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Abstract: A membrane electrolyte that restricts the methanol cross-over while retaining proton
conductivity is essential for better electrochemical selectivity in direct methanol fuel cells (DMFCs).
Extensive research carried out to explore numerous blends and composites for application as polymer
electrolyte membranes (PEMs) revealed promising electrochemical selectivity in DMFCs of carbon
nanomaterial-based polymer composites. The present review covers important literature on different
carbon nanomaterial-based PEMs reported during the last decade. The review emphasises the proton
conductivity and methanol permeability of nanocomposite membranes with carbon nanotubes,
graphene oxide and fullerene as additives, assessing critically the impact of each type of filler on
those properties.
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1. Introduction

Direct methanol fuel cells (DMFCs) belong to a category of polymer electrolyte membrane fuel
cells (PEMFCs) that utilize a liquid fuel to produce electrical power at room temperature. DMFCs
do not require humidification accessories which significantly reduce the complexity, the volume and
weight of the system compared to H2-fueled PEMFCs. In addition, handling of liquid fuels, such as
methanol, is easy in comparison with the handling of hydrogen gas [1–3].

The transport sector contributes to most of the atmospheric pollution and consumes a major
portion of the energy generated worldwide. On the other hand, the portable electronic market
(e.g., smartphones and laptops) is growing rapidly and the state-of-the-art Li batteries are lagging
in some aspects, including safety. A portable DMFC system is expected to provide solutions to
these mobile electronics, hence the development of an ideal DMFC system is of prime importance
in the current fuel cell research. A DMFC comprises several components, namely the membrane
electrode assembly (MEA), the flow channels, endplates and current collectors. The MEA is the key
component comprising a polymer electrolyte membrane sandwiched between an anode and a cathode.
The state-of-the-art PEM is a perfluorosulfonic acid (PFSA) membrane (of which Nafion® is the most
well-known commercial example). The anode material is usually a Pt-Ru bimetallic catalyst supported
on carbon, while the cathode is Pt supported on carbon [4].

In the typical DMFC system schematized in Figure 1, aqueous methanol is fed to the anode side
of the MEA where the electrochemical oxidation of methanol generates protons, electrons and carbon
dioxide according to CH3OH + H2O → CO2 + 6H+ + 6e−, with reversible potential E0 = 0.046 V.
The protons at the anode pass through the solid polymer electrolyte to the cathode, where they combine
with the electrons arriving through the external circuit and the oxygen 3/2O2 + 6H+ + 6e−→ 3H2O,
E0 = 1.23 V.
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Figure 1. Schematic diagram of a DMFC comprising the anode (Pt-Ru/C) and the cathode (Pt/C), 
separated by a polymeric proton exchange membrane (PEM). 

The ideal MEA materials have pre-requisites as follows: 

1. Efficient anode catalyst for complete electro-oxidation of methanol. 
2. Solid polymer electrolyte with high proton conductivity and low methanol permeability. 
3. Methanol-tolerant cathode catalyst with high oxygen reduction activity. 

Among all MEA components, the PEM plays major multiple roles acting as a physical barrier 
between anode and cathode to avoid mixing of fuel and oxidant, an insulator for electrons, and, 
finally, as an electrolyte ensuring the selective transport of protons from anode to cathode. For 
practical DMFC applications, the PEM is required to have high proton conductivity over a wide range 
of temperatures, low fuel permeation, good chemical, mechanical and thermal properties, along with 
durability.  

As stated above, Nafion® membrane is used as a current state-of-the art PEM for DMFCs for its 
remarkable mechanical and chemical stability and high proton conductivity. Nafion® consists of a 
strong hydrophobic fluorinated backbone and hydrophilic pendant sulfonic acid chain, as shown in 
Figure 2.  
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Figure 1. Schematic diagram of a DMFC comprising the anode (Pt-Ru/C) and the cathode (Pt/C),
separated by a polymeric proton exchange membrane (PEM).

The ideal MEA materials have pre-requisites as follows:

1. Efficient anode catalyst for complete electro-oxidation of methanol.
2. Solid polymer electrolyte with high proton conductivity and low methanol permeability.
3. Methanol-tolerant cathode catalyst with high oxygen reduction activity.

Among all MEA components, the PEM plays major multiple roles acting as a physical barrier
between anode and cathode to avoid mixing of fuel and oxidant, an insulator for electrons, and, finally,
as an electrolyte ensuring the selective transport of protons from anode to cathode. For practical DMFC
applications, the PEM is required to have high proton conductivity over a wide range of temperatures,
low fuel permeation, good chemical, mechanical and thermal properties, along with durability.

As stated above, Nafion® membrane is used as a current state-of-the art PEM for DMFCs for its
remarkable mechanical and chemical stability and high proton conductivity. Nafion® consists of a
strong hydrophobic fluorinated backbone and hydrophilic pendant sulfonic acid chain, as shown in
Figure 2.
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The backbone offers remarkable mechanical strength along with chemical stability, and the
sulfonic acid groups improve the water retention capacity and are responsible for its superior proton
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conductivity [5]. However, the aqueous domains formed in the vicinity of these ionic clusters also lead
to high methanol permeation from the anode to the cathode, where it is oxidized creating a mixed
potential that reduces the overall efficiency of the cell [6,7]. Hence research efforts made to overcome
the above issues follow two main different approaches viz. modification of PFSA membrane with
organic/inorganic additives, and development of alternative polymeric composites.

The dispersion of a variety of inorganic additives like silica, zirconia, metal oxides and zeolites to
form Nafion® composites is widely suggested in the literature as a mean to decrease the methanol
permeability in PFSA membranes [8–11]. These composite membranes show restricted methanol
permeability with a compromise of proton conductivity. On the other hand, many organic additives
have been explored to form composites, blends and cross-linked membranes of Nafion® [12–15] with
better proton conductivity.

Other PEMs based on aromatic hydrocarbon polymers aliphatic polymers and their composites
are explored as suitable electrolytes in DMFC [16–22]. Among all the sulfonated aromatic polymers,
polyether ether ketone (PEEK), polyether sulfone (PES), polyether nitrile (PEN) and poly imides
(PI) shown in Figure 3 are considered as the most suitable for DMFC due to their superior thermal,
mechanical and chemical stability, good film-forming ability and extremely low fuel permeability and
cost compared to Nafion® [23]. These aromatic polymers are generally sulfonated using electrophilic
substitution or by polymerizing the monomers having sulfonic acid groups to implant proton
conducting groups. Usually, a high degree of sulfonation (DS) leads to high proton conductivity.
However, its mechanical stability is affected badly due to excessive swelling at such a high DS, thus
limiting their direct use as PEMs. Numerous efforts have been made to prepare composites of these
sulfonated polymers using a variety of micro/nano-additives such as inorganic oxides. Although
these composite membranes show significant development in terms of methanol crossover, they have
lower proton transport and further improvement is needed to use them as PEMs for DMFC, hence the
fabrication of aromatic sulfonated polymer composites has been the subject of continued study.
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Aliphatic polymers such as polyvinyl alcohol (PVA) are another option for exploring the composite
membranes for DMFC. PVA is a semi-crystalline polymer well studied in the area of water/methanol
separation. PVA has good methanol resistance which is a key point for DMFC electrolyte. However, it
is soluble in water due to its hydrophilicity, hence it should be stabilized using cross-linking agents
such as glutaraldehyde (GA) (Figure 4).



Nanomaterials 2019, 9, 1292 4 of 30
Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 29 

 

 
Figure 4. Crosslinking of PVA using GA. 

Cross-linking of hydroxyl groups reduces the swelling and improves the stability of the 
membranes, but the mechanical properties and the proton conductivity of PVA needs considerable 
improvement, hence the fabrication of PVA-carbon composites are explored to make it more suitable 
electrolyte for DMFCs.  

2. Carbon Nanomaterials as Additives in PEMs 

Carbon nanomaterials, like CNTs, graphene and fullerene, were explored as reinforcing additive 
materials in PEMs due to their excellent mechanical stability and methanol-blocking characteristics. 
The high electronic conductivity of these materials is the bottleneck for their applications in PEMs, 
where it is detrimental. If the carbon filler fraction is too high, the level of electronic conductivity 
increases to the point where the membrane becomes an electronic conductor and loses its function as 
a PEM. For example, the literature reports 2–3 wt.% of CNTs in PEMs as the percolation threshold 
leading to excessive electronic conductivity of the membrane [24]. However, it varies depending 
upon the polymer matrix, intrinsic electrical properties of host matrix and structural orientation in 
the polymer matrix [25]. Another key point is their dispersion in the polymer matrix since 
heterogeneously-dispersed fillers often lead to mechanical instability and poor transport properties. 
Hence, the surface functionalization of the filers is employed to achieve their homogeneous 
distribution, wherein interfacial interactions between the functional groups of filler and polymer play 
a vital role.  

There are few recent review articles centred on the use of carbonaceous materials in fuel cells, 
with particular emphasis on GO [26–28]. For example, the attempt of You et al. to review the 
application of CNTs, mesoporous carbon, carbon black, carbon nanofibers, aerogel, nanocoils, 
graphene and fullerene as additives in electrodes and membranes for fuel cells is necessarily too 
general [26]. On the contrary, the Panday et al. [27] and Farooqui et al. [28] reviews are restricted to 
the application of GO fillers.  

With a very different perspective, our text presents a comparative analysis of various kinds of 
nanocarbon-based fillers for polymer electrolyte membranes for application in DMFC, emphasizing 
their effect on the proton conductivity, methanol permeability and mechanical stability of the 
membranes. Such comprehensive coverage is not found in the literature until this date. The review is 
based on an original and extensive selection of literature work on carbon nanomaterial composite 
membranes listed, which is given in Table 1.  

 

Figure 4. Crosslinking of PVA using GA.

Cross-linking of hydroxyl groups reduces the swelling and improves the stability of the membranes,
but the mechanical properties and the proton conductivity of PVA needs considerable improvement,
hence the fabrication of PVA-carbon composites are explored to make it more suitable electrolyte
for DMFCs.

2. Carbon Nanomaterials as Additives in PEMs

Carbon nanomaterials, like CNTs, graphene and fullerene, were explored as reinforcing additive
materials in PEMs due to their excellent mechanical stability and methanol-blocking characteristics.
The high electronic conductivity of these materials is the bottleneck for their applications in PEMs, where
it is detrimental. If the carbon filler fraction is too high, the level of electronic conductivity increases
to the point where the membrane becomes an electronic conductor and loses its function as a PEM.
For example, the literature reports 2–3 wt.% of CNTs in PEMs as the percolation threshold leading to
excessive electronic conductivity of the membrane [24]. However, it varies depending upon the polymer
matrix, intrinsic electrical properties of host matrix and structural orientation in the polymer matrix [25].
Another key point is their dispersion in the polymer matrix since heterogeneously-dispersed fillers
often lead to mechanical instability and poor transport properties. Hence, the surface functionalization
of the filers is employed to achieve their homogeneous distribution, wherein interfacial interactions
between the functional groups of filler and polymer play a vital role.

There are few recent review articles centred on the use of carbonaceous materials in fuel cells, with
particular emphasis on GO [26–28]. For example, the attempt of You et al. to review the application of
CNTs, mesoporous carbon, carbon black, carbon nanofibers, aerogel, nanocoils, graphene and fullerene
as additives in electrodes and membranes for fuel cells is necessarily too general [26]. On the contrary,
the Panday et al. [27] and Farooqui et al. [28] reviews are restricted to the application of GO fillers.

With a very different perspective, our text presents a comparative analysis of various kinds of
nanocarbon-based fillers for polymer electrolyte membranes for application in DMFC, emphasizing their
effect on the proton conductivity, methanol permeability and mechanical stability of the membranes.
Such comprehensive coverage is not found in the literature until this date. The review is based on
an original and extensive selection of literature work on carbon nanomaterial composite membranes
listed, which is given in Table 1.
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Table 1. Summary of properties of polymer electrolytes reported in the literature using carbon
nanomaterials as additives.

Polymer
Matrix Carbon Material

Additive
Loading

wt.%

Proton
Conductivity
(mS cm−1)

Methanol
Permeability

(×10−7 cm2 s−1)
Temp. (◦C) Ref.

Nafion® Im-CNT 0.5 150 10.0 80 [29]
Nafion® COOH-MWCNT 2 100 11.3 [30]
Nafion® Chitosan-CNTs 0.5 104 2.03 25 [31]
Nafion® PWA-SiO2-CNT 1 87 2.63 25 [32]
Nafion® Fe3O4-CNTs 0.1 85 5.4 60 [33]
Nafion® CeO2−ACNTs 2 96 NR 60 [34]

SPEI S-MWCNT 5 3.98 11.7 80 [35]
SPAS SO3CNT/PtRu/CNT 1 106 23.6 [36]
PVA s-MWNTs 20 75 0.03 60 [37]
PVA S-MWCNT/F-MMT 1 6 20 30 [38]
PVA S-MWCNT 1 4 41 30 [38]
PVA CNT-PDDA-HPW 2 9.4 4.02 30 [39]

SPESEKK sCNTs 1.5 4.3 0.96 30 [24]
SPEEK PSSA-CNTs 0.5 101 2.17 60 [40]
SPEEK fCNTs 0.5 43.1 1.68 30 [41]
SPEEK POH-CNTs 2 160 3.7 60 [42]
SPEEK SiO2-CNTs 1.5 77.8 0.72 RT [43]
SDBC S-CNTs 1.5 141.7 NR 90 [44]

Nafion® GO 1.5 23.5 9.1 35 [45]
Nafion® S-GO 0.5 100 19.9 60 [46]
Nafion® GO 0.5 40 7.92 30 [47]
Nafion® GO-silica 0.8 48.1 0.16 50 [48]
Nafion® S-GO NR 89.6 8.4 30 [49]
Nafion® Graphene NR 40 4.4 25 [50]
Nafion® GO NR 15 0.67 30 [51]
Nafion® PDDA-GO NR 25 13 25 [52]
SPEEK S-GO 8 162.6 13.6 65 [53]
SPEEK SDBS-GO 8 162.6 9.5 65 [54]
SPEEK S-GO 5 8.41 2.6 80 [55]
SPEEK Histidine-GO 4 69.4 1.35 25 [56]
SPEEK SH-GO 5 90.5 0.3 25 [57]

SF-SPEEK GO 5 111.90 NR 90 [58]
SPI SPS-GO 8 96.2 2.0 30 [59]
SPI PSS-GO 0.5 86 4.31 60 [60]
SPI SI-GO 10 113.8 10.52 30 [61]

SPES S-GO 5 58 1.5 30 [62]
SPES IL-GO 5 72.7 0.53 RT [63]
SPES S-GO 15 78.2 3.82 25 [64]
SPES GO 1 4.3 0.49 RT [65]
SPE S-GO 0.75 390 4.89 80 [66]
SPS S-GO 3 4.27 3.48 RT [67]

SPEN N-GO 1 104 1.74 20 [68]
SPEN S-N-GO NR 64 1.43 20 [69]

SPAEN CNT-GO NR 119.7 2.0 20 [70]
SPVdF-co-HFP S-GO 0.7 5.5 1.8 30 [71]

PVA GO 1.5 13.5 2.0 35 [72]
PVA Fe3O4/S-GO 5 64 0.45 30 [73]

GO paper 54.2 2.4 65 [74]
Holey GO paper 68.4 145.5 65 [74]
SDBS-GO paper 68.5 4.4 65 [74]

Holey SDBS Holey GO paper 91.8 35.4 65 [74]
GO paper 4.9 0.16 30 [75]

SPEEK S-fullerene 0.5 96 2.4 60 [76]
Nafion® S-fullerene 1 97 8.5 60 [77]
SPEEK SCNF 1 128 5.02 60 [78]
SPPEK SGNF 0.5 85 4.5 60 [79]

Nafion® MC 1 75 9.8 30 [80]
Nafion® NCD 0.5 21 0.12 40 [81]

NR: Not reported.
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Among the carbon materials, graphene oxide and carbon nanotubes have been given greater
attention according to the analysis of bibliometric data from last ten years depicted in Figure 5. This
justifies the relative coverage given to each type of filler in the following sections.
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2.1. Carbon Nanotubes as Additives for PEMs in DMFC

CNTs are considered to be promising additive material due to their unique structural and physical
properties. CNTs form tubular structures with a diameter of nanometre-scale and length in the
micrometre range. CNTs exist in different forms namely single-walled carbon nanotubes (SWCNTs)
and multi-walled carbon nanotubes (MWCNT) [82]. SWCNTs are more ordered structures and
with superior flexibility and electronic conductivity than MWCNTS. As far as PEMs are concerned,
MWCNTs are preferred over SWCNTs due to lower electronic conductivity and high surface defects,
which are essential for surface modification. The tensile strength of CNTs is around 63 GPa, which
is 50 fold higher than steel, while Young’s modulus is five-fold higher [82]. In addition to these
remarkable mechanical properties, high surface area boost CNTs as reinforcing material in polymer
matrices [34,44,83] CNTs are chosen as additive mainly to address the methanol permeability and
mechanical strength issues of PEMs in DMFCs. However, the homogeneous dispersion of CNTs is
difficult as they are held by Van der Waals forces, which limit the interfacial interactions with the
polymer matrix [84]. To tackle these issues, surface functionalization of CNTs has been performed with
various functional groups such as silica or chitosan, but mostly acids (sulfonic acid, phosphonic acid,
carboxylic acid and heteropoly acids) [24,36,84,85]. Figure 6 schematizes these different approaches for
the surface functionalization, which are detailed in the following subsections.
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(h) phosphonic acid groups.

2.1.1. PFSA-CNT Composite PEMs

Among PFSA ionomers, Nafion® is the most explored PEM in DMFC. Composite PEMs of
Nafion® fabricated using functionalized CNTs solve one of its most important drawback, which is the
high methanol permeability.

Thomassin et al. used CNTs functionalized with carboxylic acid to prepare Nafion® composites by
melt-extrusion process [30]. These –COOH-CNTs could decrease the methanol permeability up to 60%
and improve the mechanical stability. On the other hand, the ionic conductivity could not be improved
much as these carboxylic acids are less acidic than the sulfonic acid groups of Nafion® and thus,
the dissociation of protons is difficult. However, the overall selectivity of the Nafion®-COOH-CNT
membrane is improved by a factor of 2, which is comparable or better than the results obtained for
other composite membranes containing, e.g., silica particles (a 1.5 times increase) [86,87], a combination
of zirconium oxide and zirconium phosphate (a 2.3 times increase), [88] and palladium nanoparticles
(a 1.5 times increase) [89].

Proton conduction in Nafion® is assisted by water molecules solvating the sulfonic acid groups,
forming well-connected proton-conducting aqueous ionic domains, hence the membrane must be
sufficiently humidified in order to achieve appropriate proton conduction levels. This leads to limited
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temperature operation (<80 ◦C) wherein CO poisoning occurs reducing the utilization of the Pt
catalyst. In this context, materials containing imidazole, such as ionic liquids, are explored for fuel
cell applications as they contain nitrogen groups, which are capable of forming hydrogen bonding
networks to assist proton conduction even under dehydrated conditions. Imidazole-functionalized
materials are appropriate to use as reinforcing additives in PEMs as they localize proton carriers to
form well-defined ionic clusters (Figure 7). In this regard, MWCNTs functionalized with imidazole
can be used as a nano-additive to Nafion® [29]. The homogeneous dispersion of these Im-CNTs
in Nafion® can be explained on the basis of charge repulsions wherein imidazole grafting reduces
the negative charge of –COOH-CNTs and convert CNTs into a positively-charged forming stable
dispersion. The imidazole group promotes the proton transport via Grötthus type mechanism by
forming the hydrogen bonding network between the nitrogen moieties and the sulfonic acid groups.
This is beneficial for high temperature operation of Nafion®membrane, On the other hand, a significant
decrease in methanol permeability is also observed for Nafion®-Im-MWCNTs composites due to the
change in nano-channel formation by the interactions between basic moiety of Im-CNTs and sulfonate
groups of Nafion®.
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Chitosan-functionalized CNTs have also been explored to prepare Nafion® composite
membranes [31]. Chitosan, a natural linear polysaccharide (cationic), can interact non-covalently with
CNTs forming a stable dispersion while the hydrophobic groups of chitosan improve the interfacial
adhesion of CNTs [90]. When these chitosan-modified CNTs are dispersed in Nafion®, the cationic part
of chitosan interact with the anionic part of Nafion® forming well dispersed Nafion®-CNTs composites.
Moreover, the electrostatic interactions and hydrogen bonding between carboxyl functional groups
of chitosan and sulfonic acid groups of Nafion® constitute a percolated path for proton conduction.
This explains the enhanced conductivity of a Nafion® membrane loaded with 0.5 wt.% chi-CNTs in
comparison to the pure matrix (104 mS cm−1 vs. 86 mS cm−1), whereas the same loading of unmodified
CNTs lowers the conductivity (to 73 mS cm−1). Chitosan also leads to a reorganization of the Nafion®

nanomorphology reducing the size of the aqueous domains, which has direct effect on methanol
transport and the permeability of these membranes up to one order lower than the pristine Nafion®.
The durability of the membranes assessed in 5 M methanol solution by static (OCV) and dynamic (load
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of 200 mA cm−2) methods did not show an obvious drop in performance during ca. 100 h. However,
further investigation on lifetime of these composite membranes are essential as these test conditions
are indeed insufficient.

The modification of the surface of CNTs with silica (SiO2) nanoparticles is another approach to
successfully disperse CNTs in Nafion® and enhance its properties [32]. In spite of substantial reduction
in methanol permeability (from 2.25 × 10−6 cm2 s−1 to 3.12 × 10−7 cm2 s−1), Nafion®-SiO2-CNTs
composite membrane shows lower proton conductivity due to the disturbance in supramolecular
self-assembly of Nafion® [91]. To eliminate this problem, SiO2-CNTs further immobilized with
phosphotungstic acid (PWA) can actively participate in proton transport by interacting with hydrophilic
sulfonic acid groups of Nafion®. The conductivity of Nafion®-PWA-SiO2 composite is maintained on
par with pristine Nafion®, while the methanol permeability is further reduced (to 2.63 × 10−7 cm2 s−1).

2.1.2. Non-Fluorinated Polymer-CNTs Composites

Among non-fluorinated polymer, sulfonated polyether ether ketone (SPEEK) is relatively more
explored as PEM in DMFCs. Many attempts have been made to prepare composites of SPEEK for
DMFC using functionalized CNTs as reinforcing additives. Li Cui et al. fabricated composite poly
electrolytes of SPEEK using silica-coated CNTs [43]. The hydrophilic SiO2 layers on CNTs improve
the dispersion as well as the insulating characteristics of SiO2 minimize the risk of short-circuiting
even at higher loadings (5 wt.%). The composite membranes with SiO2-CNTs improve water uptake
while reducing the swelling in comparison to neat SPEEK membrane. The hygroscopic nature of
SiO2 coated layer on CNTs lead to improved water retention while the robust characteristics of CNTs
restrict the chain flexibility of SPEEK improving the dimensional stability. The results obtained for
SPEEK-SiO2-CNTs are similar to those obtained for Nafion®-SiO2-CNTs [32]. A significant decrement
in proton conductivity up to 50% is observed for 5 wt.% SPEEK-SiO2-CNTs due to reduced sulfonic
acid concentration, while the methanol permeability is lowered by one order of magnitude (3.42 × 10−7

to 4.22 × 10−8 cm2 s−1). This is attributed to the occupation of SiO2-CNTs in hydrophilic channels of
the PEM improving the tortuosity for methanol diffusion.

To sort out the issues related to low proton conductivity in this kind of composites, CNTs can
be functionalized with proton conducting functional groups such as sulfonic acid and phosphonic
acid [24,44]. These functional groups play a vital role in the proton conduction of on CNTs by the
reorganization of hydrogen bonds between the proton hopping sites. In the composite membranes, the
CNTs treated with sulfonic (S-CNTs) and phosphonic (P-CNTs) acid trigger a uniform distribution
of ionic clusters, which are relatively smaller than that of neat polymeric membrane. The uniform
and well-connected ionic clusters promote proton transfer up to 50% with S-CNTs and 166% with
P-CNTs, while the smaller ionic clusters offer a torturous path, thus reducing methanol permeability to
77% for S-CNTs and 40% for P-CNTs from its original value. Our recent study explored the use of
CNTs grafted with polystyrene sulfonic acid (PSSA) as an additive in SPEEK matrix to form composite
membranes [40]. PSSA is an amphiphilic polymer that will cause less damage to the tubular structure
of CNTs in comparison to strong acid treatments such as H2SO4. In addition, the hydrophobic
part of styrene form π-π interactions with CNTs, while the hydrophilic sulfonic acid groups impart
hydrophilicity leading to improved dispersion of CNTs by counteracting Van der Waals interactions
between the tubes. Incorporation of PSSA-CNTs in SPEEK and sulfonated poly(arylene sulfone) (SPAS)
has significant improvement in mechanical strength up to 43% and 460% respectively due to superior
mechanical properties of CNTs [36,40]. However, they improve proton conductivity only by 28% for
SPEEK and 13% for SPAS. These enhancements are low compared to other sulfonated CNTs composite
membranes, which may be due to lower functional group density on CNTs. Pt-Ru decorated CNTs
dispersed in SPAS matrix can also improve the performance of DMFC because Pt-Ru helps to oxidize
the methanol within the membrane while passing through it, thus preventing methanol crossover to
the cathode. The lifetime analysis of these composites, also performed by recording OCV as a function
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of time (up to four days), revealed improved OCV of the Pt-Ru-CNTs composites, whereas the neat
SPAS membrane shows a drop in OCV due to severe methanol crossover [36].

The orientation of CNTs in polymer matrices has a significant effect on membrane performance.
CNTs can be oriented by an applied electric or magnetic fields [92–94]. Swati Gahlot et al. prepared
composite membranes of SPEEK with electrically aligned CNTs functionalized with carboxylic and
sulfonic acid groups [41]. The electric field applied to the SPEEK/CNT mixture in dimethylacetamide
introduces a dipole moment due to the variation of the dielectric constant of SPEEK and CNTs, thus
leading to the alignment of the CNTs in the direction of the applied electric field (Figure 8). The vertical
alignment of tubes in the membrane together with their functional groups contributes to enhanced
proton conductivity up to 16% for C-CNTs and 88% for S-CNTs in comparison to pristine SPEEK. These
values are also ca. 30% higher than for randomly aligned S-CNTs, which is ascribed to the higher water
uptake in the pores created by the vertical alignment of S-CNTs in SPEEK.
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2.1.3. PVA-CNT Composite PEMs

PVA is one of the most explored low-cost PEMs, but the poor mechanical properties along with
low conductivity hinder many practical applications, namely DMFCs. To overcome these issues
functionalized CNTs such as S-CNTs or phosphotungstic acid-CNTs (PWA-CNTs) were used as
reinforcing materials in PVA. Two different methods have been suggested to sulfonate CNTs: (1) by
thermal decomposition of ammonium sulphate [38]; and (2) chemical functionalization by amino
methane sulfonic acid [37]. These two types of CNTs show distinct behaviour when incorporated in
PVA. The differences are explained on the basis of concentration of sulfonic acid functional groups
anchored on CNTs, which is much higher in the case of the chemical functionalization with amino
methane sulfonic acid. This is also reflected in the conductivity results, with the ammonium sulphate
approach leading to a marginal increment in conductivity, and the amino methane sulfonic acid
increasing the conductivity by almost 50% compared to neat PVA. On the other hand, both types of
CNTs contribute to reduced methanol permeability. Yinhui Li et al. reported immobilization of PWA
on CNTs using poly(diallyldimethylammonium chloride) (PDDA) to form PDDA-PWA-CNTs and is
used as a filler to PVA membranes [39]. It is reported that 2 wt.% of these PDDA-PWA-CNTs fillers
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improve the mechanical strength of PVA for about 270% while the swelling of the membrane is reduced
by 50%. On the other hand, the proton conductivity was improved from 4 mS cm−1 to 9.4 mS cm−1

due to well-distributed PDDA-PWA-CNTs forming a hydrated layer for facile proton transport.

2.2. Graphene Oxide as an Additive for PEMs in DMFCs

Another class of carbon material used as filler in PEMs is graphene oxide (GO). GO can be
derived by the exfoliation of graphite and subsequent oxidation. Graphene oxide contains carboxylic
acid groups and is readily dispersible in many solvents due to the hydrophilicity imparted by the
oxygen-rich functional groups [95–97]. GO has a thickness of a single atomic layer while the lateral
dimensions are in the order of few microns. The presence of carboxyl and hydroxyl functional groups
of GO and the ease of further functionalization with proton conducting groups like sulfonic acid, which
facilitate the proton transport is an added advantage. GO is known as an electronic insulator while its
proton conductivity is as high as 10−2 S cm−1, which makes GO as an attractive filler for PEMs [98].
GO is further functionalized to improve the properties and to use as nano-filler in PEMs, some of the
most common functionalization methods of GO are shown in Figure 9.
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Thanks to large surface area and electronic insulation properties of GO which enables its use as
nano-filler in ionomer membranes. The flexibility and compatibility of GO with the host polymer
matrix leads to significant improvement in the mechanical properties of the membranes [99]. Due to
the methanol impermeable nature of GO, it could effectively arrest the methanol crossover when used
as an additive in PEM. Unlike most of the inorganic material, GO can restrict the methanol crossover
without much compromise in proton conductivity as it has carboxylic acid groups and hydroxyl groups
which act as proton conductors.

2.2.1. PFSA-GO Composites

GO and its derivatives are identified as potential additives to control methanol crossover of
PFSA membranes such as Nafion®. There are many reports on the methods of fabrication of Nafion®

composites using GO and its derivatives, but most of them are based on the lab-scale solution cast
technique. Composite membranes prepared by this method using GO often show reduced methanol
crossover. The interactions between GO and Nafion® can be explained on the basis of their amphiphilic
nature, GO can interact with both hydrophobic backbone and pendent hydrophilic sulfonic acid groups
thus providing better compatibility and homogeneous distribution [47,95]. Incorporation of GO in
Nafion® reduces the methanol permeability with a slight compromise in proton conductivity. However,
the overall selectivity of the composite membranes is higher than pristine Nafion®. The reduction
in methanol permeability is attributed to the reduction of ionic cluster size of Nafion® with the
incorporation of GO [47]. The restricted methanol permeability for the composite membranes enables
them to operate at higher methanol concentration. For example, for 5 M methanol solution, methanol
permeability is predominantly higher than 1 M, but even at 5 M methanol, the composite membrane
shows peak power density of 71 mW cm−2 whereas Nafion®-112 shows a peak power density of
26 mW cm−2 [47].

The use of sulfonated GO (S-GO) fillers in Nafion® was also reported with the aim to minimize
the conductivity loss observed when using pure GO fillers [46]. This was achieved by treating GO with
a mixture of nitric acid and sulphuric acid using microwave, and then incorporating these particles into
the Nafion® matrix. It is apparent that, as for pure GO, S-GO also decreases the average dimension of
ionic cluster size, thus decreasing methanol transport. Proton transport, on the contrary, is improved
for the Nafion®-S-GO composite due to significant increment in water content bound to the sulfonic
acid groups. Another benefit from the S-GO filler, analogous to other fillers [30,100–102], is the
improvement of the dynamic mechanical storage modulus of the Nafion®-SGO composite membrane
in comparison with pristine Nafion® [103]. This enhanced mechanical stability enables the use of
thinner membranes, which have the advantage of lower resistance in fuel cell operation. The dynamic
mechanical analysis of these composite membranes also indicates the onset of long-range mobility
of the polymeric chains (the α-relaxation) at a temperature higher than the pristine membrane. The
storage modulus was 1.9 times higher and a 20 ◦C higher tan δ peak was observed for Nafion®-SGO
composites in comparison with pristine Nafion® membrane due to the large interfacial area between
S-GO and Nafion®. The authors also made fuel cell tests of a composite membrane with 0.05 wt.% of
S-GO in Nafion®, which yielded a 42 mW cm−2 at 0.4 V, whereas Nafion®-115 shows 32 mW cm−2

under similar conditions [103].
The change in the bi-continuous micro-structure was observed in Nafion® loaded with S-GO-SiO2

due to the compatibility of GO and the sulfonic acid groups of SGO-SiO2 [48]. It is noteworthy that at
0.5 wt.% loading of S-GO-SiO2 in Nafion®, the microstructure of Nafion® is aligned in non-uniform
fashion due to the interaction of sulfonic acid groups present in the nano-filler and polymer. At higher
loadings (0.8 wt.%), the compatibility of GO is dominant wherein aggregation of S-GO-SiO2 lowers the
concentration of sulfonic acid groups. In contrast to the observation on the simpler Nafion®-S-GO
composites, [47] the water uptake of Nafion®-S-GO-SiO2 membranes is greatly improved compared to
pristine Nafion® membrane due to the hygroscopic nature of SiO2. The Increased water content in
the membrane is suggested to explain the enhanced protonic conductivity of the Nafion®-SGO-SiO2
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composites. In addition, the ionic conductivity is influenced by the dimension and connectivity
between the sulfonic acid groups [104–106]. SGO-SiO2 improves the connection between sulfonic acid
groups thus providing continues path for proton conduction while GO sheets act as methanol barrier,
Figure 10 shows the schematic representation of Nafion-SGO-SiO2 membrane illustrating proton and
methanol transport.Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 29 
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On the other hand, membrane preparation method is also greatly influence the properties of
composite membranes. Casting on Petri dish is a lab-scale preparation method of such kind of
composite membranes. Up-scaling implies significantly different processing methodologies, which
may invalidate much of the conclusions drawn from simply casted membranes. The casting procedure
and removal of solvent has a significant effect on membrane properties via local reorganization of ionic
domains [45]. Nafion®-functionalized GO composite membranes prepared in two different casting
methods, i.e., solution cast on a Petri dish and casting using doctor blade has shown considerable
differences in their microstructures producing a drastic effect on solvent mobility (water and methanol)
in the membrane [107]. In the membranes prepared by casting on Petri dish, GO layers are oriented
orthogonally to the membrane surface and are capable of coordinating linear superstructures in
the hydrophobic domains. Whereas in the membranes prepared using a doctor’s blade, GO layers
are preferentially oriented parallel to the membrane surface. Due to this distinct orientation of
nano-fillers, the membrane exhibit a large difference in their water/methanol diffusion coefficients.
The nano-composite membranes prepared on the Petri dish show 50%/53% of water/methanol uptake
while these figures become 27%/31% for doctor blade method. On the other hand, the difference is
negligible for recast Nafion® membranes prepared in both the methods. The maximum power density
was observed for the membrane prepared in a Petri dish wherein water diffusion and retention of this
membrane offers lower resistance producing high current density. At higher temperatures (>100 ◦C)
higher tortuosity effects was observed for the membranes prepared using a doctor’s blade, offering
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lower methanol crossover, hence depending upon operating conditions of DMFC these preparative
methods (Petri dish/doctor blade) can be chosen for better performance.

The other methods to prepare Nafion®-GO composites is lamination of GO paper on commercial
Nafion® membrane through transfer printing followed by hot press [72]. The thickness of the GO
paper can be optimized based on the requirements. GO laminated Nafion 115 membrane (Figure 11)
show 70% depression in methanol permeability and a decrement of 22% in proton conductivity. These
membranes are effective in arresting the methanol transport compared to the membranes prepared by
solution cast method. However, laminated membranes show a larger reduction in proton conductivity
compared to GO incorporated membranes due to the internal resistance between the layers.
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2.2.2. SPEEK-GO Composite PEMs

As stated above, SPEEK is considered as best alternative polymer to Nafion® due to its reduced
methanol permeability and the presence of narrow and more branched ionic channels [23,108].
However, its mechanical properties are to be fine-tuned for its application as PEM in DMFCs as it swells
significantly at a high sulfonation level [109]. Researchers have explored various routes to overcome
this issue by taking properties of GO into an advantage and forming the composite membranes with
SPEEK. Some of the important reports are discussed below.

GO was functionalized with SDBS wherein it is adsorbed on the surface of GO through π-π
and hydrophobic interactions. Incorporation of SDBS-GO in SPEEK reduces the dimension of the
ionic cluster from 1.96 to 1.76 nm, thus mitigating the methanol permeability [54]. The reduction
in ionic cluster is mainly associated with increased interactions of benzene rings in SDBS and
hydrophobic backbone and sulfonic acid groups of SDBS and hydrophilic clusters of SPEEK. In
addition, proton conductivity is enhanced by the incorporation of GO/SDBS-GO. Unlike Nafion®-GO
composite membranes, wherein incorporation of GO reduces the proton conductivity, enhanced proton
conductivity is observed for SPEEK-GO composite membranes, as the incorporation of GO improves
the inter-connectivity between the ionic channels. This distinct behaviour is also explained based on the
microstructure of Nafion® and SPEEK. Compared to Nafion®, SPEEK ionic channels are narrow and
more branched and not well connected (dead-end channels) [108]. It is worth-noting that incorporation
of GO (5 wt.%) in SPEEK enhances the proton conductivity from 39.5 mS cm−1 to 53.4 mS cm−1, but
incorporation of SDBS-GO (the same 5 wt.%) further enhances proton conductivity to 79.4 mS cm−1.
This effect is ascribed to the additional sulfonic acid groups present in SDBS which enhance not only
the connectivity between the ionic channels but also create additional channels for proton hopping.

Another method of sulfonating GO is by using propane sultone. Unlike in SDBS-GO, in this case,
there is a chemical bond between GO and sulfonic acid [55]. By using this sulfonated GO as an additive
in SPEEK there are certain differences in properties of the composite membranes in comparison with
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SPEEK-SDBS-GO attributed to the difference in the functionalization method. SPEEK-SGO composite
membrane shows a maximum proton conductivity of 85 mS cm−1. However, beyond the optimum
loading, proton conductivity decreases due to the blockage of proton-conducting channels by forming
the agglomerates of GO/SGO. The best selectivity was seen for SPEEK-SGO (7 wt.%), wherein the
highest proton conductivity and lower methanol permeability were observed.

In addition, GO was also sulfonated using benzene sulfonic acid. This is a two-step reaction, in the
first step, sulfanilic acid is treated with hydrochloric acid and sodium nitrate to form 4-benzenediazonim
salt. In the second step, the formed precursor is then treated with GO to form sulfonic acid functionalized
GO through new C-C bond between sp2 carbon of GO and sp2 carbon of benzene sulfonic acid. When
this S-GO is used as additive in SPEEK, as reported in the literature, SGO improves the homogeneous
dispersion of GO in SPEEK due to enhanced compatibility between sulfonated groups of GO and
SPEEK. Further, the improvement in mechanical properties is observed as a result of strong interfacial
interactions between graphitic planes of S-GO and SPEEK matrix. However, GO being a sheet-like
structure with large aspect ratio its orientation in the membrane matrix is critical in influencing the
properties of composite membranes especially in terms of proton transport. When the basal planes of
GO are oriented parallel to the plane of the membrane may act as a barrier for proton transport in
the membrane. The introduction of holes in GO sheet is a promising approach that can construct the
new pathway for proton transport, Jiang et al. used different types of GOs viz; GO, S-GO holy-GO
(H-GO) sulfonated holy GO (SH-GO) in SPEEK metrics and observed the properties [57]. H-GO and
SH-GO shows superior proton conductivity (71 mS cm−1, 136 mS cm−1 respectively) than GO and
S-GO (56 mS cm−1, 92 mS cm−1, respectively) proving that H-GO sheets are beneficial towards proton
transport on the other hand methanol diffusion also improved for H-GOs but still the overall selectivity
is higher for H-GO composites.

Our recent study explored the use of functionalized GO as a potential additive in SPEEK
membranes [110]. Unlike previous reports, GO was functionalized with amino acid wherein proton
transport occurs via amine groups and carboxylic acid groups. On the other hand, amino acid forms
electrostatic interactions with water molecules and held between –NH2

+– and –COO− groups. These
bridged water molecules form a hydration layer in the composite membrane acting as a vehicle for
proton transport [111]. Thus, a small quantity of amino acid functionalized GO (1 wt.% in relation to
SPEEK) brings significant improvement in proton conductivity. Coming to the methanol permeability,
there is a 40% reduction in methanol permeability of this composite membrane compared to pristine
SPEEK, this should be attributed to the barrier effect of GO.

2.2.3. Sulfonated Poly Imide-GO Composites

Sulfonated polyimide (SPI) is also one of the most explored PEMs for DMFCs due to its hydrolytic
stability and action as a potential methanol barrier and are resistant to nucleophilic attack due
to the presence of naphthalenic moieties [61,112–114]. The distinct physico-chemical properties,
such as structural anisotropy, the partial separation between their hydrophobic and hydrophilic
domains, the constant hydration level (λ) over a wide range of ion content, and a multi-scale foliated
structure packed along the membrane thickness are beneficial, resulting in performance comparable to
Nafion®. However, imide rings are sensitive to hydrolysis under hydrated conditions resulting in
poor water/methanol stability. To address the stability concern and proton conductivity, functionalized
GOs such as sulfonated propyl silane GO (SPSGO) [59] or polystyrene sulfonic acid GO (PSSGO) [60]
have been explored as potential additives to SPI. Incorporation of SPSGO in SPI improves the bound
water content due to the formation of additional ionic clusters from SPSGO (the authors report
λ = 15.1 for SPI with 8 wt.% SPSGO, and λ = 9.82 for pure SPI. Due to the improved water retention
capacity of SPI-SPSGO membranes, it is possible to operate at elevated temperatures. A DMFC test
of SPI-SPSGO membranes at 130 ◦C yielded a peak power density of 100 mW cm−2, confirming the
high temperature operation capability. The stability of the composite membrane is evaluated in a
single-cell by measuring the current density of the cell operating at 0.6 V to study the degradation
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of membrane due to hydrolysis, radical attack. However, the test has been conducted only for 70 h
and the observed marginal performance drop, the long-term stability (life-time) of this membrane
should be as adequately studied as it is for PEMs in DMFCs. In addition to this, Chi-Yung Tseng et al.
prepared a composite membrane of SPI and PSSGO (PSSA grafted on GO) with an improved sulfonic
acid content of the membrane [60]. This improves the ionic conductivity and the GO acts as a barrier
for methanol transport through the PEM, leading to better selectivity for SPI-PSS-GO membranes than
commercial Nafion-117 (Figure 12).Nanomaterials 2019, 9, x FOR PEER REVIEW 16 of 29 
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2.2.4. Sulfonated Poly Sulfones-GO Composites

Nanocomposite membranes of sulfonated polysulfone are explored with varies types of GO to
resolve the issues related to methanol permeability, mechanical stability and swelling at high degrees
of sulfonation [62–65]. The loading of GO can be optimized on the basis of functional groups present
on the surface of GO. For example, incorporation of more than 1 wt.% pure GO in sulfonated polyether
sulfone (SPES) shows a blocking effect on proton conductivity, whereas sulfonated GO and ionic liquid
functionalized GO composites can be prepared up to 5 wt.% of loading. This is due to the formation
of interfacial interactions between the nano-filler and SPES. Further, the dispersion of GO is more
likely to be a physical blending whereas, in the case of functionalized GO, there are inherent interfacial
interactions between functional groups and sulfonic acid groups of SPES. Figure 13 illustrates these
interactions between SPES and ionic liquid functionalized GO.

These types of electrostatic interactions are also observed in SPES-SGO composites wherein
hydrogen bonding networks are formed between sulfonic acid groups of SGO and SPES [64]. Proton
conductivity is also greatly influenced by the nature of functional groups, as the mechanism of ionic
conduction in each of them is very different. Conversely, the mechanism of methanol permeability is
almost similar as it is mainly dominated by the blocking effect of GO. It is observed that the composite
membranes of SPES show a raise in selectivity up to 33% with simple GO, 46% with sulfonated GO and
42% with ionic liquid functionalized GO in comparison to their pristine membranes. The difference is
due to the functional groups attached on the surface of GO and their interaction with the polymer
matrix. Sulfonic acid groups generally aggregated to form clusters due to electrostatic and or acid–base
interactions between the nano-filler and SPES polymer. With the addition of GO/functionalized GO
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there is an obvious increment in d-spacing resulting in the enlargement of ionic clusters favouring
proton transport [64].
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2.2.5. PVA-GO Composite PEMs

As described above, PVA is widely studied for DMFC application due to its ease of processing
and water-methanol separation characteristics. However, its poor mechanical stability and high
swelling hamper its use as an electrolyte in DMFCs [90–92,115–117]. In this context, GO is identified
as potential nano-filler to improve the properties of PVA membranes, GO-incorporated PVA films
show lower water uptake than pure PVA membrane due to the interaction of carboxylic groups of GO
with the hydroxyl groups of PVA. In addition, methanol permeability also followed the similar trend
wherein the methanol permeability of 1.5 wt.% GO incorporated PVA is 64% lower than for a pure PVA
membrane [72]. Another report on PVA-GO composite membrane describes the preparation of iron
oxide deposited sulfonated graphene oxide (Fe3O4-SGO) incorporated in PVA [73]. In this study, the
composite membranes were prepared by applying the external magnetic field to the PVA-Fe3O4-SGO
composite solution while forming the membrane. The applied magnetic field enables the orientation
of SGO nano-sheets through the plane of the membranes (Figure 14). This perpendicular orientation of
SGO sheets in the membrane provide facile proton transport by forming wider ionic channels but, On
the other hand, it also increases the methanol permeability in comparison with the randomly oriented
SGO composites membranes. However, the overall selectivity is higher for the former and shows a
DMFC power output 23% higher than the latter.
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permission from American Chemical Society, 2015.

2.2.6. GO Free-Standing Membranes

Apart from composite membranes of GO, few reports are available on the fabrication of GO paper
and its application as PEM in DMFCs [74,75]. The underlying design principle benefits from the intrinsic
low electronic conductivity of GO, which can be functionalized with acidic groups on the surface
to enable ion conduction while maintaining the methanol impermeable characteristics [118–120].
Generally, these GO membranes are prepared by vacuum filtration of GO colloidal dispersion
(Figure 15). The performance of these type of membranes mainly depends on the flake size of GO.
Abhilash Paneri et al. observed a linear relationship between flake size and methanol permeability
whereas proton conductivity is not much altered with varying flake size. The stability of GO
membranes is higher than Nafion® even at methanol concentrations as high as 10 M [75,121–123].
Zhongqing Jiang et al. reported a series of GO papers namely GO, HGO, SDBS-GO and SDBS-HGO
for air-breathing DMFCs [74]. As explained above, GO paper shows good methanol resistant behavior
with reasonable proton conductivity. However, the electrochemical performance of GO paper is further
improved by altering its microstructure by fabricating HGO and functionalized GO. These HGO,
SDBS-GO and SDBS-HGO membranes show improved DMFC performance compared to GO paper.
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One highlights the high performance of thee SDBS-HGO-based composite membrane, which shows
23% higher values than Nafion-112. Such impressive enhancement is further verified by the stability
test under constant load of 50 mA cm−2 where SDBS-HGO shows higher stability than Nafion-112 and,
thus, better lifetime can be expected for these types of GO papers.
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2.3. PEMs with Other Carbon Nanomaterials

Unlike CNTs and GO, fullerene is not well explored as an additive for PEMs due to its bulky
nature and lack of functionalization routes to disperse it in the polymer matrix. However, in spite of
all these, few of the research groups have studied the effect of fullerene as an additive for PEMs by
considering its advantages like high electron affinity, high volumetric density of the surface functional
group and radical scavenging properties along with its high thermo-mechanical properties [124]. Saga
et al. prepared nanocomposite membrane of sulfonated polystyrene with fullerene as additive and
studied its properties in terms of mechanical and chemical stability, methanol permeability and proton
conductivity. It is observed that fullerene acts as an effective barrier for methanol transport and improves
chemical stability due to its radical scavenging property, wherein hydroxyl (•OH) and hydroperoxyl
(•OOH) radicals are trapped by fullerene produced during DMFC operation causing membrane
degradation. On the other hand, the mechanical stability and proton conductivity of the membrane
are not improved due to the poor compatibility and lack of ion-conducting groups in fullerene [125].
Recently we explored a new strategy to functionalize fullerene with 4-benzene diazonium sulfonic
acid (Figure 16a) to use as a nano-additive in PEMs. This sulfonation route of fullerene improves its
dispersion and compatibility in polymer matrices and forms proton-conducting sites. Nanocomposite
membranes prepared by dispersing S-fullerene in SPEEK and Nafion® polymersdisplay improved
stability in methanol environment (Figure 16b), which is attributed to its better methanol-tolerant
characteristics [76,77].
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The optimized SPEEK-Sfu (0.5 wt.%) membrane shows a peak power density of 103 mW cm−2,
which is 44% higher than pristine SPEEK shown in Figure 17a. In addition to its better DMFC power
output, the optimized S-fullerene composite membranes also show better oxidative stability than
pristine SPEEK due to the radical scavenging property of fullerene as shown in Figure 17b [76].
The effect of functionalized fullerene (FF) as an additive in Nafion® membrane in DMFC is also studied
wherein controlling methanol permeability is one of the major challenges due to the larger ionic cluster
of Nafion® [77].
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Figure 17. (a) DMFC performance representing steady-state cell polarization for Nafion-117, pristine
SPEEK and SPEEK-S-fullerene composite membranes at 60 ◦C and (b) oxidative stability for membranes.
Reproduced from [76], with permission from Elsevier, 2016.

The Nafion®-Sfu composite membrane shows methanol permeability reduced up to 30% with 2 M
methanol, 23% with 3 M methanol and 38% with 5 M methanol in comparison with pristine Nafion®

membrane. This is attributed to the occupation of the ionic cluster by S-fullerene thereby increasing
the tortuosity of the pathways for methanol transport. The reduction in methanol permeability is
replicated in the power density curves shown in Figure 18, wherein Nafion®-S-fullerene shows higher
performance at all concentrations of methanol in comparison with pristine Nafion®.
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Figure 18. DMFC polarization for (a) recast Nafion® and (b) Nafion®-FF (1 wt.%) at different methanol
concentrations at 60 ◦C (anode: Pt-Ru/C, 2 mg cm−2 and cathode: Pt/C, 2 mg cm−2. Anode fuel: 2 M
methanol 2 mL min−1, cathode: oxygen 300 mL min−1). Reproduced from [77], with permission from
Elsevier, 2016.

In addition to the above materials, other carbon nanomaterials, like carbon black (CB) and graphite
nanofibres (GNF), are also studied as additives in PEMs. For example, Y.S. Ye et al. [126] studied
the effect of ionic liquid functionalized carbon black as an additive in sulfonated polyimide matrix.
The composite membranes are characterized for through-plane and in-plane ionic conductivity. It
is found that addition of a small amount of functionalized CB (0.2 wt.%) enhances the conductivity
significantly due to the acid-base interactions between imidazole groups on the surface of CB and
sulfonic acid groups of the polymer. In-plane activation energy was reduced from 44 kJ mol−1 to
38 kJ mol−1 while the through-plane activation energy was reduced from 46 kJ mol−1 to 31 kJ mol−1

indicating that addition of functionalized CB to polymer matrix in an appropriate quantity can greatly
improve the transport properties. Xupo Liu et al. explored the synthesis and sulfonation of carbon
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nanofibres (CNFs) and its use as additives in SPEEK as PEM in DMFCs [78]. These membranes show
higher proton conductivity compared to pristine membrane due to their morphological difference.
Figure 19a,b shows AFM images for the membranes wherein composite membrane show good phase
separation between the hydrophobic backbone and self-aggregated hydrophilic regions resulting
in facile proton transport. In addition to this, the composite membrane show reduced methanol
permeability as low as 5.02 × 10−7 cm2 s−1 leading to improved electrochemical selectivity.
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Our recent reports explored the effect of sulfonated graphite nanofibres (SGNF) as an additive
in sulfonated poly(phthalalizone ether ketone) (SPPEK) matrix [77]. The composite membrane show
superior properties in terms of proton conductivity and mechanical stability. Methanol permeability
for the membranes is greatly reduced due to the incorporation of SGNF. The optimized composite
membrane (SPPEK-SGNF (0.5 wt.%)) show a peak power density of 115 mW cm−2 in comparison with
pristine SPPEK, which shows 38 mW cm−2. The methanol crossover current density through the MEAs
comprising pristine SPPEK and SPPEK-SGNF was measured by linear sweep voltammetry (LSV) after
50 h OCV operation. It is found that pristine SPPEK shows a two-fold increase in crossover current
density with time, whereas the composite membrane shows a marginal increment in the crossover
current density suggesting its methanol-blocking characteristic and greater stability of the composite
membranes under DMFC operating conditions.

3. Conclusions

Carbon nanomaterials have created a significant impact on the development of polymer electrolytes
for DMFCs. The performance of composite membrane electrolyte is influenced by the choice of carbon
nanomaterial, i.e., graphene oxide (two-dimensional), CNTs, CNF/GNF (uni-dimensional) and fullerene.
Structural orientation and composition of these carbon materials in the membrane matrix has a great
impact on the properties of membranes. Surface functionalization for these materials impart the
hydrophilic nature and fine-tunes its conductivity to provide better interfacial interactions with
the polymer matrices. These functional groups enable the facile ion transport improving the ionic
conductivity of the composite membranes, hence, the carbon structure and functionalization methods
should be carefully chosen for the optimum cell performance. For Nafion® membranes GO is the
most suitable nano-filler wherein mitigation of methanol permeability has prime importance, the
sheet-like structure is more effective than the tubular structure in arresting the fuel permeability, hence,
GO is preferentially chosen to prepare Nafion® composite membranes, whereas, for hydrocarbon
polymers, functionalized CNTs are appropriate fillers wherein improvement in ionic conductivity and
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mechanical strength are necessary. Hydrocarbon PEMs have significantly lower methanol permeability
than Nafion®, hence their proton conductivity and mechanical properties should be raised to realize
their commercial use. CNTs are appropriate fillers to improve the mechanical stability but, again, the
proton conductivity is another limitation which can be eliminated by functionalizing the nano-filler
with proton-conducting groups.

4. Future Prospects

Carbon nanomaterials have proved to be promising reinforcing materials in PEMs for fuel cell
technology in which carbon composites have recently emerged as promising materials. By the proper
tuning of their properties, and adequate use of carbon fillers in PEMs, they can provide solutions
for most of the current limitations in PEMs and help in advancing the fuel cell technology to be
available for day-to-day utilization. On the other hand, one of the key issues is that the lifetime of these
carbon-nanocomposites is not adequately addressed in the literature so far, and stability tests are hardly
carried out up to a few hundred hours. However, for commercial DMFC the expected lifetime is much
higher, hence future studies need to clarify this point to progress carbon-polymer nanocomposite PEMs
for DMFCs. Nevertheless, carbon nanofillers are promising materials in many other technologies, such
as water filtration, desalination and flow batteries. However, large-scale, cost-effective production is the
key challenge, in addition to their dispersion, hence adequate investigations should be carried out in
terms of low-cost production and improved dispersion to extend their uses to numerous technologies.
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Abbreviation

PEM Polymer electrolyte membrane
MEA Membrane electrode assembly
DMFC Direct methanol fuel cells
SWCNT single-wall carbon nanotubes
MWCNT Multi-wall Carbon nanotube
GO Graphene oxide
PFSA Perfluorosulfonic acid
SPEEK Sulfonated poly(ether ether ketone)
SFMC Sulfonated fluorinated multi-block copolymer
SDBC Sulfonated diblock copolymer
PES Poly(ether sulfone)
PEI poly(ether imide)
PVA Polyvinyl alcohol
PEN poly ether nitrile
DS Degree of sulfonation
GA Glutaraldehyde
PWA Phosphotungstic acid
PDDA poly(diallyldimethylammonium chloride)
PSSA poly(styrene sulfonic acid)
SDBS Sulfonated dodecyl benzene sulfonate
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IL Ionic liquid
CNF Carbon nanofibre
MC Mesoporous carbon
OCV Open circuit voltage
NCD Nafion modified carbon dots
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