
nanomaterials

Article

Facile Synthesis of MnO2 Nanoflowers/N-Doped
Reduced Graphene Oxide Composite and Its Application
for Simultaneous Determination of Dopamine and
Uric Acid

Xuan Wan 1,†, Shihui Yang 1,†, Zhaotian Cai 1, Quanguo He 1, Yabing Ye 1, Yonghui Xia 2,
Guangli Li 1,* and Jun Liu 1,*

1 College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
wanxuan1111@163.com (X.W.); yangshihui0522@163.com (S.Y.); caizhaotian1998@163.com (Z.C.);
hequanguo@126.com (Q.H.); yyb980501@163.com (Y.Y.)

2 Zhuzhou Institute for Food and Drug Control, Zhuzhou 412000, China; Sunnyxia0710@163.com
* Correspondence: guangli010@hut.edu.cn (G.L.); junliu@hut.edu.cn (J.L.);

Tel.: +86-0731-2218-3382 (G.L. & J.L.)
† These authors contributed equally to this work.

Received: 13 May 2019; Accepted: 28 May 2019; Published: 2 June 2019
����������
�������

Abstract: This study reports facile synthesis of MnO2 nanoflowers/N-doped reduced graphene oxide
(MnO2NFs/NrGO) composite and its application on the simultaneous determination of dopamine
(DA) and uric acid (UA). The microstructures, morphologies, and electrochemical performances of
MnO2NFs/NrGO were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic
voltammetry (CV), and electrochemical impedance spectroscopy (EIS), respectively. The electrochemical
experiments showed that the MnO2NFs/NrGO composites have the largest effective electroactive area
and lowest charge transfer resistance. MnO2NFs/NrGO nanocomposites displayed superior catalytic
capacity toward the electro-oxidation of DA and UA due to the synergistic effect from MnO2NFs and
NrGO. The anodic peak currents of DA and UA increase linearly with their concentrations varying from
0.2µM to 6.0µM. However, the anodic peak currents of DA and UA are highly correlated to the Napierian
logarithm of their concentrations ranging from 6.0 µM to 100 µM. The detection limits are 0.036 µM and
0.029 µM for DA and UA, respectively. Furthermore, the DA and UA levels of human serum samples
were accurately detected by the proposed sensor. Combining with prominent advantages such as facile
preparation, good sensitivity, and high selectivity, the proposed MnO2NFs/NrGO nanocomposites have
become the most promising candidates for the simultaneous determination of DA and UA from various
actual samples.

Keywords: dopamine; uricacid; MnO2 nanoflowers; N-dopedreducedgrapheneoxide; voltammetricsensor

1. Introduction

Dopamine (DA) and uric acid (UA) often coexist in the biological fluids, such as blood serum, urine,
and extracellular fluids, which play a vitally significant role on the regulation of human physiological
functions and metabolic activities [1]. As an essential catecholamine neurotransmitter, DA plays
a pivotal role in regulating the functions of cardiovascular and central nervous systems, adjusting
emotions, and maintaining hormonal balances [2]. The dysfunction of DA possibly causes many
neurological disorders like Parkinson’s syndrome, Alzheimer’s diseases, and schizophrenia [3–5].
For a heathy individual, the DA levels in biological matrixes generally vary from 0.01 µM to 1 µM.
The response signals of DA are often susceptible to interferences from endogenous biomolecules i.e.,

Nanomaterials 2019, 9, 847; doi:10.3390/nano9060847 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0001-9458-469X
https://orcid.org/0000-0002-4577-5892
http://dx.doi.org/10.3390/nano9060847
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/9/6/847?type=check_update&version=2


Nanomaterials 2019, 9, 847 2 of 16

ascorbic acid (AA) and UA. Therefore, it remains a great challenge for the fast and precise detection
of DA. As another critical biomolecule in human body, UA is commonly regarded as the metabolic
product of purine [6]. Generally, the UA level is 4.1 ± 8.8 mg/100 mL for a healthy individual [7].
The abnormal concentration of UA in physiological fluids likely leads to several disorders including
pneumonia, hyperuricemia, and gout [8]. Thus, the levels of DA and UA in physiological fluids
have become important indicators or biomarkers for healthcare and clinical diagnosis. Therefore, it
is extremely necessary to propose some efficient and reliable approaches toward the simultaneous
determination of DA and UA.

Up until now, various detection approaches have been reported for detecting DA and UA,
such as chemiluminescent [9], HPLC [10,11], fluorometry [12], spectrophotometry [13], and surface
plasmon resonance [14]. These techniques are very reliable, but they often involve cumbersome
and time-consuming procedures that require large instruments, experienced technicians, and even a
large amount of poisonous solvents [15]. Recently, electrochemical approaches have drawn growing
attention for the determination of bioactive compounds, food dyes, and pollutants, owing to their
considerable advantages such as being inexpensive, facial operation, high efficiency, good selectivity,
and sensitivity [16–20]. In addition, DA and UA are highly electroactive biomolecules, which are more
suitable for electrochemical detection. However, bare electrodes often suffer from electrode fouling
and cross-interference issues, which result in poor sensitivity and reproducibility [7,21]. To address the
issues, various nanomaterials were developed to construct electrochemical sensors.

As a versatile transition metal oxide, MnO2 has been intensively utilized in energy storage, catalysis,
and sensors because of its peculiar properties including low-cost, more abundance, high-catalytic
activity, and environmental friendliness. Until now, a variety of nanostructured MnO2 such as
nanowires [16,22], nanorods [17,23,24], nanotubes [25,26], microspheres [27,28], and nanoflowers [29,30]
have been prepared, characterized, and even used in electrochemical determination. Among these
morphologies, MnO2 nanoflowers (MnO2NFs) have drawn considerable attention, attributing to their
pore structure and large specific surface area. As sensing materials, MnO2 nanoflowers have been
used for the detection of lead ion [29], ractopamine [30], salbutamol [30], guaiacol [31], vanillin [31],
hydrogen peroxide [32], and DA [33]. These studies demonstrate that MnO2 nanoflowers improve the
electrochemical performances significantly. But their poor dispersibility and electrical conductivity
have impeded widespread applications in electrochemical sensors.

To resolve this problem, an effective strategy is to composite nanostructured MnO2 with graphene
materials, which not only effectively improve the dispersibility, but also endow a synergistic effect
towards sensing target analytes. However, the electrical conductivity of graphene cannot be fully
controlled due to the lack of bandgap [34]. In this regard, many approaches have been proposed to
modify the electron transfer and surface chemical properties, among which the doping of nitrogen
into graphene has displayed enormous potential for widespread applications [35]. Compared to
pristine graphene, N-doped reduced graphene oxide (NrGO) possesses a more biocompatible C-N
microenvironment, a much larger functional surface area, a better electrical conductivity, a higher ratio of
surface-active groups to volume, and enhanced electrocatalytic effects [35,36]. Therefore, NrGO has been
widely used to construct a variety of electrochemical sensors. For example, Yang and coworkers [37]
reported a facie one-step hydrothermal preparation of Fe2O3/NrGO nanohybrids toward DA detection.
Fe2O3/NrGO showed superior electrocatalytic activity toward DA oxidation, with a broad detection range
(0.5 µM–0.34 mM), a low limit of detection (LOD, 0.49 µM), and good sensitivity (418.6 µA mM−1 cm−2).
Chen et al. [38] prepared NrGO/MnO nanocomposite via the freeze-drying technique to construct a
selective electrochemical sensor for the detection of DA in the coexistence of UA and AA. Although NrGO
has been intensively utilized in electrochemical sensing, as far as we know there is no report available for
the use of MnO2/N-doped graphene composite for the simultaneous detection of DA and UA.
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Herein, MnO2NFs/NrGO nanocomposites were prepared by a facile, cost-effective and highly
efficient route rather than the conventional hydrothermal method. Specifically, MnO2NFs were
prepared by a slow addition of MnSO4 into KMnO4 solution followed by a simple stirring procedure,
then composited with NrGO nanosheets with an ultrasonication assistant. The combined virtues of
MnO2NFs and NrGO nanosheets are expected to enhance electrochemical sensing properties, which
has been proven by using the MnO2NFs/NrGO as an efficient electrocatalyst for the simultaneous
determination of DA and UA in serum samples. The proposed sensor showed remarkable catalytic
capacity toward the oxidation of DA and UA, with two detection ranges (0.2–6.00 µM and 6–100 µM),
low LOD (36 and 29 nM for DA and UA respectively), and good selectivity as well as reproducibility.

2. Materials and Methods

2.1. Reagents

UA, DA, NaH2PO4, and Na2HPO4 were purchased from Aladdin Reagents Co., Ltd. (Shanghai,
China). K4[Fe(CN)6], K3[Fe(CN)6], MnSO4, KMnO4, NaOH, H3PO4, and absolute ethanol were
supplied by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All of the chemicals were
analytically pure and used as received. NrGO was supplied by Nanjing Xianfeng NANO Material
Tech Co. Ltd. (Nanjing, China). Human serum samples were provided by Zhuzhou People’s Hospital
(Zhuzhou, China). The human samples are a mixture of residual serum from various individuals after
clinical examination. Deionized water with the resistivity of 18.2 MΩ was used in all of the experiments.

2.2. Materials Characterization

Crystalline structures and surface morphologies of MnO2NFs and MnO2NFs/NrGO were
investigated by powder X-ray diffractometry (XRD) and scanning electron microscopy (SEM),
respectively. SEM images were taken from a cold field-emission SEM (Hitachi S-4800, Tokyo, Japan).
The XRD patterns of MnO2NFs were collected using a powder XRD system (PANalytical, Almelo,
The Netherlands) with monochromatized Cu Kα radiation (λ = 0.1542 nm), which was operated at
40 kV and 40 mA.

2.3. Synthsis of MnO2NFs/NNrGO Comoposites

The MnO2NFs was prepared by a slow addition of MnSO4 into KMnO4 solution followed by a
simple stirring procedure. Typically, 1 mmol of KMnO4 and 1.5 mmol of MnSO4 were adequately
dissolved into 20 mL deionized water, separately. Then, the MnSO4 solution was added dropwise
into KMnO4 solution at a rate of 1 mL min−1, and agitated continuously at room temperature for 2 h.
The resultant product was collected by centrifugation at 12,000 rpm, followed by cleaning alternately
with absolute alcohol and deionized water three times, and dried at 60 ◦C in a vacuum oven overnight.
Obviously, this route is time-saving and more convenient when compared with the conventional
hydrothermal method.

MnO2NFs/NrGO composites were prepared as follows. Firstly, 10 mg MnO2NFs were uniformly
dispersed in 10 mL deionized water under an ultrasonication bath for 0.5 h. Then 0.2 g NrGO
nanosheets were added into the above MnO2NFs dispersion (1 mg mL−1) and dispersed under
ultrasonication for 1 h. The MnO2NFs/NrGO were stored at 4 ◦C in a refrigerator when not used.
To ensure good reproducibility, the MnO2NFs/NrGO were subjected to ultrasonication for 0.5 h before
each modification.

2.4. Fabrication of MnO2NFs/NrGO Modified Electrodes

The bare glassy carbon electrodes (GCEs) were carefully polished using 0.3 µm and 0.05 µm
alumina slurry, then alternately washed by anhydrous alcohol and deionized water several times, and
allowed to dry under an infrared lamp. The MnO2NFs/NrGO-modified GCE (MnO2NFs/NrGO/GCE)
was prepared via a simple drop-casting approach. Specifically, 5 µL MnO2NFs/NrGO dispersion was
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carefully dropped and casted on the GCE surface with a micropipette, then dried with an infrared
lamp to form a sensing film. For comparison, MnO2NFs and NrGO-modified GCEs (MnO2NFs/GCE,
NrGO/GCE) were also prepared via similar procedures.

2.5. Procedures for Electrochemical Mesurements

For all the electrochemical tests, a typical three-electrode assemble was immersed into a 10 mL
electrochemical cell, in which a bare or modified GCE was worked as the working electrode. Saturated
calomel electrode (SCE) and platinum wire were used as a reference electrode and auxiliary electrode,
respectively. To evaluate the electrochemical performance of various modified electrodes, cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was measured in the 0.1 M
phosphate buffered solution (PBS, pH 7.0), using 0.5 mM [Fe(CN)6]3−/4− as redox probe couples.
EIS plots for different electrodes were recorded at open circuit potential using 5 mV (rms) AC sinusoid
signal at a frequency range from 100,000 Hz to 0.1 Hz. The voltammetric responses of 10 µM DA
and UA at different electrodes were tested by CV. After a suitable accumulation, linear scanning
voltammetry (LSV) was performed for the determination of DA and UA. The potentials were scanned
from 0 V to 0.8 V at 100 mVs−1 for both CV and LSV.

3. Results and Discussion

3.1. Physical Chararazation

The crystalline structure of MnO2 nanoflowers was characterized by XRD. As presented in
Figure 1, sharp diffraction peaks were observed at 2θ of 12.94◦, 18.34◦, 28.78◦, 37.66◦, 42.14◦, 49.90◦,
56.44◦, 60.26◦, 69.74◦, 71.34◦, and 73.72◦, which can be well-indexed into (110), (200), (310), (211),
(301), (411), (600), (521), (541), (222), and (730) facets, respectively. It is in good agreement with XRD
standard card JSPDF 44-0141 [16,17], suggesting tetragonal crystalline of α-MnO2 were successfully
synthesized. Moreover, no visible peak relating to impurities appears, indicating high-purity of
α-MnO2. SEM images of MnO2NFs are shown in Figure 2A, B. Obviously, flower-like nanostructures
composed of interconnected nanoflakes suggests MnO2 nanoflowers were successfully synthesized.
The porous microstructures indicate that MnO2 nanoflowers have a large specific surface area, which
is favorable for electrochemical sensing. As shown in Figure 2C,D, the NrGO nanosheets were warped
on the surface of MnO2NFs, suggesting MnO2NFs/NrGO nanocomposites were successfully prepared.
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Figure 2. Scanningelectronmicroscopy(SEM)imagesofMnO2NFs(A,B)andMnO2NFs/NrGOnanocomposites
(C,D) at different magnifications.

3.2. Evaluation of Electrochemical Performances

In order to assess the electrochemical performances, CVs for various modified electrodes were
measured in a mixture solution of 0.5 mM [Fe(CN)6]3−/4− and 0.1 M KCl (Figure 3A). A pair of
quasi-reversible redox peaks occurred on all of the electrodes with ipa/ipc ≈ 1.0. At bare GCE,
a pair of weak redox appeared with the anodic and cathodic peak current of 12.23 and 9.02 µA,
respectively. After the modification of GCE by MnO2NFs or NrGO, the redox peak currents increased
by 2-fold approximately. As expected, a well-defined and sharp redox peak was observed at
the MnO2NFs/NrGO/GCE, with the highest anodic and cathodic peak currents (ipa = 92.41 µA,
ipc = 87.89 µA). It indicates that MnO2NFs/NrGO significantly improved electrochemical performances.
It is well-known that the effective electroactive area is a critical factor that directly influences the
electrochemical sensing performances. The effective electroactive areas of different electrodes were
also calculated, using the Randles–Sevcik equation as follows [16,17,20]:

ipc = (2.69 × 105) n3/2 D1/2 v1/2 AC (1)

where ipc represents the cathodic peak current (A), n represents the electron transfer number,
D represents the diffusion coefficient of K3[Fe(CN)6] (7.6 × 10−6 cm2 s−1 [39]), v denotes the
scanning rate (V s−1), A denotes the effective electroactive area (cm2), and C denotes the K3[Fe(CN)6]
concentration (mol cm−3). The effective electroactive areas were estimated to be 0.0770, 0.3183, 0.3958,
and 0.7496 cm2 for the bare GCE, MnO2NFs/GCE, NrGO/GCE, and MnO2NFs/NrGO/GCE, respectively.
The effective electroactive area of MnO2NFs/NrGO/GCE is about 9-fold higher than that of the bare GCE
approximately. The results suggest that the MnO2NFs/NrGO nanocomposites significantly enlarged
the effective electroactive surface area, which promoted the accumulation of target analysts and thus
increased the response electrochemical signals.
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EIS has intensively been used to investigate interfacial properties of various electrochemical
sensors [16,17,40–42]. Nyquist plots for various electrodes are plotted in Figure 3B. Obviously, Nyquist
plots comprise of the semicircular at higher frequencies relating to the electron transfer-limited
process, and linear portions at lower frequencies corresponding to the diffusion-controlled process.
The semicircular diameter represents the charge transfer resistance (Rct). The Rct values for the bare
GCE, MnO2NFs/GCE, NrGO/GCE, and MnO2NFs/NrGO/GCE are 1950, 2551, 72.47, and 25.28 ohm,
respectively. After modification with MnO2NFs, the Rct value increased by 601 ohm because of the poor
electro-conductivity of MnO2. When GCE was modified with NrGO, the Rct significantly decreased
to 74.25 ohm, which can attribute to the good electro-conductivity and high-specific surface area of
NrGO [35,36]. As expected, the lowest Rct value was obtained at MnO2NFs/NrGO/GCE, probably due
to the existence of abundant electrocatalytic active sites that can greatly accelerate the redox reaction of
[Fe(CN)6]3−/4−. The results demonstrate that the MnO2NFs/NrGO can effectively decrease the Rct.

3.3. Voltammetric Responses of DA and UA at Various Electrodes

CV responses of 10 µM DA and UA (1:1) were measured at different electrodes in 0.1 M PBS
(pH 3.93) (Figure 4). When the potentials were scanned from 0 to 0.8 V, two anodic peaks were observed
at all electrodes, which are closely related to the oxidation of DA and UA. However, only one peak
belonging to the reduction of DA occurred at reverse scanning. These phenomena indicate that the
electrooxidation of UA is totally irreversible. On the bare GCE, two very weak anodic peaks appeared
(ipa(DA) = 1.126 µA, ipa(UA) = 0.385 µA), demonstrating sluggish kinetics for the electrooxidation of DA
and UA. After modification of the GCE by MnO2NFs, the ipa(DA) increased a little (ipa(DA) = 3.766 µA)
while the ipa(UA) was enhanced significantly (ipa(UA) = 12.73 µA), showing MnO2NFs have good
electrocatalytic toward the oxidation of UA because of the presence of Mn4+/Mn3+ as an electron
mediator. Moreover, the high-specific surface area also contributed to the obvious enhancement on the
ipa(UA). When GCE was modified with NrGO, the ipa(DA) and ipa(UA) increased to 7.029 µA and
16.43 µA respectively, suggesting superb electrocatalytic activity toward the oxidation of DA and
UA. The superb electrocatalytic activity of NrGO can explain the following facts. Nitrogen atoms
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in NrGO sheets may interact with target biomolecules via hydrogen bond, which can activate the
amine and hydroxy groups and expedite the charge transfer process. Meanwhile, the π–π interactions
between NrGO and target biomolecules can also facilitate the charge transfer process [43]. Two sharp
anodic peaks occurred at MnO2NFs/NrGO/GCE, and the anodic peak currents enhanced remarkably
(ipa(DA) = 14.8 µA, ipa(UA) = 36.3 µA). The synergistic effect between MnO2NFs and NrGO sheets
was mainly responsible for the enhanced response peak currents. Specially, MnO2NFs had higher
catalytic activity toward the oxidation of DA and UA when the electrical conductivity was improved
by coupling with NrGO sheets. Meanwhile, the hydrogen bond and π–π interactions between NrGO
sheets and target biomolecules can also facilitate the charge transfer process. It is worth noting the
biggest peak potential separation (about 150 mV) at MnO2NFs/NrGO/GCE, rendering this composite
more selective for the simultaneous detection of UA and DA. Besides, the largest background current
was also obtained at the MnO2NFs/NrGO nanocomposites, due to the high-specific capacitance of the
MnO2NFs/NrGO nanocomposites [44].
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3.4. Optimization of Voltammetrical Parameters

3.4.1. Effect of pH

As known to all, the voltammetric responses of DA and UA highly depend on the solution pH.
Therefore, it’s worthwhile to optimize pH. The dependences of pH on the anodic peak currents of
DA and UA are shown in Figure 5A. In the pH range of 2.58 to 3.93, the ipa(DA) gradually increased
with the increase of pH, then decreased slowly as the pH rose to 7.01, and suddenly decreased
when the pH exceeded 7.01. Obviously, the maximal ipa(DA) was achieved at pH 3.93. As for UA,
the ipa(UA) show a downward trend, with pH varying from 2.58 to 8.52. To ensure the highest possible
anodic peak current for DA and UA, pH 3.93 was selected for the following experiments. Moreover,
the anodic peak potentials of DA and UA linearly decreased as pH was rising (Figure 5B). The linear
relationships of Epa versus pH can be expressed as Epa(DA) = −0.0685 pH + 0.839 (R2 = 0.974) and
Epa(UA) = −0.0639 pH + 0.679 (R2 = 0.976), respectively. Their slopes (68.5 pH/mV and 63.9 pH/mV)
are close to 59 mV/pH, demonstrating the equal numbers of electron (e−) and protons (H+) involved
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in their electrooxidation processes [16]. As reported, the oxidation of DA and UA are two electron
transfer processes [45]. Hence, the electrooxidation of DA and UA involves two electrons (2e−) and
two protons (2H+). The electrochemical oxidation process of DA and UA at the MnO2NFs/NrGO/GCE
are illustrated in Scheme 1.Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 17 
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3.4.2. Effect of Scanning Rate

In order to give a deep insight into the oxidation of DA and UA, CVs of 10 µM DA and UA
were performed at various scanning rates (Figure 6A). As the scanning rates increased, their anodic
peaks shifted positively while the cathodic peaks shifted in the reverse direction. Furthermore, their
response peak currents increased with the potentials scanning speeding up. It is noteworthy that the
background currents also enhanced synchronously. To pursue high-signal to noise (S/N), 0.1 Vs−1 was
recommended as the optimal scanning rate. As shown in Figure 6B, the redox peak currents of DA
were proportional to the square root of the scanning rate (v1/2), suggesting the electrooxidation of DA
is a diffusion-controlled process. There was also a good relationship between the anodic peak currents
of UA and the square root of the scanning rate (Figure 6C), indicating a diffusion-limited electrode
process for UA oxidation.
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3.4.3. Influence of Accumulation Parameters

Accumulation can effectively boost the response peak currents of target species, so the influence
of accumulation potential and time were also investigated. The anodic peak currents of DA and UA
sharply increased with the accumulation potentials shifting from −0.4 V to −0.3 V, then they gradually
decreased with a further increase of the accumulation potential (Figure 7A). The highest anodic peak
currents of DA and UA were achieved at −0.3 V, so −0.3 V was chosen as the optimal accumulation
potential. As presented in Figure 7B, their anodic peak currents gradually enhanced during the first
150 s, then decreased with the prolonging of the accumulation time. Therefore, accumulation was
performed at −0.3 V for 150 s in the following experiments.
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3.5. Individual and Simultaneous Determination of DA and UA

For individual detection of DA and UA at the MnO2NFs/NrGO/GCE, LSVs were measured in
the potential range of 0–0.8 V in 0.1 M PBS (pH 3.93). In this case, only the concentrations of the
target substance were varied, while the concentrations of the other substance were kept unchanged.
As illustrated in Figure 8A,B, there was a good linear relationship between the ipa(DA) and DA
concentrations ranging from 0.4 µM to 10 µM. The linear equation is ipa(DA) = 1.3090CDA − 0.1953
(R2 = 0.989). However, the ipa(DA) were positively proportional to the Napierian logarithm of DA
concentrations (lnCDA) in the concentration range of 10 µM–100 µM (Figure 8C,D). The linear regression
equation can be expressed as ipa(DA) = 19.1371lnCDA − 32.3044 (R2 = 0.993). The LOD was estimated
as 0.054 µM. Regarding the individual determination of UA, the ipa(UA) were well-linear to the
working concentrations, varying from 0.4 µM to 6.0 µM (Figure 9A,B), with the linear equation of
ipa(UA) = 2.4934CDA − 0.9302 (R2 = 0.989). At the higher concentration region (6.0 µM to 100 µM),
the ipa(UA) were positively correlated to the Napierian logarithm of UA concentrations (lnCUA).
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The corresponding linear equation is ipa(UA) = 44.3228lnCUA − 65.7789 (R2 = 0.995). The LOD is
0.062 µM for the individual determination of UA. It is noteworthy that the addition of the target
biomolecule does not have a notable interference on the electrochemical response signals of the other
biomolecule. The results firmly imply that DA and UA can be sensitively and selectively detected at
MnO2NFs/NrGO/GCE in the mixture of DA and UA.
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The remarkable electrocatalytic activity of MnO2NFs/NrGO enables simultaneous detection of
DA and UA using the LSV method (Figure 10). Two well-separated anodic peaks belonging to the
electrooxidation of DA and UA were observed on LSV curves using MnO2NFs/NrGO/GCE. Furthermore,
LSV responses were resolved into two peaks at 0.420 V and 0.554 V, respectively. The results demonstrate
an excellent discriminability from the two biomolecules in mixture solutions. At the lower concentration
region (0.02µM–6.0µM), the ipa(DA) and ipa(UA) enhanced linearly with their concentrations increasing
(Figure 10A, B). The linear plots can be expressed as ipa(DA) = 3.0627CDA − 0.2848 (R2 = 0.991), and
ipa(UA) = 3.0627CUA − 0.2848 (R2 = 0.990), respectively. However, the ipa(DA) and ipa(UA) are
positively proportional to the Napierian logarithm of the DA and UA concentrations (lnCDA and lnCUA)
at the higher concentration region from 6.0 µM to 100 µM (Figure 10C, D). The corresponding linear
regression equations are ipa(DA) = 16.2222lnCDA − 12.4506 and ipa(UA) = 37.7032lnCUA − 48.2926,
respectively. The correlation coefficient is 0.990 for both DA and UA. The LODs are calculated to be
0.036 µM and 0.029 µM for DA and UA, respectively. All of the results indicate that the proposed
MnO2NFs/NrGO/GCE featured wider linear detection ranges and a lower LOD for the electrochemical
oxidation of DA and UA. The analytical performances were compared to those in previous works
(Table 1). Obviously, the sensing parameters of the proposed sensor are comparable to, or even better
than, previously reported modified electrodes [7,46–54].
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Figure 10. (A) LSVs on the MnO2NFs/NrGO/GCE in 0.1 M PBS (pH 3.93) containing various concentrations
of DA and UA ranging from 0.2 µM to 6.0 µM (A) and from 6.0 µM to 100 µM (C); (B) Plots of the
anodic peak currents as the function of DA and UA concentrations in the range of 0.2 µM –6.0 µM
(n = 3); (D) Plots of the anodic peak currents as the function of DA and UA concentrations in the range of
6.0 µM–100 µM (n = 3).
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Table 1. Comparison sensing performance between previous reports and the proposed MnO2NFs/NrGO/GCE
for the simultaneous detection of DA and UA.

Electrodes Methods
Detection Range (µM) LOD (µM)

Ref.
DA UA DA UA

Au/Cu2O/rGO/GCE a DPV 10–90 100–900 3.9 6.5 [7]
NrGO/GCE DPV 0.5–170 0.1–20 0.25 0.045 [46]

Pd/RGO/GCE DPV 0.45–71 6–469.5 0.18 1.6 [47]
Pt/RGO/GCE DPV 10–170 10–130 0.25 0.45 [48]

ZnO/SPCE DPV 0.1–374 0.1–169 0.004 0.00849 [49]
PtNi@MoS2/GCE DPV 0.5–150 0.5–600 0.1 0.1 [50]
Au–Pt/GO–ERGO DPV 0.0682–49,800 0.125–82,800 0.0207 0.0407 [51]

HFP/GCE DPV 1–200 20–400 0.016 0.218 [52]
MoS2/GCE DPV 1–900 1–60 0.15 0.06 [53]

ZnO/PANI/rGO/GCE DPV 0.1–90 0.5–90 0.017 0.12 [54]
MoS2/rGO/GCE DPV 5–545 25–2745 0.05 0.46 [55]

NCNF/GCE DPV 1–10; 10–200 5–200 0.5 1 [56]
PTPCNs/GCE DPV 1–100 5–200 0.078 0.17 [57]

MnO2NFs/NrGO/GCE LSV 0.2–6.0; 6.0–100 0.2–6.0; 6.0–100 0.036 0.029 This work
a DPV: differential pulse voltammetry.

3.6. Selectivity, Repeatability, and Reproducbility Assay

Before real sample detection, the selectivity and repeatability, as well as reproducibility were
also evaluated. To assess the anti-interfering ability of the proposed MnO2NFs/NrGO/GCE, the LSV
responses of the DA and UA in the coexistence of common interfering substances (i.e., ascorbic acid,
alanine, citric acid, glutamic acid, cysteine, and lysine) were compared. The relative errors (less than 5%)
were accepted even in the presence of 100-fold the above interfering species, demonstrating good
selectivity (Figure S1). It is noted that the 100-fold AA have no obvious interfering because of the
well-separated peak potential between AA and DA (∆Ep = 0.260 V). To check the repeatability, eight
successive determinations of 1 µM DA and UA (1:1) were also performed. The relative standard
deviation (RSD) for DA and UA were 6.35% and 5.32%, respectively, indicating good repeatability.
To examine electrode reproducibility, the anodic peak currents of 1 µM DA and UA were recorded
at five MnO2NFs/NrGO/GCEs, which were prepared by similar procedure. The RSD of the anodic
peaks were 6.02% and 4.70% for DA and UA respectively, showing that the electrode preparation have
excellent reproducibility.

3.7. Determination of DA and UA in Human Serum Samples

To validate practicability, the concentrations of DA and UA in human serum samples were also
detected on MnO2NFs/NrGO/GCE. The determination results were calculated from the calibration
curves (Table 2). To further validate the precision of the proposed sensor, a series of known concentration
solutions of DA and UA were spiked with the serum samples to figure out the recovery. The recoveries
are 96.2–105.6% and 96.2–104.9% for DA and UA respectively, verifying that biological matrixes,
like human serum, do not influence the simultaneous detection of DA and UA.

Table 2. Detection results of DA and UA in human serum samples using MnO2NFs/NrGO/GCE (n = 3).

a Samples Detected (µM) Added (µM) Found (µM) RSD (%) Recovery (%)

Serum

DA b ND
20 18.98 4.25 94.9

40 38.48 3.76 96.2

UA 21.8
20 42.92 2.98 105.6

40 63.74 2.45 104.9
a The human serum samples were detected at 10-fold dilution. b Not detected.
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4. Conclusions

In summary, this paper reported the facile synthesis of MnO2NFs/NrGO nanocomposites and
their application on the simultaneous determination of DA and UA. The electrochemical measurements
indicated that the MnO2NFs/NrGO composites possess a large, effective electroactive area and
low-charge transfer resistance. MnO2NFs/NrGO/GCE showed superb catalytic capacity toward the
electrooxidation of DA and UA, attributing to the synergistic effect from MnO2NFs and NrGO sheets.
The anodic peak currents of DA and UA increased linearly with their concentrations varying from
0.2 µM to 6.0 µM. However, their anodic peak currents were highly correlated to the Napierian
logarithm of their concentrations, ranging from 6.0 µM to 100 µM. The LODs were 0.036 µM and 0.029
µM for DA and UA, respectively. Furthermore, the proposed sensor successfully realized DA and UA
detection in human serum samples with satisfactory recovery. Combining with prominent advantages
such as facile preparation, high sensitivity, good selectivity, repeatability, and reproducibility, the
proposed MnO2NFs/NrGO nanocomposites have become the most competitive candidates for the
simultaneous determination of DA and UA in various real samples.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/6/847/s1,
Figure S1: The anodic peak currents of 1 µM DA and UA in the presence of 100-fold alanine (AL), glutamic acid
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