

Supplementary Materials

Article

An Electrochemical Aptasensor for Pb²⁺ Detection Based on Metal–Organic-Framework-Derived Hybrid Carbon

Jina Ding ^{1,2}, Dongwei Zhang ^{1,2}, Yang Liu ^{1,2}, Xuejia Zhan ^{1,2}, Yitong Lu ^{1,2}, Pei Zhou ^{1,2*} and Dan Zhang ^{1,2}

- ¹ School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; jnding@sjtu.edu.cn (J.D.); Donaghy-Zhang@sjtu.edu.cn (D.Z.); Kimi1201@sjtu.edu.cn (Y.L.); xjzhan@sjtu.edu.cn (X.Z.); ytlu@sjtu.edu.cn (Y.L.); zhdsjtu@sjtu.edu.cn (D.Z.)
- ² Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Jiao Tong University, Shanghai 200240, China
- * Correspondence: zhoupei@sjtu.edu.cn; Tel.: 86-02134205762

Received: 26 November 2020; Accepted: 18 December 2020; Published: date

S1 Synthesis of ZIF8 and ZIF67

For the synthesis of ZIF-8, two solutions were first prepared by dissolving 0.894 g of $Zn(NO3)_{2}$ ·6H₂O in 30 mL of methanol and 0.984 g of 2-methylimidazole (2-MeIm) in 30 mL of methanol, respectively. Then, the solution of 2-MeIm was quickly poured into the solution of $Zn(NO_3)_{2}$ ·6H₂O, and the mixture solution was stirred for 24 h at room temperature. Lastly, the solution was centrifuged-washed five times with methanol and dried under vacuum at 60 °C for 12 h. ZIF-67 was synthesized with the same procedure of ZIF-8 except for the use of 0.873 g Co(NO₃)₂·6H₂O as metal precursor.

S2 Synthesis of ZIF8@ZIF67 and CZIFs Material

In a typical run, 100 mg of ZIF-8 polyhedrons as the seeds were dispersed in 30 mL of methanol. Then 10 mL, 32.8 mg·mL⁻¹ methanol solution and 150 mg of Co(NO₃)₂·6H₂O were added into the suspension of ZIF-8 polyhedrons under magnetic stirring with 300 rpm. After stirring for 24 h, the ZIF-8@ZIF-67 core-shell particle was centrifuged-washed five times at 8000 rpm with methanol and dried under vacuum at 60 °C for 12 h. The as-prepared ZIF-8@ZIF-67 particles were annealed at 800 °C for 5 h under an argon gas flow with a heating rate of 10 °C/min, and the yielding black powder was moved to a 50 mL centrifuge tube and then added 10 mL 0.5 M H₂SO₄ solution with a water bath at at 80 °C for 12 h to remove the unstable metal species. The black powder was centrifuged with 8000 rpm and washed three times by ultrapure water and then dried under vacuum at 60 °C for 6 h.

S3 SEM Images of ZIF-8 and ZIF-67

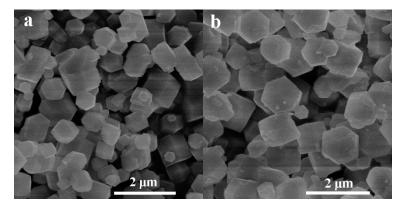
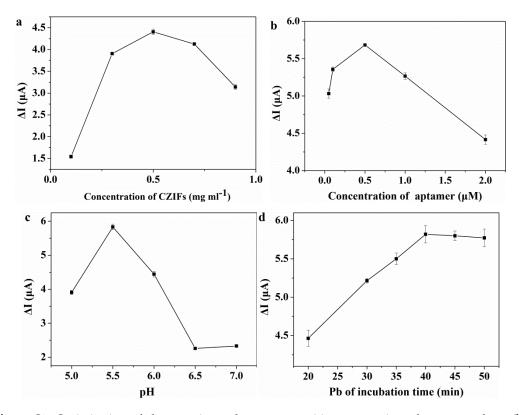



Figure S1. SEM images of (a) ZIF-8 and (b) ZIF-67.

S4 Optimization of Experimental Conditions

As illustrated in Figure S4a, with the increase of the concentration of CZIFs from 0.25 to 1.0 mg·mL⁻¹, the Δ I reached the maximum at 0.5 mg·mL⁻¹, indicating that 0.5 mg·mL⁻¹ of CZIFs was sufficient for the reaction. Therefore, 0.5 mg·mL⁻¹ was selected as the suitable concentration of CZIFs material. The different concentrations of aptamer was optimized and the Δ I got the maximum value at 0.5 μ M (Figure S4b). Therefore, 5 μ M was selected as the suitable aptamer concentration. As shown in Figure S4c, the pH of buffer solution was optimized. With the increased the concentration of pH, the Δ I reached the maximum at 5.5, indicating that pH 5.5 was the most suitable in the below experiments. As shown in Figure S4d, above 40 mins, the Δ I signal almost kept invariable, suggesting that 40 mins was suitable as the incubating time of aptasensor and Pb²⁺. Hence, the incubating 40 mins was adopted in the following work.

Figure S2. Optimization of the experimental parameters: (**a**) concentration of porous carbon, (**b**) concentration of aptamer, (**c**) pH of buffer solution, (**d**) different incubation time on aptasensor with Pb²⁺.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).