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Table S1. Comparison of the performance of previously developed enzymatic biofuel cells or hybrid enzymatic biofuel cells for self-powered glucose sensing.  

 

Electrode 
Catalyst 

(Anode/Cathode) Fuel Oxidant Operating conditions 
Pmax 

(μW cm-2) 
OCV 
(V) 

Dynamic range 
(mM) Ref. 

Anode: Pt-Ir wire 
Cathode : carbon cloth NAD-GDH/BOD Glucose O2 

0.1 M phosphate buffer       
pH 7.0, 10 mM glucose 
Air-saturated buffer 

11.8 0.43 1 - 10 [1] 

Anode: TTF-CF 
Cathode: CF 
(microneedle electrodes) 

GOx/Pt-Rh alloy Glucose O2 
0.1 M phosphate buffer      
pH 7.4, 80 mM glucose 
Air-saturated buffer    

170 0.38 10 - 80 [2] 

Anode: TTF-PCI 
Cathode: PCI 
(screen printed electrode array ) 

GOx/BOD Glucose O2 

1 M phosphate buffer      
pH 7 , 100 mM glucose   
Air-saturated buffer      

120 0.57 1 - 25 [3] 

Anode: MWCNTs-ink 
Cathode: Ag2O/Ag 
(stretchable textile-based electrodes ) 

GOx/- Glucose - 0.1 M PBS buffer pH 7,   
50 mM glucose    160 0.44 0 - 50 [4] 

Anode: CoPc/PBA/Buckypaper  
Cathode: PBA/Buckypaper GOx/MnO2 Glucose - 0.1 M PBS buffer pH 7,   

20 mM glucose    136 0.65 0.5 - 8 [5] 

PBSE/Buckypaper based on 
MWCNTs PQQ-GDH/laccase Glucose O2 

0.1 M phosphate buffer       
pH 6.0, 45 mM glucose 
Air-saturated buffer   

67.86 0.682 0.5 - 35 [6] 

Anode: rGO/poly(TBO) Cathode : 
PBSE/MWCNTs 

NAD-GDH/    
GOx-HRP Glucose H2O2 

0.1 M phosphate buffer       
pH 7.4, 40 mM glucose      
Air-saturated buffer 

31.3 0.65 0.1 – 7.0 This work 

CF = carbon fibers; TTF = tetrathiafulvalene; PCI Porous carbon ink; GOx = glucose oxidase; GDH = glucose dehydrogenase; HRP = horseradish peroxidase; BOD = bilirubin oxidase       

TBO = toluidine blue; MWCNTs = multi-walled carbon nanotubes; CoPc = cobalt phthalocyanine; PBA = pyrenebutyric acid; PBS = Phosphate buffered saline;                          

PBSE = 1-pyrenebutyric acid N-hydroxysuccinimide ester.
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Figure S1. IR spectra for rGO and GO. 

 

 

Figure S2. Cyclic voltammograms of the modified electrodes in the solution of 5 mM Fe(CN)63+ 
containing 0.1 M KCl at the scan rate of 50 mV/s. 
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Table S2. Comparison of the Michaelis-Menten parameters, including Km and Jmax, for the 
results in Figure 3. 

GDH amount 
(μg) 

Km 

(mM) 
Jmax 

(μA cm−2) 
Jmax/ Km 

(μA mM-1 cm−2) 
5 5.6 79.1 14.1 

10 7.1 123.7 17.4 
15 11.9 101.9 8.6 

 

 

 

 

Resistance (kΩ) Km (mM) Jmax (μA cm−2) R2 

5 1.547±0.030 112.8±0.8 0.9989 
10 2.666±0.059 165.9±1.6 0.9991 
24 3.191±0.225 107.5±3.4 0.9951 

 

Figure S3. Calibration curve for the self-powered detection of glucose (n = 3) in a membrane-less cell 
configuration, using the optimized electrodes and different resistor settings. The calibration curve 
can be well described using a Michaelis-Menten law and used across a broad concentration range 
(A), with the parameters indicated in the table.
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