U W
V =W = =

x x


 

 
 (61) 

for a simply-supported end, and 

0
W

U V W
x




    


 (62) 

for a clamped end. 

3. Solution Procedure 

3.1. Navier Procedure 

For the porous FGPM cylindrical nanoshell with simply supported-simply supported (SS-SS) 

boundary condition, analytical solutions of the free vibration problem can be obtained utilizing 

Navier’s method. For this purpose, the following displacement functions which satisfy the SS-SS 

boundary condition are introduced: 

i( , , ) cos cos( )e t
mn

m x
U x t U n

L


 
 

  
 

 (63) 

i( , , ) sin sin( )e t
mn

m x
V x t V n

L


 
 

  
 

 (64) 

i( , , ) sin cos( )e t
mn

m x
W x t W n

L


 
 

  
 

 (65) 

i( , , ) sin cos( )e t
mn

m x
x t n

L


   
 

  
 

 (66) 

where 
mnU ,

 mnV , 
mnW and 

mn  represent the displacement amplitude components; m and n are 

mode numbers; ω represents the natural circular frequency of the porous FGPM nanoshell. 

Substituting Equations (63)–(66) into Equations (57)–(60), the following equation can be 

obtained 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0

0

0

0

mn

mn

mn

mn

q q q q U

q q q q V

q q q q W

q q q q 

     
     

        
     
         

 (67) 

The elements in the above matrix are given in the Appendix A1. Equation (67) gives the 

characteristic equation for the natural frequencies of the porous FGPM cylindrical nanoshell. To 

obtain a nontrivial solution, the determinant of the coefficient matrix must be set to zero. 

3.2. Galerkin Solution 

For clamped-simply supported (C-SS) and clamped-clamped (C-C) boundary conditions, the 

spatial displacement field of the porous FGPM nanoshell is expressed as [46]: 

  i( , , ) cos( )e t
mn

x
U x t U n

x


 





 (68) 

  i( , , ) sin( )e t
mnV x t V x n     (69) 

  i( , , ) cos( )e t
mnW x t W x n     (70) 

  i( , , ) cos( )e t
mnx t x n       (71) 

Thereinto, the axial modal beam function ϕ(x) could be written as: 

  1 2 3 4cosh cos sinh sini i i i
i

x x x x
x c c c c

L L L L

   
 

        
           

        
 (72) 

where the constants c1, c2, c3, c4, ζi and λi (i=1, 2, 3, 4…) are given in Table 1. 

Table 1. Values of c1, c2, c3, c4, ζi and λi for different boundary conditions. 

Boundary 

condition 
c1 c2 c3 c4 ζi λi  

C-SS 1 −1 1 −1 
   
   

cosh cos

sinh sin
i i

i i

 

 




 3.9266 7.0686 10.2102 13.3518 … 

C-C 1 −1 1 −1 
   
   

cosh cos

sinh sin
i i

i i

 

 




 4.7300 7.8532 10.9956 14.1372 … 

Inserting Equations (68)–(71) in Equations (57)–(60) and applying the Galerkin method, we 

obtain: 

 2

0

0

0

0

mn

mn

mn

mn

U

V

W




   
   
   

    
   
     

K M
 

(73) 

in which the matrices M and K are the mass matrix and stiffness matrix of the porous FGPM 

cylindrical nanoshell, respectively. 

To find the non-zero solutions, the determinant of the coefficient matrix must be equal to zero. 

Then, natural frequencies of FGPM nanoshells with nano-voids can be determined [47–54]. 

4. Results and Discussion 

For examining the validity of the present analysis, the comparison is performed on natural 

frequencies of a PZT-4 piezoelectric cylindrical nanoshell. Table 2–4 list the natural frequencies of 
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the piezoelectric nanoshell under different boundary conditions with h = 1 nm, R/h = 50, L/R = 12, m = 

1, ΔT = 0, and V0 = 0. Material properties of PZT-4 are shown in Table 5. It is found that the present 

results match those given by Ke et al. [31] very well, bespeaking the validity of the present study. 

Table 2. Comparison of natural frequency ω(GHz) of a SS-SS homogeneous piezoelectric nanoshell 

(μ = e0a/L). 

n 
μ = 0.02 μ = 0.04 

Ke et al. [31] Present Ke et al. [31] Present 

1 0.4448 0.4448 0.4105 0.4105 

2 0.2190 0.2190 0.1748 0.1748 

3 0.4296 0.4296 0.3016 0.3016 

4 0.7235 0.7235 0.4630 0.4630 

5 1.0361 1.0361 0.6223 0.6223 

6 1.3532 1.3532 0.7780 0.7780 

7 1.6694 1.6694 0.9309 0.9309 

8 1.9829 1.9829 1.0827 1.0827 

9 2.2933 2.2933 1.2310 1.2310 

10 2.6008 2.6008 1.3791 1.3791 

Table 3. Comparison of natural frequency ω(GHz) of a C-SS homogeneous piezoelectric nanoshell (μ 

= e0a/L). 

n 
μ = 0.02 μ = 0.04 

Ke et al. [31] Present Ke et al. [31] Present 

1 0.6189 0.6539 0.5710 0.6031 

2 0.2701 0.2751 0.2155 0.2195 

3 0.4357 0.4362 0.3058 0.3061 

4 0.7247 0.7248 0.4637 0.4638 

5 1.0365 1.0367 0.6225 0.6226 

6 1.3534 1.3535 0.7781 0.7782 

7 1.6695 1.6696 0.9309 0.9310 

8 1.9830 1.9831 1.0817 1.0818 

9 2.2934 2.2935 1.2310 1.2311 

10 2.6008 2.6009 1.3791 1.3792 

Table 4. Comparison of natural frequency ω(GHz) of a C–C homogeneous piezoelectric nanoshell (μ 

= e0a/L). 

n 
μ = 0.02 μ = 0.04 

Ke et al. [31] Present Ke et al. [31] Present 

1 0.7987 0.8487 0.7368 0.7823 

2 0.3386 0.3488 0.2702 0.2782 

3 0.4458 0.4472 0.3129 0.3138 

4 0.7266 0.7268 0.4649 0.4651 

5 1.0371 1.0373 0.6228 0.6229 

6 1.3536 1.3538 0.7782 0.7783 

7 1.6696 1.6698 0.9310 0.9311 

8 1.9830 1.9832 1.0818 1.0819 

9 2.2934 2.2936 1.2310 1.2311 

10 2.6008 2.6010 1.3791 1.3792 
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Table 5. Material properties of PZT-4 and PZT-5H [31,55]. 

Material PZT-4 PZT-5H 

Elastic constants (GPa) 

c11 = 132, c12 = 71, 

c13=73, c22 = 132, c23 = 

73, c33 = 115, c66 = 30.5 

c11 = 126, c12 =79.1, c13 = 

83.9, c22 = 139, c23 = 83.9, 

c33 = 117, c66 = 23.5 

Piezoelectric constants (C/m2) 
e31 = −4.1, e32 = −4.1, 

e33 = 14.1 

e31 = −6.5, e32 = −6.5, 

e33 = 23.3 

Dielectric constants (10−9 C/Vm) s11=5.841, s33=7.124 s11 = 15.05, s33 = 13.02 

Thermal moduli (105 N/km2) 
β11 = 4.738, β22 = 4.738, 

β33 = 4.529 

β11 = 4.738, β22 = 4.738, 

β33 = 4.529 

Pyroelectric constant (10−6 C/N) p3 = 25 p3 = 25 

Mass density (kg/m3) ρ = 7500 ρ = 7500 

In the following sections, free vibration of the porous FGPM cylindrical nanoscale shell shown 

in Figure 1 is performed; the material properties of the nanoshell are displayed in Table 5. If not 

specified, the following parameters are used: 

0 0

, , ,

1, , 0, 0

0.1nm / 50 / 6

1, 0.1 , 2 nm

h R h L R

m V eN T a

  

   
  

In Tables 6–8, the variation of natural frequency of the FGPM-I nanoshell against the 

circumferential wave number is represented for different porosity volume fractions and different 

boundary conditions, where N = 20. Among them, α = 0 corresponds to the FGPM cylindrical 

nanoshell without nano-voids. The results reveal that the natural frequency decreases as the porosity 

volume fraction increases. With the increase of the circumferential wave number, it is seen that the 

natural frequency decreases first and then increases. In addition, under the same condition, the 

SS-SS porous FGPM nanoshell has the lowest natural frequency while the C-C one has the highest 

natural frequency. This is because the end support is the weakest (in terms of stiffness) for the SS-SS 

FGPM nanoshell and the strongest for the C-C one. Under the SS-SS boundary condition, it is seen 

that the minimum natural frequency occurs at n = 3. Therefore, the fundamental frequency of the 

SS-SS FGPM nanoshell corresponds to mode (m = 1, n = 3). In the next studies, the SS-SS FGPM 

nanoshell is taken as an example and the mode (1,3) is chosen as a representative mode. 

Table 6. Variation of the natural frequency ω(GHz) against the circumferential wave number n for 

different porosity volume fractions α of FGPM-I nanoshell (SS-SS). 

n α = 0 α = 0.1 α = 0.2 

1 12.216 12.120 11.998 

2 4.212 4.176 4.131 

3 3.575 3.554 3.528 

4 5.129 5.109 5.084 

5 6.934 6.912 6.884 

6 8.737 8.712 8.680 

7 10.514 10.486 10.450 

8 12.267 12.235 12.195 

9 14.000 13.965 13.920 

10 15.718 15.679 15.630 
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Table 7. Variation of the natural frequency ω(GHz) against circumferential wave number n for 

different porosity volume fractions α of FGPM-I nanoshell (C-SS). 

n α = 0 α = 0.1 α = 0.2 

1 15.958 15.833 15.675 

2 6.000 5.951 5.889 

3 4.042 4.017 3.985 

4 5.223 5.202 5.176 

5 6.961 6.939 6.911 

6 8.750 8.724 8.692 

7 10.522 10.493 10.458 

8 12.273 12.241 12.201 

9 14.005 13.969 13.925 

10 15.722 15.683 15.634 

Table 8. Variation of the natural frequency ω(GHz) against circumferential wave number n for 

different porosity volume fractions α of FGPM-I nanoshell (C-C). 

n α = 0 α = 0.1 α = 0.2 

1 18.371  18.228  18.048  

2 7.670  7.609  7.531  

3 4.657  4.626  4.587  

4 5.365  5.343  5.314  

5 7.000  6.977  6.948  

6 8.763  8.738  8.706  

7 10.529  10.500  10.464  

8 12.277  12.245  12.205  

9 14.008  13.972  13.928  

10 15.724  15.685  15.636  

Natural frequency against the radius-to-thickness ratio for different porosity volume fractions 

is plotted for the FGPM-I nanoshell in Table 9. As the radius-to-thickness ratio increases, one can see 

that the natural frequency decreases initially and then increases; the frequency does not change 

monotonously with the radius-to-thickness ratio. 

Table 9. Variation of natural frequency ω(GHz) against the radius-to-thickness ratio R/h for different 

porosity volume fractions of FGPM-I nanoshell (n = 3, L = 300 h, N = 20). 

R/h α = 0 α = 0.1 α = 0.2 

50 3.575 3.554 3.528 

55 3.353 3.332 3.304 

60 3.239 3.217 3.189 

65 3.211 3.187 3.158 

70 3.248 3.223 3.192 

75 3.333 3.307 3.274 

80 3.452 3.425 3.390 

85 3.594 3.565 3.529 

90 3.751 3.721 3.683 

95 3.917 3.885 3.845 

100 3.575 3.554 3.528 

Figure 2 presents the effect of temperature change on the natural frequency of the FGPM-I 

nanoshell. The natural frequency decreases with the increase of temperature change. This is due to 
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the fact that the larger temperature change results in a reduction in the stiffness and hence leads to 

the lower natural frequency of the porous FGPM nanoshell. 
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Figure 2. Variation of natural frequency ω(GHz) against temperature change △T (°C) for different 

porosity volume fractions of the FGPM-I nanoshell (n = 3, N = 20). 

Table 10 illustrates the natural frequency against the circumferential wave number for different 

power-law indexes of the FGPM-I nanoshell. The natural frequencies of the FGPM nanoshell 

decreases with the increase of the power-law index. Additionally, it is seen that the fundamental 

natural frequency occurs at mode (m = 1, n = 3), which does not change with the power-law index. 

Table 10. Variation of the natural frequency ω(GHz) against circumferential wave number n for 

different power-law indexes N of FGPM-I nanoshell. 

n N = 0.3 N = 1 N = 5 

1 13.474 12.852 12.305 

2 4.437 3.982 3.967 

3 3.422 2.950 3.088 

4 5.027 4.656 4.735 

5 6.929 6.602 6.630 

6 8.822 8.512 8.503 

7 10.680 10.376 10.336 

8 12.508 12.203 12.135 

9 14.312 14.002 13.908 

10 16.097 15.779 15.661 

Figure 3 gives the variation of the natural frequency against the length-to-radius ratio for 

different power-law indexes. As a whole, it is observed that the natural frequency is quite susceptive 

to the length-to-radius ratio when this ratio is small; the frequency drops quickly as the 

length-to-radius ratio increases of the porous FGPM nanoshell. However, when L/R > 15, the natural 

frequency is no longer sensitive to the length-to-radius ratio change. 
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Figure 3. Variation of natural frequency ω(GHz) against length-to-radius ratio for different 

power-law indexes N of FGPM-I nanoshell (n = 3). 

Figure 4 presents the variation of natural frequency against the radius-to-thickness ratio for 

different power-law indexes. The natural frequency decreases first and then increases as the 

radius-to-thickness ratio increases. A trend can also be observed that the natural frequency decreases 

gradually with the increase of the power-law index. 
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Figure 4. Variation of the natural frequency ω(GHz) against the radius-to-thickness ratio for different 

power-law indexes N of FGPM-I nanoshell (n = 3, L = 300 h). 

The variation of the natural frequency against external electric potential V0 for different 

power-law indexes is presented in Figure 5. Here, N = 0 corresponds to the cylindrical nanoshell 

made of pure PZT-4. As we can see, the natural frequency is quite sensitive to the applied external 

electric voltage. The natural frequency decreases as the voltage changes from V0 = −0.0002 V to 0.0002 

V. The reason is that the axial and circumferential compressive and tensile forces are generated in 

the porous FGPM nanoshells by the applied positive and negative voltages, respectively. Thereinto, 

the applied positive voltage reduces the nanoshell stiffness but the negative voltage increases the 

nanoshell stiffness. 
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Figure 5. Variation of natural frequency ω(GHz) against external electric potential V0 for different 

power-law indexes of FGPM-I nanoshell (n = 1). 

Table 11 presents the variation of nonlocal parameter against natural frequency of the FGPM-I 

nanoshell. One can see that the frequency decreases gradually with the increasing nonlocal 

parameter. This is because the nonlocal effect tends to decrease the stiffness of the nanoshell and 

hence decreases the natural frequency. This phenomenon was also found in nano-beams and 

nano-plates [56–58]. 

Table 11. Variation of natural frequency ω(GHz) against the circumferential wave number n for 

different nonlocal parameter e0a of FGPM-I nanoshell. 

n e0a = 0 e0a = 1 nm e0a = 1.5 nm e0a = 2 nm 

1 14.101 13.755 13.356 14.101 

2 5.168 4.775 4.392 5.168 

3 4.650 3.971 3.433 4.650 

4 8.839 6.879 5.630 8.839 

5 14.826 10.455 8.193 14.826 

6 22.203 14.182 10.752 22.203 

7 30.928 17.943 13.267 30.928 

8 40.993 21.693 15.738 40.993 

9 52.398 25.414 18.172 52.398 

10 65.143 29.101 20.575 65.143 

In order to reveal the porosity type effect, the natural frequency against the circumferential 

wave number for FGPM-I and FGPM-II nanoshells is plotted in Figure 6. One can see that the natural 

frequency of the FGPM-II nanoshell is close to that of the FGPM-I one at small circumferential wave 

number. However, the natural frequency of the FGPM-II nanoshell becomes higher than that of its 

FGPM-I counterpart with the rise of circumferential wave number. The difference between them 

gets more and more obvious as the circumferential wave number increases further. 
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Figure 6. Variation of the natural frequency ω(GHz) against the circumferential wave number of 

different types of porous FGPM nanoshell. 

Table 12 gives the natural frequencies of FGPM-I and FGPM-II nanoshells for various porosity 

volume fractions. One can find that the larger nano-void volume fraction leads to the lower natural 

frequency of the FGPM-I nanoshell, while it leads to the higher natural frequency of the FGPM-II 

nanoshell. Therefore, it can be concluded that the porosity distribution type has a notable impact on 

vibration characteristics of FGPM nanoshells. 

Table 12. Variation of natural frequency ω(GHz) against length-to-radius ratio L/R of different types 

of porous FGPM cylindrical nanoshell (n = 3, N = 20). 

L/R 
α = 0 α = 0.1 α = 0.2 

Prefect FGPM-I FGPM-II FGPM-I FGPM-II 

6 3.575 3.554 3.609 3.528 3.643 

12 3.168 3.151 3.208 3.130 3.249 

18 3.137 3.121 3.177 3.100 3.218 

24 3.130 3.114 3.170 3.093 3.211 

30 3.127 3.111 3.168 3.091 3.209 

36 3.126 3.110 3.166 3.090 3.208 

42 3.126 3.109 3.166 3.089 3.207 

48 3.125 3.109 3.165 3.089 3.207 

5. Conclusions 

In this work, free vibration of porous FGPM nanoshells subjected to thermal and electrical loads 

is studied in the framework of Love’s shell theory and nonlocal elasticity theory. Size-dependent 

governing equations and boundary conditions are obtained based on Hamilton’s principle. Then, 

natural frequencies of the porous FGPM cylindrical nanoshells are obtained via the Navier method 

as well as the Galerkin method. The following conclusions were drawn: 

1) The fundamental natural frequency of the porous FGPM nanoshell decreases initially and 

then increases as the radius-to-thickness ratio increases. Furthermore, the fundamental frequency 

decreases with the rise of the length-to-radius ratio; especially, the frequency changes notably when 

the length-to-radius ratio is small; 

2) Applying positive voltage decreases the stiffness while applying negative voltage increases 

the stiffness of the porous FGPM cylindrical nanoshell. Furthermore, the temperature rise results in 

a reduction in the stiffness. In addition, the larger power-law index leads to the lower natural 

frequencies of the porous FGPM cylindrical nanoshell; 

0 2 4 6 8 10

2

4

6

8

10

12

14

16

18


(

G
H

z)

n

FGPM-I
 FGPM-II

6.7 6.8 6.9 7.0 7.1 7.2 7.3
10.0

10.2

10.4

10.6

10.8

11.0


(

G
H

z)

n



Nanomaterials 2019, 9, 301 18 of 21 

 

3) The nonlocal parameter has a softening effect on the free vibrations of the porous FGPM 

nanoscale shells; 

4) The Galerkin solution procedure is an alternative method, which can give numerical results 

with satisfactory accuracy; 

5) Increasing the porosity volume fraction has a different effect on the natural frequencies of the 

FGPM-I and FGPM-II nanoshells, which shows that the porosity distribution type plays a notable 

role on vibration characteristics of the FGPM nanoscale shells. 
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