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Abstract: To obtain new highly efficient and stable quasi-solid dye-sensitized solar cells (QS-DSSCs)
that can meet the requirements for the large-scale commercial application of solar cells, we have
developed a novel quasi-solid-state electrolyte, based on an electrospun polyvinylidene fluoride
(PVDF) membrane. The structure and properties of electrospun PVDF membranes were characterized
by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric (TG), and
mechanical testing. The results indicate that the electrospun PVDF membrane has a three-dimensional
network structure with extremely high porosity, which not only acts as a barrier to prevent electrolyte
leakage but also provides a channel for the transmission of ions in the electrolyte, thereby effectively
guaranteeing the high photoelectric conversion efficiency of the cells. The membrane was observed to
withstand the conditions of hot-press (110 ◦C), and exhibited good thermal stability and mechanical
strength, which are critical for the long-term stability and safety of the cells. The photovoltaic
characteristics and stabilities of QS-DSSCs were compared with DSSCs based on an ionic liquid
electrolyte (L-DSSC). QS-DSSCs with an 80 µm thick nanofiber electrolyte membrane showed
a conversion efficiency of 8.63%, whereas an identical cell based on the corresponding ionic liquid
electrolyte showed an efficiency of 9.30%. The stability test showed that, under indoor and outdoor
conditions, after 390 h, the L-DSSCs failed. Meanwhile, the QS-DSSCs also maintained 84% and 77%
of the original efficiency. The results show that, compared to the liquid electrolyte, the design of the
quasi-solid electrolytes based on electrospun PVDF nanofiber membrane not only demonstrates the
high conversion efficiency of DSSCs but also enhances the stability of the DSSCs, which provides the
possibility for the fabrication of solar cells with higher efficiency and stability.

Keywords: quasi-solid-state electrolyte; electrospun PVDF; high efficiency; stable; DSSCs

1. Introduction

With the increase in energy demand and environmental pollution in the last decade, global concerns
about such problems have significantly spurred the technological endeavor of renewable and green energy.
Among all the renewable energy, solar energy is considered to be one of the most promising sources of
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renewable energy, as it is rich in resources, clean, and pollution-free [1]. However, photovoltaic cells are
the only devices that directly convert solar energy to electrical energy. The development of solar cells
plays an important role in the area of solar energy conversion [1]. Since the first report by Oregan and
Gratzel in 1991 [2], DSSCs have received massive attention owing to their relatively high energy conversion
efficiencies along with their low projected production cost and simple fabrication process [3–6]. However,
the traditional fabrication process of dye-sensitized solar cells (DSSCs) uses liquid electrolytes, which leads to
long-term stability problems because of the leakage and volatility of liquid electrolytes [7,8]. To solve these
problems, some solid electrolytes, such as inorganic p-type semiconductors [9–13] and organic hole-transport
materials [14,15], have been applied in DSSCs. These solid-state electrolytes have a low evaporation rate
compared to liquid electrolytes and thus enhance the lifetime of DSSCs. They also reduce the leakage
problems and sealing cost of DSSCs. However, the efficiency of solid-state electrolytes is lower than liquid
electrolytes due to poor penetration into mesoporous TiO2, lower ionic conductivity, low electron transfer
from the dye molecules, and faster recombination. Therefore, for combining the best of both sides, the
development of quasi-solid-state electrolytes, especially gel polymer electrolytes such as polyethylene glycol
(PEG) [16], poly (methyl methacrylate-co-acrylonitrile) (PMMA-co-AN) [17], polyvinyl alcohol (PVA) [18],
poly(ethyleneoxide)/polymethylmethacrylate (PEO/PMMA) [8], poly(ethyleneoxide)/polyethylene
glycol (PEO/PEG) [7], and poly(ethyleneoxide)/poly(vinylidene fluoride-co-hexafluoropropylene)
(PEO/PVDF-HFP) [19], has drawn much attention from the DSSC community. Although gel polymer
electrolytes could resolve the problem of the leakage of liquid electrolyte to some extent, because of their
complex preparation process, poor mechanical strength, and low thermal stability, there is a limitation
when it comes to using them on a commercial scale [20,21]. To overcome these problems, another process,
using polymer nanofiber membranes, has been developed [22–25].

For the synthesis of polymer nanofibers, techniques such as template synthesis [26,27], drawing [28],
phase separation [29], and electrospinning [30] are generally employed. Of these techniques,
electrospinning is considered to be the simplest and cheapest method for making ultrathin nanofibers.

Many electrospun polymeric nanofibrous membranes have been used to make quasi-solid
electrolytes for DSSCs, but there are few studies on pure electrospun polyvinylidene fluoride (PVDF)
fibrous membranes as an electrolyte material for DSSCs.

In an earlier study [31], we synthesized PVDF membranes by an electrospinning technique, and
the electrospun PVDF nanofiber membranes were successfully applied to the composite polymer
electrolytes of the fuel cells, which demonstrated excellent ionic conductivity. Based on the results of
this study, it is predicted that the electrospun PVDF membrane can be used to prepare quasi-solid
electrolyte membranes, and it is feasible to apply these to DSSCs, thus providing a new idea for the
development of more efficient and stable DSSCs.

Therefore, in this study, electrospun PVDF membranes were prepared by a spinning technology to
obtain quasi-solid electrolytes, and then the assembly of the DSSCs with the above-obtained quasi-solid
electrolyte was conducted. The structure and properties of the electrospun PVDF membranes
were characterized by SEM, BET, TG and mechanical testing, photoelectric conversion efficiency,
and Electrochemical Impedance Spectroscopy (EIS) characteristics, along with the stability of the
DSSCs, were tested. The observed results were then compared with the conventional ionic liquid
electrolyte-based DSSCs.

2. Materials and Methods

2.1. Materials

Polyvinylidene fluoride (PVDF) (Kynar HSV 900, Arkema, Colombes, France), N,
N-dimethylformamide (DMF), and acetone were purchased from Sinopharm Chemical Reagent Corp
(Shanghai, China). A commercial ionic liquid electrolyte (DMII, I2, LiI, TBP, acetonitrile, NJU-AN-I),
titania (TiO2) photoanode, Pt counter electrode, and Ruthenium dye (N719) were purchased from
Kunshan Sunlaite Corp (Kunshan, China).
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2.2. Preparation of Electrospun PVDF Membranes

To prepare the electrospun PVDF membranes, PVDF powder was dissolved in an acetone/DMF
(3:7, w/w) solution with magnetic stirring at room temperature for 24 h, and then underwent ultrasound
treatment for 30 min to form a transparent homogeneous 16 wt % PVDF polymer solution. Figure 1
shows the preparation process of the electrospun PVDF membrane. A voltage of 15 kV was applied to
the spinneret and drum collector to generate an electric field.
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Figure 1. Schematic diagram illustrating the followed electrospinning process.

The flow of the polymer solution from the spinneret was adjusted to 0.5 mL/h using a syringe
pump. The drum collector spun at a speed of 270 rpm, and the tip-to-collector distance was fixed at
20 cm. The membranes of different thicknesses were obtained by changing the diameter of the spinneret.
The PVDF nanofiber membranes were placed in the vacuum oven at 60 ◦C for 10 h for later use.

2.3. Preparation of the Quasi-Solid-State Electrolyte

The electrospun PVDF fiber membrane was immersed in three drops of the ionic liquid electrolyte
solution for about 30 min to ensure sufficient infiltration of the electrolyte to the nanofiber membrane.
The excess solution on the membrane surface was then carefully wiped off with a filter paper to
obtain the electrospun PVDF nanofiber membrane/ionic liquid electrolyte quasi-solid-state electrolyte.
Figure 2 shows the process steps followed in the preparation of the quasi-solid-state electrolyte.
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2.4. Fabrication of the Quasi-Solid-State DSSCs

The process followed to fabricate the quasi-solid-state DSSCs is schematically shown in Figure 3.
DSSCs have a classic sandwich structure, consisting of a photosensitive photoanode, electrolyte, and
an electrode. In this study, the commercial photoanode was placed into N719 dye solution and soaked
for 12 h. After removal from the dye solution, the undissolved dye molecules on the surface of
the photoanode were cleaned with anhydrous ethanol to obtain a photosensitive photoanode for
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later use. A commercial Pt counter electrode was selected along with the electrolytes, i.e., the ionic
liquid electrolyte and a quasi-solid electrolyte, as prepared in step 2.3. The DSSC was assembled using
a hot-press (110 ◦C). To compare the performance of the device, a DSSC was also fabricated with
an ionic liquid electrolyte without PVDF. Each fabricated cell had an active area of 0.196 cm2.
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Figure 3. The schematic illustrates the steps involved in the manufacture of dye-sensitized solar cells
(DSSCs) based on electrospun polyvinylidene fluoride (PVDF) nanofiber membranes.

2.5. Characterization

The morphology of electrospun PVDF membranes was characterized by field emission scanning
electron microscopy (FE-SEM, TESCAN MIRA3). The uptake analysis measurement was measured
by gravimetric method. Brunauer–Emmett–Teller (BET) surface area analysis was used to measure
the specific surface area and pore structures of the membranes, using low temperature (77 K)
nitrogen adsorption isotherms measured over a wide range of relative pressures, from 0.02 to 1.
The adsorption measurements were performed on an ASAP2010 volumetric adsorption apparatus,
and high purity nitrogen (99.9999%) was used in this experiment to avoid the effect of contamination.
Before measurements, the samples were degassed at 100 ◦C for 6 h in the degas pot of the adsorption
analyzer. Thermal stability of the electrospun membranes was carried out under a nitrogen flow
using a thermogravimetric analyzer (TGA-STA 499F Instrument, Selber/Brvaria, Germany), where
the samples were heated from 50 to 1000 ◦C at a heating rate of 10 ◦C min−1. Differential Scanning
calorimeter (DSC) to investigate the melting behavior by a DSC-200 F3 instrument (NETZSCH Co.,
Selber/Bavaria, Germany). The mechanical properties of the films were tested using an electronic
tensile machine (AGS-X, Shimadzu, Kyoto, Japan) to characterize the tensile strength. The tensile
rate was set at 10 mm/min with a standard distance of 20 mm. The photovoltaic characteristics of
the DSSCs were measured using a solar simulator (150 W simulator, Newport, Oriel 9408, 3A) under
AM (air mass) 1.5 and 100 mW/cm2 of light intensity. The incident light intensities were calibrated
using a reference cell. Th electrochemical impedance spectroscopy (EIS) measurements were tested
using Zahner PP211, coupled with an IM6 electrochemical workstation in the frequency range of
10 mHz to 100 kHz and using an AC voltage signal of ± 20 V. These measurements were carried out
under the illumination of 100 mW/cm2 using the same solar simulator. To further evaluate the stability
of the DSSCs based on PVDF electrospun nanofiber membranes with a quasi-solid-state electrolyte
and an ionic liquid electrolyte, the cells were placed under indoor (room temperature) and outdoor
conditions (the aging box was used to simulate the harsh outdoor environment: temperature, 55 ◦C;



Nanomaterials 2019, 9, 783 5 of 14

humidity, 50%; irradiance of 1000 W/m2), and the electrochemical performance of the DSSCs was
characterized using a solar simulator (150 W simulator, Newport, Oriel 9408, 3A) under AM 1.5 and
100 mW/cm2 of light intensity. The incident light intensities were calibrated using a reference cell at
regular intervals.

3. Results and Discussion

For consistency, unless otherwise stated, PVDF-1 and PVDF-2 correspond to electrospun PVDF
nanofiber films with a thickness of 60 µm and 80 µm, respectively. The quasi-solid DSSCs based on the
electrospun PVDF nanofiber membranes with a thickness of 60 µm and 80 µm are labeled QS-DSSC-1
and QS-DSSC-2, respectively, and the ionic liquid electrolyte DSSC is labeled L-DSSC.

3.1. Electrospun PVDF Membrane

The morphology and structure of the electrospun PVDF membranes with a thickness of 60 µm and
80 µm were characterized by SEM, as shown in Figure 4. It is clear from these images that the PVDF
membrane has a three-dimensional network structure with extremely high porosity, consisting of thin
fibers, which is an effective barrier to prevent the leakage of the electrolyte. The fiber diameters of the
electrospun PVDF nanofiber membranes with a thickness of 60 µm and 80 µm are 500–1200 nm and
500–1500 nm, respectively. The well-interconnected porous structure and highly tortuous pores formed
by the smooth nanofibers could increase the ability of the membrane to trap the liquid electrolyte and
facilitate the transport of ions in the inner space of the membrane, which can effectively guarantee the
high photoelectric conversion efficiency of the cells.
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In order to characterize the absorption performance of the membrane to the electrolyte solution,
the membrane weight before soaking the electrolyte was denoted as m0, the membrane was immersed
in the electrolyte, and the membrane was removed after 30 min to wipe off the excess solution on the
surface. The weight was denoted as mw, the absorbance calculated, three parallel tests were performed,
and the average calculated. The calculation formula is as follows:

uptake rate(%) =
mw −m0

mw
× 100% (1)

As can be seen from the Table 1, the absorbance of the PVDF membrane with a thickness of 80 µm
is higher than that of the 60 µm membrane.
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Table 1. The absorption performance of PVDF electrospun nanofiber membranes.

Samples Uptake Rate1 (%) Uptake Rate2 (%) Uptake Rate3 (%) Average Uptake Rate (%)

PVDF-1 57 59 56 57.3
PVDF-2 69 65 68 67.3

To further investigate the specific surface area and porous nature of the electrospun PVDF
membranes, Brunauer–Emmett–Teller (BET) gas sorptometry measurements were conducted. Figures 5
and 6 show the nitrogen adsorption–desorption isotherms and the pore size distribution plots of PVDF
membranes. It can be seen that all samples exhibited a type II sorption isotherm, with a hysteresis
of type H4, which is characteristic of mesoporous materials [32]. The pore size distribution, derived
from the desorption data and calculated from the Barrett-Joyne-Halenda (BJH) model, shows that most
of the pore sizes of the electrospun PVDF films with a thickness of 60 µm and 80 µm were between
1 and 5 nm, and the average pore sizes were 4.66 nm and 4.20 nm, respectively, which confirms that
the fibers are mesoporous materials. The obtained BET specific surface area, total pore volume, and
mean pore diameter of the nanofiber mats for this study are listed in Table 2. It can be seen that the
specific surface area increases from 60.68 to 148.10 m2g−1 as the thickness increased from 60 to 80 µm.
In the process of electrospinning, the solvent with the larger diameter volatilizes more slowly, and
more pores are formed in the process, resulting in a larger specific surface area, which demonstrates
that the electrospun PVDF membrane with a thickness of 80 µm has a stronger surface adsorption
capacity, which is essential to obtain higher efficiency.
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Figure 8 shows the stress–strain curves of the electrospun PVDF fiber membranes. As can be 
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reaching 13.5 MPa. However, the change in thickness did not cause a significant alternation in 
elongation at the break. This indicates that the strength and toughness of electrospun PVDF 
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Table 2. The Brunauer–Emmett–Teller (BET) specific surface area, total pore volume, and mean pore
diameter of PVDF electrospun fiber membranes.

Samples Specific Surface Area (m2
·g−1) Pore Volume (cm3

·g−1) Mean Pore Diameter (nm)

PVDF-1 60.68 0.07 4.66
PVDF-2 148.10 0.16 4.20

The thermal stability of electrospun PVDF fiber membranes is a crucial property for their long-time
use during the operation of DSSCs. Thermal gravity analysis (TGA) is a useful technique to evaluate
the changes in the mass of PVDF fiber membranes and their thermal stability. From the TG and
differential thermal gravity (DTG) curves, as shown in Figure 6, there is only a single step weight loss,
which starts at about 420 ◦C and ends at about 520 ◦C and corresponds to the degradation of the main
chains of PVDF [31,32]. After degradation, the mass of the PVDF fiber membrane is reduced by 80%.
The thermal degradation temperature of the material is very high, indicating that the material has
excellent thermal stability. Figure 7 shows the DSC curve of the electrospun PVDF fiber membrane.
It can be seen from the figure that the melting temperature (Tm) of PVDF is 167.4 ◦C, and therefore the
electrospun PVDF fiber membrane can withstand a temperature of 110 ◦C in the hot-pressing process.
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Figure 8 shows the stress–strain curves of the electrospun PVDF fiber membranes. As can be
seen from this figure, the fiber membranes with different thicknesses show distinct ductile fracture
characteristics; when the thickness of films increased from 60 to 80 µm the toughness of the films was
notably improved. Compared with PVDF-1, the fracture strength of PVDF-2 was higher, reaching
13.5 MPa. However, the change in thickness did not cause a significant alternation in elongation at the
break. This indicates that the strength and toughness of electrospun PVDF membranes are improved
when the thickness is increased. The excellent strength and toughness of the electrospun PVDF film
indicates that the film has robust mechanical properties, which is conducive to the encapsulation of
the cells. Therefore, after electrolyte immersion and thermal encapsulation, the films maintain good
morphology and structure.
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3.2. Photovoltaic Performance

Figure 9 shows the photocurrent density–voltage (J-V) curves for solar cells, based on electrospun
PVDF nanofiber membrane electrolytes and ionic liquid electrolytes. The photovoltaic characteristics
of the fabricated DSSCs are summarized in Table 2.
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Based on Figure 9 and Table 3, it can be seen that the cells assembled by ionic liquid electrolyte
had the highest efficiency (η)—reaching 9.3%–and their observed open circuit voltage (VOC), short
circuit current density (JSC), and fill factor (FF) were 0.73 V, 18.79 mA cm−2, and 68%, respectively.
Although the efficiencies of QS-DSSCs are lower than those of L-DSSC, they are much higher than
those of cells using other polymers, as reported in many other studies [22–25]. QS-DSSC-2 has an η

of 8.63%, VOC of 0.73 V, JSC of 18.01 mAcm−2, and FF of 66%, which is outstanding compared to
QS-DSSC-1. The efficiency of the QS-DSSCs is slightly lower than the L-DSSC, mainly due to the
electrospun fiber membrane, which has an interwoven network structure that hinders the mobility of
the iodine ion in the I−/I3

− between the TiO2 photosensitive electrode and Pt electrode. Besides this,
it limits the regeneration rate of the dye, leading to the reduction of JSC, and resulting in a decrease in
the photoelectric conversion efficiency. When the thickness of the film increased from 60 to 80 µm,
the efficiency of the cell also increased accordingly. With a thickness of 60 µm, the specific surface area
and pore volume of the electrospun membrane were low (from BET results), which resulted in a low
uptake of electrolyte solution for the PVDF membrane. The low uptake of the electrolyte caused less
contact with the dye-sensitized TiO2 electrode, which led to a low JSC value. When the thickness of the



Nanomaterials 2019, 9, 783 9 of 14

membrane increased to 80 µm, the number of pores and the pore volume increased, which allowed the
membrane to uptake more electrolyte solution. The higher amount of electrolyte solution increased
the penetration into the nanoporous structure of TiO2 and led to a higher regeneration of dye, which
enabled the cells to provide a higher photocurrent density.

Table 3. Photovoltaic parameters of the DSSCs with electrospun PVDF membrane electrolytes and
ionic liquid electrolytes.

Samples η (%) VOC (V) JSC (mA.cm−2) FF (%)

QS-DSSC-1 8.36 0.73 17.79 64
QS-DSSC-2 8.63 0.73 18.01 66

L-DSSC 9.30 0.73 18.76 68

The photochemical properties of polymer gel electrolytes were studied by monochromatic incident
photon-to-electron conversion efficiency (IPCE) spectroscopy. Figure 10 shows the IPCE spectrum of
the DSSCs with quasi-solid-state electrolytes based on the electrospun PVDF nanofiber membranes and
ionic liquid electrolyte. The values of IPCE are proportional to the values of JSC. This result supports
the J–V characteristics of the DSSCs with quasi-solid-state electrolytes based on the electrospun PVDF
nanofiber membranes and ionic liquid electrolytes.
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To understand the effect of fiber in the matrix, the interfacial charge transfer resistances of the
three types of DSSCs were investigated through EIS measurements. The Nyquist plots of the DSSCs
with three different electrolyte systems and the equivalent circuit of the DSSCs are shown in Figures 11
and 12, respectively.
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In the Nyquist plots, the first small semicircle corresponds to the charge transfer resistance of
the Pt/electrolyte interface (Rct1) and the second bigger semicircle corresponds to the charge transfer
resistance of the TiO2/electrolyte interface (Rct2).

Table 4 summarizes the calculated values of the series resistance (RS), the charge transfer resistance
of the Pt/electrolyte interface (Rct1), and the charge transfer resistance of the TiO2/electrolyte interface
(Rct2) for the three types of fabricated DSSCs.

Table 4. The series resistance (RS) and charge transfer resistance of the Pt/electrolyte interface (Rct1),
and the charge transfer resistance of the TiO2/electrolyte interface (Rct2) in DSSCs using three types
of electrolytes.

Samples RS Rct1 Rct2

QS-DSSC-1 29.49 7.232 87.84
QS-DSSC-2 42.37 6.622 103.1

L-DSSC 16.95 8.225 74.33

These results show that the Rct1 of the QS-DSSCs is similar to the Rct1 of the L-DSSC. However,
the RS and Rct2 of the QS-DSSCs are higher than the RS and Rct2 of the L-DSSC. This show that the
DSSC using a fiber membrane has a higher resistance. The main reason for these changes in resistance
values may be that the introduction of an electrospun PVDF fiber film increases the series resistance
(RS) and the resistance of charge transfer between the interface of the TiO2/dye/electrolyte, which in
turn increases with an increase in the thickness, since the use of a fiber matrix reduces the ionic mobility
due to the blocking effect, compared to the ionic liquid electrolyte cell. As a result, the efficiency (η) of
the DSSC using an electrospun PVDF film showed a low value.

3.3. Stability of the Quasi-Solid-State DSSCs

Figures 13 and 14 show the variation curves of four performance parameters (VOC, JSC, FF, and
η) of the cells with time, under indoor and outdoor conditions, respectively. The comprehensive
performance of the membrane with a thickness of 80 µm was significantly better than that of the 60 µm
membrane. Therefore, in the stability test, the quasi-solid DSSC composed of 80 µm film was selected
for comparison with the liquid DSSC. As can be seen from Figure 12, compared with L-DSSC, the Voc
and FF values of the QS-DSSC increased. The Jsc and η values of the QS-DSSC decreased, but the
changes in the values of the four parameters of the QS-DSSC over time are relatively smaller than that
of the L-DSSC, indicating that the QS-DSSC is more stable than the L-DSSC as a whole. Based on
Figure 13b,d, under the same sealing conditions, the reduction of JSC is caused by the volatilization
of the electrolyte, which also indicates that the electrospun PVDF fiber membrane can prevent the
volatilization of the electrolyte more effectively. After 390 h, the L-DSSC without the PVDF electrospun
film failed, and the QS-DSSC retained 84% of its initial efficiency. These results indicate that the
quasi-solid electrolyte based on an electrospun PVDF nanofiber membrane is more stable than the
liquid electrolyte, which ultimately leads to better stability of the QS-DSSC than the L-DSSC.
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Figure 13. Normalized photoelectric performance of the QS-DSSC and L-DSSC versus time under 
indoor conditions: (a) VOC, (b) JSC, (c) FF, and (d) η. 
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Figure 14. Normalized photoelectric performance of the QS-DSSC and L-DSSC versus time under 
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To further compare the stability of the QS-DSSCs and L-DSSCs, stability testing was carried out
under outdoor conditions. As can be seen from Figure 14b, the JSC of the L-DSSC began to decline
significantly after 310 h, while that of the QS-DSSCs began to decline significantly after 372 h of
operation. Under the same sealing conditions, the decline of the JSC may be caused by the volatilization
or leakage of the electrolyte. Based on the observations, the efficiency of the L-DSSC, which runs up to
330 h, is only 40% of its original efficiency, while the QS-DSSCs maintain 91% of their original efficiency.
At 390 h, the L-DSSC failed, whereas the QS-DSSCs retained 77% of their initial efficiency. Through
the comparison of the obtained data, it can be found that QS-DSSCs are more stable than L-DSSCs,
since the liquid electrolyte in the outdoor environment is quite volatile and leaky, and following the
preparation of the electrospun PVDF nanofiber membrane of the quasi-solid electrolyte effectively
solves this problem. The three-dimensional network structure of the electrospun fiber membrane is
a barrier to prevent the leakage of the liquid electrolyte, and at the same time, the transfer between
holes provides channels for the ions.

4. Conclusions

In this study, electrospun PVDF fiber membranes were successfully applied to DSSCs. The electrospun
PVDF membrane has a three-dimensional network structure with extremely high porosity. The membrane
can withstand the conditions of the hot-press (110 ◦C), which showed an excellent absorption property for
the ionic liquid electrolyte, good thermal stability, and mechanical strength. DSSCs with quasi-solid-state
electrolyte showed a light-to-electricity conversion efficiency of 8.63%, which is very close to the performance
of DSSCs fabricated using an ionic liquid electrolyte. Moreover, the stability tests showed that under both
indoor and outdoor conditions, the stability of the QS-DSSCs was higher than the L-DSSCs. These results
suggest that the electrospun PVDF fiber membranes could serve as new high-performance quasi-solid
electrolyte materials in DSSCs.
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