
nanomaterials

Article

Fabrication of Cu2ZnSnS4 (CZTS) Nanoparticle Inks
for Growth of CZTS Films for Solar Cells

Xianfeng Zhang 1,* , Engang Fu 2, Yuehui Wang 1 and Cheng Zhang 1

1 Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402,
Guangdong, China; wangzsedu@126.com (Y.W.); aqian2006@gmail.com (C.Z.)

2 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University,
Beijing 100871, China; efu@pku.edu.cn

* Correspondence: zhangxf07@gmail.com; Tel.: +86-760-8831-3456

Received: 8 January 2019; Accepted: 24 February 2019; Published: 2 March 2019
����������
�������

Abstract: Cu2ZnSnS4 (CZTS) is a promising candidate material for photovoltaic applications; hence,
ecofriendly methods are required to fabricate CZTS films. In this work, we fabricated CZTS
nanocrystal inks by a wet ball milling method, with the use of only nontoxic solvents, followed by
filtration. We performed centrifugation to screen the as-milled CZTS and obtain nanocrystals. The
distribution of CZTS nanoparticles during centrifugation was examined and nanocrystal inks were
obtained after the final centrifugal treatment. The as-fabricated CZTS nanocrystal inks were used to
deposit CZTS precursors with precisely controlled CZTS films by a spin-coating method followed by
a rapid high pressure sulfur annealing method. Both the grain growth and crystallinity of the CZTS
films were promoted and the composition was adjusted from S poor to S-rich by the annealing. XRD
and Raman characterization showed no secondary phases in the annealed film, the absence of the
detrimental phases. A solar cell efficiency of 6.2% (open circuit voltage: Voc = 633.3 mV, short circuit
current: Jsc = 17.6 mA/cm2, and fill factor: FF = 55.8%) with an area of 0.2 cm2 was achieved based
on the annealed CZTS film as the absorber layer.

Keywords: Cu2ZnSnS4 solar cell; ball milling; nano-ink; annealing

1. Introduction

In recent years, kesterite Cu2ZnSnS4 (CZTS) and Cu2ZnSn(S, Se)4 (CZTSSe) solar cells have drawn
attention because of their promise as an absorbing layer for applications in thin-film photovoltaics
owing to its low cost, nontoxicity and earth abundance of its elemental components as well as an
adjustable bandgap [1–3]. One advantage of CZTS over other kinds of chalcopyrite-related solar cells
is its suitability for achieving high efficiency solar cells through nonvacuum fabrication methods.
Furthermore, the world record conversion efficiency of CZTSSe solar cells is currently 12.6% [4] based
on a hydrazine pure solution approach. There have been several reports on the fabrication of CZTS
or CZTSSe solar cells. Both vacuum methods, such as sputtering [5], coevaporation [6], epitaxial
methods [7], and nonvacuum methods [8–11], have been reported. Nonvacuum methods are lower in
cost and more suitable for mass production than are vacuum methods. Among nonvacuum methods,
the highest conversion efficiency CZTS solar cells are based on molecular precursor solutions or
nanoparticle dispersions [12,13]. Although these kinds of fabrication methods are appealing because
of their low complexity, low-cost, and scalability, such methods are complicated by the need for
toxic solvents or metal–organic solutions that contain large amounts of organic contaminants, which
induce cracking during the following annealing process [14,15]. The use of the toxic and unstable
solvent hydrazine requires all processes for ink and film preparation to be performed under an
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inert atmosphere. As a result, it is difficult to adapt this approach to low-cost and large-scale solar
cell fabrication.

In this work, we report a simple technique for fabricating CZTS nanoparticles ink by a wet ball
milling method using nontoxic ethanol and 2-(2-ethoxyethoxy) ethanol as the solvents. A similar study
has been reported by Woo, et al.; an efficiency of 7% was achieved [16]. However, the use of CZTS
powder to fabricate CZTS film is expected to have the following benefits. (1) The fabrication process is
simpler. (2) The growth of grains will be promoted because the grain boundary meltdown temperature
is lowered. (3) Stoichiometric film compositions are easier to obtain because the chemical reactions are
less complicated. The use of nontoxic solvents is more cost-effective and environment friendly, which
is important for practical photovoltaic applications. The ink was used to fabricate CZTS thin films
(precursors) by a spin-coating method, followed by annealing the precursor in a sulfur-rich atmosphere.
The commercial CZTS powder was obtained from Mitsui Kinzoku, and detailed information of its
characteristics is currently unavailable. The sulfur vapor not only prevents the formation of volatile
Sn–S compounds but also supplies S atoms to make the CZTS films sulfur-rich, which is a requirement
for high performance solar cells. The procedure for fabricating CZTS films from CZTS powder is
reported in detail in this paper.

2. Experiment Details

2.1. Sample Preparation

Figure 1a–c illustrates the process for fabricating CZTS nanoparticle ink. In the ball milling
system, a 1-mm ball, 50-µm ceramic balls, and CZTS powder were mixed together in the mill pot. A
5-mL portion of ethanol was added to improve the wet milling effect. Figure 1a shows a schematic
diagram of the milling system. The milling pots were rotated along their own axis together with
the base plate. The milling process was performed for 40 h. After ball milling, the whole mixture
was strained through a filter screen to obtain particles smaller than 32 µm, and nontoxic ethanol and
2-(2-ethoxyethoxy) ethanol were used to wash the milling ball to increase nanoparticle recovery, as
shown in Figure 1b. Through this procedure, the milling balls and large particles of CZTS (>32 µm)
were removed whereas a mixture of relatively small CZTS particles (<32 µm) and the solvents were
retained. We used 2-(2-ethoxyethoxy) ethanol as a dispersion agent to prevent coagulation of the
nanoparticles, and ethanol was used to reduce the viscosity of the solvent and promote precipitation
of large particles during the following centrifugation. The resulting solution was then ultrasonically
processed to disperse the particles in the solvents for 1 h.
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The as-prepared mixture of CZTS and solvents was first centrifuged at a low speed 1500 rpm to
remove particles over several µm in size. The precipitate was disposed of and the upper layer of the
solution was decanted for further centrifugal treatment. The aforementioned processes were repeated
three times at a higher speed of 6000 rpm and the nanoparticles were obtained. The nanoparticle
ink was obtained with a concentration of 200 mg/mL by adjusting the quantity of ethanol. The
nanoparticle ink was then used to fabricate CZTS precursors by spin-coating. Figure 2a shows a
schematic diagram of the spin-coating system. The substrate was rotated at a speed of 2000 rpm
and the CZTS ink was dripped on at a speed of 5 µL/min. The final CZTS precursor film showed a
thickness of 1–1.5 µm. Finally, the precursors were annealed in a sulfur-rich atmosphere to improve
the grain size and crystallinity. The sulfurization process was conducted by sealing the precursor and
powdered sulfur into a vacuum quartz tube with a length of 15 cm, which was placed in the annealing
furnace (FP410, Yamato Company, Tokyo, Japan), as shown in Figure 1b. The furnace was heated to
600 ◦C within 15 min and the vapor pressure of sulfur was approximately 0.1 atm. The annealing
process was performed for 20 min after the system achieved 600 ◦C. Then the sample was allowed to
cool to room temperature naturally.
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Figure 2. Fabrication process of CZTS films: (a) fabrication of CZTS precursor by spin-coating and
(b) the sulfur vapor annealing process.

A typical structure of a CZTS solar cell is shown in Figure 3. The as-grown CZTS film was used
as the absorbing layer. A CdS layer with a thickness of 50 nm was fabricated by a chemical bath
deposition method as the buffer layer. Intrinsic ZnO with a thickness of 100 nm and B-doped ZnO
with a thickness of 400 nm were then sputtered as the window layer. To measure the performance of
the solar cell, an Al grid was evaporated as the front electrode.
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2.2. Characterization

The morphology of the annealed CZTS films was characterized with a scanning electron
microscope (SEM, JSM-7001F, Tokyo, Japan) equipped with a JED-2300T energy dispersive spectroscopy
(EDS) system (Tokyo, Japan) operating at an acceleration voltage of 10 kV. EDS, for compositional
analysis, was measured at an acceleration voltage of 15 kV. The grain size distribution was measured
with a transmission electron microscope (TEM, JEOL JEM-2100F, Tokyo, Japan). X-ray diffraction
(XRD) analysis was performed with a Rigaku SmartLab2 with a Cu-K source and the generator was set
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to 20 mA and 40 kV. Raman measurements were performed with a RENISHAW-produced inVia RefleX
type Raman spectrometer equipped with an Olympus microscope with a 1000 magnification lens at
room temperature. The excitation laser line was 532 nm. The solar cell performance was measured
with a 913 CV type current–voltage (J–V) tester (AM1.5) provided by a EKO (LP-50B, Tokyo, Japan)
solar simulator. The simulator was calibrated with a standard GaAs solar cell to obtain the standard
illumination density (100 mW/cm2).

3. Results and Discussion

3.1. Centrifugation to Obtain CZTS Nanoparticle Ink

Figure 4a–e shows TEM images of the CZTS particle distribution of the dispersion subjected to
different centrifugation conditions. Figure 4a shows the distribution of CZTS particles for the CZTS
dispersion without a centrifugal treatment. The small particles and large particles agglomerated
together to form large clusters such that the boundaries between particles became unclear and it was
not possible to tell the size of the particles; hence, the larger and smaller particles and nanoparticles
were not separated. Figure 4b shows an TEM image of the CZTS ink centrifuged for 10 min at
1500 rpm. A portion of the large particles was removed, which reduced the agglomeration. The particle
boundaries were clear; however, particles larger than several hundred nm remained. To further reduce
the size of the particles, the dispersion was centrifuged at a high speed of 6000 rpm for 10, 20, and
30 min. The results are shown in Figure 4c–e, respectively. The sample shown in Figure 4c, had the
largest particles (in the range of 100 to 200 nm) and almost no agglomeration was observed. In sample
(d), particles remaining in the dispersion were smaller than 100 nm, indicating that nanoparticles
were obtained. The particle size of sample (e) was in the range of 50 to 100 nm, which indicated that
after the treatment to obtain sample (d), the particle size of the dispersion was no longer affected by
centrifugation because of the limitations of final particle sizes generated by ball milling processes.
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3.2. Deposition of CZTS Precursors

The CZTS nanoparticle inks were used to deposit the CZTS precursors on glass substrates by
a spin-coating method. The speed of the substrate was approximately 2000 rpm and 5 µL of CZTS
ink was dripped at the center of the substrate for each drop, which was repeated 10 times to obtain a
film with a thickness of 1–1.5 µm. Figure 5a–c shows the surface morphology of the CZTS film with
different magnifications. The SEM image showed a compact morphology with grains smaller than
100 nm without cracks and no large particles were observed. The specific grain size could not be
measured because of the small boundaries between grains. Because the precursor was only grown at
room temperature, an additional high-temperature treatment was necessary to improve the grain size
and crystallinity of the film.Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 10 
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3.3. Annealing of the Precursor

To induce grain growth and reduce the residual organic impurities, the CZTS precursor was
annealed in an atmosphere with a high sulfur vapor pressure for 20 min at a temperature of 600 ◦C.
Figure 6a,b shows the surface and cross-sectional SEM images of the CZTS films after annealing,
respectively. Comparing the precursor morphology, as shown in Figure 5, the grain size increased
markedly. The final grain size ranged from several hundred nm to several µm and cracks begin to
appear between the grains, either because of grain growth or decomposition of the CZTS particles.
According to the cross-sectional image (Figure 6b), the grains extended throughout the film in the
thickness direction, which is expected for high-quality films. However, cracks stretching from the
surface to the bottom of the film were also observed (marked by the red arrow), indicating the
low density of the film. One explanation for this cracking was reported by Scragg, et al. owing to
decomposition of CZTS film, as shown in following reactions (1) and (2) [17].

Cu2ZnSnS4 
 Cu2S(s) + ZnS(s) + SnS(s) + 1/2S2(g) (1)

SnS(s) 
 SnS(g) (2)

One solution to overcome this issue is to reduce the annealing temperature to prevent
equilibrium (1) from shifting to the right and extending the annealing time to ensure maintain
the crystallinity.
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To make a comparison, CZTS film using centrifugation condition: 1500 rmp for 10 min was also
annealed with the same annealing condition and completed solar cell structure (Please refer to the
Supplementary Materials).

Table 1 shows the composition of the CZTS precursor and annealed film, as determined by
energy-dispersive X-ray spectroscopy (EDX). The precursor had a sulfur composition less than 50%
whereas the sulfur content increased to 50.5% after annealing, indicating that the film was converted
from sulfur poor to sulfur-rich, which produces p-type CZTS films. It has been widely reported that
Zn-rich (Zn/Sn > 1.0) films are required for fabricating high-performance CZTS solar cells [18,19],
meaning that the composition of our CZTS films needed to be adjusted. One possible way to adjust
the film to Zn-rich is to fabricate a thin layer of ZnS nanoparticles between the CZTS precursor and
Mo back-contact, such that in the following annealing step, both Zn and S will be supplemented.

Table 1. Composition of precursor and annealed film as measured by energy-dispersive X-ray
spectroscopy (EDX).

Cu (%) Zn (%) Sn (%) S (%) Zn/Sn Cu/(Zn + Sn)

Precursor 25.4 9.9 15.6 49.1 0.63 1.00
Annealed CZTS film 24.7 9.8 15.1 50.5 0.65 0.99

Figure 7 shows the XRD patterns of the precursor and annealed film of CZTS. The crystallinity
was also improved by high-temperature annealing. The sulfurization process induced sharpening
and strengthening of the peaks. All the peaks of the precursor and the annealed film were assigned
to kesterite CZTS. No peaks of secondary phases, such as ZnS and Cu2S, which easily form at high
temperatures [20], were detected by XRD. However, XRD alone is incapable of identifying small
amounts of secondary phases because of its detection limits. To complement this method, we also
performed Raman measurements to confirm the absence of secondary phases. Raman spectra of
the precursor and annealed CZTS thin films are shown in Figure 8. The lower spectrum shows
the annealed CZTS film with peak fitting by a Lorentzian curve. According to the figure, the
precursor showed one peak at 330 cm−1, corresponding to the A mode of kesterite CZTS. The annealed
film exhibited a typical Raman spectrum of kesterite CZTS films with three peaks at 285, 330, and
369 cm−1, corresponding to the two A symmetry modes and a B symmetry mode of the CZTS kesterite
structure, respectively [21,22]. This result also indicated that no secondary phases are observed after
the annealing process.

The annealed CZTS films were used to fabricate complete solar cell structures. Solar cell
performance was evaluated under standard conditions. The conversion efficiency of three cells
on the same sample was measured as shown in Table 2. The solar cell ranged from 2.5% to 6.2%,
indicating ununiform solar cell performance due to the poor film quality as shown in Figure 7.
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Table 2. Performance of CZTS solar cells.

Sample No. Eff Voc (mV) Jsc (mA/cm2) FF (%)

1 6.2 633.3 17.6 55.8
2 4.3 578.2 15.3 48.6
3 2.5 497.1 12.2 41.2
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Figure 9 shows dark and light I–V curves of solar cell using annealed CZTS film as the absorber
layer with best solar cell performance. The photovoltaic device exhibited an efficiency of 6.2%, with
Voc = 633.3 mV, Jsc = 17.6 mA/cm2, and FF = 55.8%, for an area of 0.20 cm2.
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Figure 10 shows the external quantum efficiency (EQE) curve of the CZTS solar cell. Over
the visible range of the solar spectrum, the maximum QE was less than 60%, indicating strong
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recombination. The QE curve decreased sharply in the infrared region at 770 nm, which is the CZTS
absorption edge. Thus, the calculated bandgap of the CZTS films was approximately 1.61 eV. The
features near 510 nm and 380 nm correspond to the absorption edges of the CdS and ZnO layers [23,24],
which are commonly used CdS buffer and ZnO window layers.Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 10 
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On the basis of the EQE data of a solar cell, Jsc was calculated as [25]

Jsc = q
∫ ∞

0
QE(E)bs(E, Ts)dE (3)

where, q is the elementary charge, QE is the quantum efficiency, and bs is solar flux or irradiation. For
an air mass of 1.5, the data is available from Ref. [26]. On the basis of Equation (3), Figure 10, and
the solar irradiation spectrum, Jsc of the CZTS solar cells was calculated to be 14.2 mA/cm2, because
the J-V curve represents the real performance of a photovoltaic device. The slight deviation of Jsc

calculated from the QE curve can be explained by the fact that the QE measurement is performed at a
single wavelength with a much lower intensity than one-sun irradiation.

4. Conclusions

We synthesized a CZTS nanoparticle ink by a wet ball milling method together with centrifugation
treatments based on only nontoxic solvents. The ink was then used to deposit CZTS precursor films by
a spin-coating method, which led to extremely flat surfaces with high-uniformity. The precursor was
annealed at a high temperature of 600 ◦C under a sulfur atmosphere and the grain size increased to
approximately 1 µm from the original size of less than 100 nm. Both the composition and crystallinity
of the CZTS film were markedly improved by annealing. The absence of secondary phase formation
during the annealing process was confirmed by XRD and Raman analysis. A solar cell efficiency of
6.2% (Voc = 633.3 mV, Jsc = 17.6 mA/cm2, and FF = 55.8%) with an area of 0.2 cm2 was achieved using
annealed CZTS film as the light absorbing layer. To improve solar cell performance, it is necessary
to increase grain size, improve crystallinity, and reduce defects in the film. Because the fabrication
process of CZTS features a complex growth mechanism, the formation of secondary phases should be
checked to confirm film quality, which directly affects solar cell performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/3/336/s1,
Figure S1: (a) Surface and (b) cross-section of an annealed CZTS film using centrifugation condition: 6000 rpm
for 20 min. (c) Surface Morphology of an annealed CZTS film fabricated with CZTS ink using centrifugation
condition: 1500 rpm for 10 min. The annealing was conducted at a temperature of 600 ◦C in S rich atmosphere,
Figure S2: J-V curve of CZTS solar cells for (a) centrifugation 6000 rpm for 20 min; (b) 1500 rpm for 10 min,
Table S1: Solar cell performance of CZTS solar cells.
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