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Abstract: Tin sulfides are promising materials in the fields of photoelectronics and photovoltaics
because of their appropriate energy bands. However, doping in SnS2 can improve the stability and
robustness of this material in potential applications. Herein, we report the synthesis of SnS2 nanoflakes
with Zn doping via simple hydrothermal route. The effect of doping Zn was found to display a huge
influence in the structural and crystalline order of as synthesized SnS2. Their optical properties attest
Zn doping of SnS2 results in reduction of the band gap which benefits strong visible-light absorption.
Significantly, enhanced photoresponse was observed with respect to pristine SnS2. Such enhancement
could result in improved electronic conductivity and sensitivity due to Zn doping at appropriate
concentration. These excellent performances show that Sn1−xZnxS2 nanoflakes could offer huge
potential for nanoelectronics and optoelectronics device applications.
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1. Introduction

Metal sulfides have received considerable interest due to their unique optoelectronic properties
while processed at micro-nano level [1–4]. In particular, two-dimensional (2D) metal sulfides
nanostructures such as nanoplates, nanoflakes and nanosheets have received much attention for their
potential application in photodetectors, photovoltaic devices and light-emitting diodes [5–20]. 2D form
of the material offers high specific surface area, making it advantageous for electrochemical, catalytic
and photoelectrical activities. Another advantage in 2D materials is that they are more compatible
and can easily be integrated into nano-microscale structures for developing new optoelectronic
devices [21–24].

Meanwhile, SnS2 is considered as one of the promising layered materials with excellent visible
light absorption and electrical properties. It possesses band gap (2.1–2.3 eV), n-type characteristics, high
sensitivity and high surface activity for applications in Li-ion batteries [25], photovoltaic devices [26]
and photodetector [27,28]. Variety of nanostructures such as nanoflakes, nanosheets and nanoplates
through physical and chemical techniques including chemical vapor deposition, solvothermal and
hydrothermal methods have been reported by several groups [29,30]. Among them, nanoflakes
preparation via hydrothermal method have attracted considerable interest due to its low cost and
large-scale production at low temperatures. Similarly, many efforts have also been made in controlling
morphology and enhancing the photoelectrical, chemical and physical properties for improving the
device performance. Moreover, dopants in semiconductor could lead to reduction in particle size,
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narrowing of band gap and enhance the photoelectrical properties of SnS2 [31]. Recently, V and
Ti doped SnS2 was reported to be an intermediate band material for application in wider solar
absorption [32,33]. Recently doping SnS2 with Fe resulted in room temperature ferromagnetism [34].
Similarly, in our previous work, we reported enhanced optical and electrical properties of SnS2

nanoflakes via Cu doping [35]. More recently, Liu et al. reported enhanced photoresponsivity in Sb
doped SnS2 monolayer [36]. Based on the above literatures we test the ability of doping Zn ions in SnS2

to significantly enhance conductivity and sensitivity favorable for its performance in photoelectronics.
The present work reports on hydrothermal synthesis of Zn doped SnS2 nanoflakes at low

temperatures. The properties of Sn1−xZnxS2 nanoflakes have been intensively studied through
structural, optical and photoelectrical methods. The results show that the Zn doping results in
enhanced sensitivity, conductivity and efficiency of charge transfer kinetics. As a proof of concept,
Sn1−xZnxS2 nanoflakes were integrated into a patterned indium tin oxide (ITO) substrate (as active
material) for photoelectronic device architecture. The results showcased excellent on-off ratio and
photoresponse properties than that of pristine counterpart. Our investigations presents Zn doped SnS2

could be a potential candidate for future nano electronic and photoelectronic applications.

2. Experiment

2.1. Synthesis of Sn1−xZnxS2 Nanoflakes

SnS2 and Sn1−xZnxS2 nanoflakes were prepared via low cost hydrothermal route reported
previously [35]. In brief, 0.1753 g SnCl4·5H2O (Tin (IV) chloride pentahydrate) and 0.15 g thioacetamide
(TAA) were dissolved in 80 mL distilled water, stirred for 1 h to result in homogeneous solution.
The prepared solution was transferred to 100 mL Teflon-line autoclave, sealed and heated up to
160 ◦C for 12 h and finally cooled to room temperature. The prepared SnS2 nanoflakes were then
washed with ethanol and deionized water repeatedly and finally dried at 60 ◦C for 12 h in electric
oven. For the synthesis of Sn1−xZnxS2 nanoflakes, 1 and 3 mmol% of Zinc chloride was added to the
precursor solution.

2.2. Characterization

The morphological evolution of the sample was examined using field-emission scanning electron
microscopy (FESEM, Philips, Model: XL-30, Amsterdam, The Netherland) and field-emission
transmission electron microscopy (FE-TEM, JEM-2100F HR, Tokyo, Japan). The phase purity and
crystal structure of SnS2 and Sn0.97Zn0.03S2 nanoflakes was inferred through X-ray diffractometer
(SmartLab, Rigaku Corporation, Tokyo, Japan). The Raman measurements were performed in a
micro-Raman spectrometer (DawoolAttonics, Model: Micro Raman System, Seongnam, Korea) using
an excitation wavelength of 532 nm. The chemical composition of Sn0.97Zn0.03S2 was obtained using
X-ray photoelectron spectroscopy (K-Alpha+, ThermoFisher Scientific, Waltham, MA, USA). In order
to avoid charging effect, during the measurement, charge neutralization was performed with an
electron flood gun (K-Alpha+, ThermoFisher Scientific, USA). The absorbance spectrum was recorded
using a UV/VIS spectrophotometer (K LAB, Model: Optizen POP, Daejeon, Korea). A Keithley
617 semiconductor parameter analyzer (Tektronix, Beaverton, OR, USA; Model: Keithley 617) was
employed to study the photo-response of the device under solar simulator (Newport, OR, USA; AM1.5)
(SERIC, Model: XIL-01B50KP).

2.3. Device Fabrication

Initially, 2 mg of samples SnS2 and Sn0.97Zn0.03S2 were added in 10 mL methoxy-ethanol solvent
separately and magnetic stirred for 30 min followed by sonication of about 30 min to form colloidal
suspension. The resulting suspension was then spin casted on cleaned and patterned ITO/glass
substrate at 1000 rpm and dried at 100 ◦C for 5 min. Several cycles of spin casting process was repeated
to obtain a continuous film.
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3. Results and Discussions

The morphological features of SnS2, Sn0.99Zn0.01S2 (Figure S1) and Sn0.97Zn0.03S2 products were
examined with the aid of field-emission scanning electron microscope (FESEM) technique. The image
seen from Figure 1a–c confirms hexagonal nanoflakes with smooth surface and homogeneous
distribution in case of pristine SnS2. However, on doping with Zinc the morphology appears to be
similar with that of pristine nanoflakes with some random aggregates on the surface of SnS2 (Figure 1d,e).
Additionally, transmission electron microscope (TEM) was employed to further investigate the detailed
morphological information of SnS2 and Sn0.97Zn0.03S2 products. Figure 2 shows TEM images of
pristine SnS2 and Sn0.97Zn0.03S2 nanoflakes with different magnifications. From the Figure 2a–c, it is
clear that pristine SnS2 possess typical nanoflakes like structures with hexagonal stacking. Similarly
the Sn0.97Zn0.03S2 nanoflakes (Figure 2d–f) also possess indistinguishable hexagonal morphology
of pristine SnS2. The inset of Figure 2c,f displays the selected area electron diffraction (SAED)
pattern revealing polycrystalline structure of the obtained samples. Energy dispersive spectroscopy
(EDS) analysis was further employed in TEM mode to study the homogeneous distribution of Zn
element in Sn0.97Zn0.03S2 nanoflakes. Figure 3a–d displays the TEM image and TEM-EDS mapping of
Sn0.97Zn0.03S2 nanoflakes. As seen from Figure 3d, Zn element is distributed evenly throughout the
whole structure of Sn0.97Zn0.03S2 nanoflakes.
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low magnification and high magnification scanning electron microscopy (SEM) image of SnS2; (d–f)
low magnification and high magnification SEM image of Sn0.97Zn0.03S2 nanoflakes showing their
hexagonal structure.
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nanoflakes, a strong signal was observed at 312 cm−1, which is related to A1g phonon vibration mode 
of SnS2 [38–40]. 

Figure 2. (a–c) Transmission electron microscopy (TEM) images of SnS2 and inset in Figure 2c shows
selected area electron diffraction (SAED) pattern of SnS2 nanoflakes; (d–f) TEM images of a typical
Sn0.97Zn0.03S2 nanoflakes with SAED pattern in inset of Figure 2f, revealing polycrystalline structure.
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elemental mapping of Sn (b), S (c) and Zn (d) from selected area for 2D Sn0.97Zn0.03S2.

The crystallographic pattern of as synthesized SnS2, Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2 nanoflakes
are investigated by XRD analysis and presented in Figure 4a. Here, the strong diffraction peak observed
at 2θ = 14.92◦ belongs to (001) diffraction, is an indication of the hexagonal structure of SnS2 [37].
However, the diffraction peak (001) tends to shift towards smaller angle on Zn doping. This shifting
indicates that Zn ions replace Sn sites in the SnS2 crystal matrix. Furthermore, no peaks related to
other compounds namely, ZnS and ZnSnS3 are observed in the XRD pattern. Additionally, Raman
measurement was further analyzed to study detailed information about the structural properties
of Zn doped SnS2 nanoflakes. Raman spectrum for sample SnS2, Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2

nanoflakes are displayed in Figure 4b. Here, in case of pristine SnS2, Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2

nanoflakes, a strong signal was observed at 312 cm−1, which is related to A1g phonon vibration mode
of SnS2 [38–40].
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Figure 4. Structure properties of SnS2, Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2 nanoflakes. (a) X-ray
diffraction pattern of SnS2, Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2 nanoflakes; (b) Raman spectrum of SnS2,
Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2 nanoflakes at excitation wavelength of 532 nm.

To elucidate the chemical composition of pristine and Sn0.97Zn0.03S2 nanoflakes, XPS measurements
have been carried out and shown in Figure 5a. XPS full survey spectrum (Figure 5a) confirms the
presence of Zn doping in SnS2. Figure 5b,c displays the XPS spectra of Sn 3d and S 2p peaks for
Sn0.97Zn0.03S2 nanoflakes. As observed in Figure 5b,c, the peaks of Sn 3d at 486.33 and 494.4 eV of
Sn 3d is ascribed to Sn3d3/2 and Sn3d5/2 and peaks at 161.2 and 163.3 eV correspond to S 2p peaks of
SnS2. These results are consistent with those reported for SnS2 [41,42]. The binding energies of Sn
3d5/2 peak corresponding to pristine SnS2 was observed at 486.47 eV. Subsequently doping with Zn on
SnS2, peaks of Sn 3d5/2 shifts to lower energy position to 486.33 eV. The shifting in the binding energy
value of Sn 3d5/2 peak was about 0.14 eV compared to pristine SnS2. This shift might be due to Zn ion
replace Sn sites in the SnS2 crystal lattice. Figure 5d shows the XPS spectrum for Zn in SnS2 nanoflakes.
Besides, the Zn 2p3/2 peak appeared at 1021.3 eV is attributed to Zn2+ bonding state [43], confirming
Zn2+ ions have been incorporated into the SnS2.
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Figure 6a shows UV–visible absorption spectrum of SnS2, Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2 in the
range of 300–750 nm. SnS2 displays a strong absorption in visible part of the solar spectrum. However,
in contrast the samples Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2 displayed a broad light absorption in 300 to
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750 nm, which indicates that doping Zn ion can result in extending of absorption edge of SnS2. This
results suggests that samples Sn0.97Zn0.03S2 possess greater potential than that of pristine sample SnS2

to drive photo excited charge carriers under the light irradiation. The values estimated was found
to be 2.24 eV for sample SnS2 which is consistent with our previous result (Figure 6b). However, the
values was found to be 2.19 and 2.09 eV for sample Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2. It shows band
gap becomes narrower than pristine SnS2 as the Zn content increases [44,45]. This reduction in the
band gap might be due to modification in the electronic structures of SnS2 due to Zn doping, which
results in creating energy levels in the band gap. This band gap could result in better absorption in
visible region and can increase photo excited charge carriers under illumination.
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Mott–Schottky (M–S) analysis was made to study the electrical properties of pristine SnS2,
Sn0.99Zn0.01S2 and Sn0.97Zn0.03S2 nanoflakes. Generally, Mott–Schottky plot was employed to determine
the donor density (Nd) and flat band potential (Vfb) of the materials. M–S analysis are generally
expressed by [46–48]

1/C2 = (2/eεεoNd)[(Vfb − V) − kBT/e] (1)

where e is the electronic charge, ε is the dielectric constant of SnS2, ε0 is the relative permittivity,
Nd dopant density, V the applied potential, C the specific capacitance, kB the Boltzmann constant and
Vfb the flat band potential. The M–S plots of pristine SnS2, Sn0.99Zn0.01S2 (Figure S2) and Sn0.97Zn0.03S2

nanoflakes are displayed in Figure 7. Here Vfb was determined from intercept between the extrapolated
linear plot of the curve and was estimated to be ~0.67 V for pristine SnS2 and 0.64 V for Sn0.97Zn0.03S2

nanoflakes. Additionally the difference in the slope reflects the variation in the carrier density (Nd).
The values of carrier density was estimated from the Equation (1) to be about 1.46 × 1019 and 0.47 × 1019
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A photoelectronic device was constructed on samples SnS2 and Sn0.97Zn0.03S2 to study its potential
for optoelectronics applications (Figure 8a), (for the details of fabrication process refer Expt. sections).
I-V curves of pristine SnS2 nanoflakes at various illumination intensities and dark condition is displayed
in Figure 8b. Inset shows I-V curves of the pristine SnS2 nanoflakes under dark and illumination. Here,
the I-V curve shows a roughly symmetric behavior indicating Schottky-like junction established at ITO
and SnS2 contacts. The dark current was noted to be 0.29µA at a bias of 3 V. In contrast, the enhancement
of current was measured and the value reaches to 0.98 µA under illumination, demonstrating excellent
photosensitivity of the SnS2 samples. I-V curves of Sn0.97Zn0.03S2 nanoflakes device under illumination
and dark is displayed in Figure 8c. Here, the value of dark current was found to increase than that
of pristine SnS2, which suggests reduction in resistance of SnS2 after Zn doping. However, a notable
enhancement in photocurrent under illumination was noted compared to that of dark current at same
bias voltage in Sn0.97Zn0.03S2 nanoflakes device, indicating their excellent sensitivity. Moreover, photo
to dark current (Ilight/Idark) ratio for Sn0.97Zn0.03S2 device (~10.1) tends to increase compared to pristine
SnS2 (~3.37). The high sensitivity and enhancement in photocurrent of Sn0.97Zn0.03S2 nanoflakes
reveal the effective separation of photoexcited carriers in samples, which are actually promoted after
Zn-doping. Figure 8d shows I-V curves of the Sn0.97Zn0.03S2 device measured at room temperature
under different light intensities. The photocurrent increases with increasing light intensities revealing
strong and clear photon-induced currents phenomena, indicating excellent photoresponse ability of
the device. Under illumination, photoexcited charge carriers are mainly generated in Sn0.97Zn0.03S2.
Then the charge carriers are quickly separated and driven towards the nearby electrodes due to built-in
electric field created at the interface, resulting in photocurrent generation.
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device under different illumination intensities (Inset shows the I-V characteristics under dark and
illumination intensity 84.0 mW/cm2). (c) I-V characteristics of Sn0.97Zn0.03S2 device under illumination
conditions. (d) I-V characteristics of Sn0.97Zn0.03S2 device under different light intensities (55, 61.8, 74.0,
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Figure 9a shows light intensity-dependent photocurrent values of pristine SnS2 and Sn0.97Zn0.03S2

device. The observed photocurrent value to illumination intensities suggest that the charge carrier
photo-generation efficiency is proportional to the number of photons absorbed by the pristine SnS2 and
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Sn0.97Zn0.03S2 nanoflakes. Reliable response speed and stability to illumination conditions are crucial
for the photoelectronic device. To address this concern, time related photoresponse of pristine SnS2

and Sn0.97Zn0.03S2 device was measured with turning light on/off condition for a period of 10 seconds
for multiple cycles. Figure 9b,c shows time related photoresponse of the pristine and Sn0.97Zn0.03S2

device under several switch on and switch off conditions. Here, the photocurrent of pristine SnS2 was
found to be 0.8 µA. Interestingly the photocurrent is improved by two fold in case of Sn0.97Zn0.03S2

nanoflakes (1.75 µA) compared to pristine SnS2 (Figure 9c). The photoresponse enhancement could
be related to Zn ions which acts as an effective dopant and enhance charge separation taking place
at the interface. The rise/decay time was measured to be 0.2 and 0.2 s. The reason for the relative
longer response speed in our case is probably related to the formation of interface states between the
Sn0.97Zn0.03S2 nanoflakes and ITO substrate, which can block the photo-generated carriers, resulting
in long life time of the photo-generated carriers. Meanwhile, the device shows no fluctuation under
illumination for several repetitive cycles, inferring the excellent stability of the Sn0.97Zn0.03S2 device.
The time related response of the Sn0.97Zn0.03S2 device under varied light intensities are displayed in
Figure 9d. Here, the photocurrent value varies with different light intensities demonstrating excellent
reproducibility of Sn0.97Zn0.03S2 based device. Such high and stable photoresponse behavior may
come from the fact that Zn ions act as an effective dopant and result in increased light absorption,
which enhances photogenerated charge carriers and leads to an enhanced photocurrent of the device.
Thus, photoelectrical studies on Sn0.97Zn0.03S2 nanoflakes illustrates that Zn doping in SnS2 results
in significant enhancement of their optoelectronic properties, which leads to improved conductivity
and sensitivity.
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photocurrent response of Sn0.97Zn0.03S2 device under different illumination intensities.

The mechanism involved in the enhanced photoresponse of Sn0.97Zn0.03S2/ITO structure was
explained through energy band diagram in Figure 10. Since the work function between ITO and
Sn0.97Zn0.03S2 is different, a Schottky-type behavior is established at Sn0.97Zn0.03S2/ITO interface
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(Figure 10). Due to this behavior, an electric field was established at the Sn0.97Zn0.03S2/ITO interface. This
electric field then accelerates the separation of the photoexcited charge carriers without the application
of any applied bias. When illuminated, photoexcited charge carriers produced in Sn0.97Zn0.03S2

are then separated at the Sn0.97Zn0.03S2/ITO interface. This charge carriers separation which was
induced due to the electric field results in band bending at the Sn0.97Zn0.03S2/ITO interface. As a
result, the photoexcited charge carriers are swept towards ITO electrodes, involving in enhancement of
photocurrent (Figure 10b).
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