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Abstract: The ionized states of molecular analytes located on solid surfaces require profound investi-
gation and better understanding for applications in the basic sciences in general, and in the design
of nanobiosensors, in particular. Such ionized states are induced by the interactions of molecules
between them in the analyzed substance and with the target surface. Here, computer simulations
using COMSOL Multiphysics software show the effect of surface charge density and distribution on
the output generation in a dynamic PIN diode with gate control. This device, having built-in potential
barriers, has a unique internal integration of output signal generation. The identified interactions
showed the possibility of a new design for implementing a nanobiosensor based on a dynamic PIN
diode in a mode with surface charge control.
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1. Introduction

Methods and technology for the sensitive detection, characterization, and monitoring
of biomolecules (proteins, lipids, DNA, and RNA molecules) and other biochemical and
biophysical analytes are urgently needed in the life sciences, clinical diagnostics, the
pharmaceutical sciences, the engineering of substances and materials, environmental
research, and food control [1–6].

Nanobiosensors are analytical devices that combine a biologically sensitive element
with a nanostructured transducer, and are widely used for molecular detection. They show
certain advantages [7–13] due to their inherent specificity, simplicity, and quick responses.
By design, nanobiosensors are hybrid devices in which an organic object is embedded in a
nano or microelectronic semiconductor device.

Although promising for biomimetic materials applications, the binding of polypep-
tides to inorganic material surfaces and the mechanism of their interaction have been
challenging to characterize. A few papers reported sequence–activity relationships of
peptides interfacing with semiconductors and presented methodologies broadly applicable
to the study of peptide–solid surface and molecular-molecular interactions [14,15].

The charge transport properties of proteins and other biomolecules provide opportu-
nities to design and build the next generation of hybrid bioelectronic interfaces towards
more efficient and biocompatible electronic devices. Most biomolecules have internal
charges [16,17]. A semiconductor device based on the field effect makes it possible to detect
variations in the charges of biological processes in real-time and in a non-invasive way. In
such devices, one positive or one negative charge of a molecule electrostatically interacts
with one electron charge in a semiconductor device. Thus, the induced change in the semi-
conductor’s surface potential acts as the gate voltage in a traditional field-effect transistor.
In this case, there is a change in the current in the channel between the source and the
drain. This current can be measured, and thus detect the presence of a bound analyte.
The advantages of a field-effect transistor as a single device for surface charge detection
include its small size and practical design. However, when using them as electrical sensors,
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there are problems associated with low signal intensity, signal-to-noise ratio, and relatively
low sensitivity.

Surface potential and surface-charge-sensing biomolecular techniques have attracted
a wide range of research interest in recent decades [18–21]. The ionized states of molecular
analytes on solid surfaces are neither well-studied nor understood. Therefore, these ion–
surface interactions require deeper investigation for basic science applications and the
development of nanobiosensors [22–27].

The underlying cause for this charged layer creation on surfaces may be the separa-
tion of charges in the film due to the differences in the charge carriers’ mobility [28,29].
Protons have an abnormally high mobility and can produce H3O+ ions and their sta-
ble complexes [30,31]. In addition, such ions could be formed on a surface during the
self-ionization reaction of water [28–30].

Another active ion is the NO+ cation, capable of creating strong bonds with water
molecules and form stable clusters of NO+ + (H2O)n [32].

The connection of water molecules with these surfaces and the formation of their
corresponding ions in the film can also be interpreted in terms of a simple acid–base
interaction, according to Lewis [33]: the water molecule acts as an electron donor (Lewis
base), and the substrate as an electron acceptor (Lewis acid).

Similar phenomena are known to occur in semiconductor biosensors [9].
The actual technical task is to design more effective, hybrid, nanoelectronic, and

charge-sensitive devices, which operate with a label-free biomolecular analyte bound to
the target surface.

The recently presented PIN photodiode possesses a unique internal integration func-
tion of the time-dependent signal, thus providing high sensitivity, low noise, and a wide
dynamic range [34]. The diode contains an embedded potential barrier formed by a gate-
controlled depletion region. In a dynamical anode voltage regime, an output analog signal
is proportional to the energy dose of an incident electromagnetic wave (visible light). This
phenomenon includes photo- and thermo-generation of electron-hole pairs in the semicon-
ductor bulk, and gate control of potential barrier magnitude, which, in turn, could regulate
the charge carrier flow.

In our previous PIN diode study, both the temperature dependence and the effect
of the presence of external particles on the substrate surface were revealed [35]. When a
molecular film appears on the surface between the gate and the cathode, bound charges
appear on that surface as well, which create the corresponding electric fields.

Here, we studied the mechanism of the influence of surface charge on signal generation
in a PIN diode containing embedded potential barriers. The appropriate mechanism of the
barriers’ height modulation was revealed and estimated by means of computer simulation
software, COMSOL Multiphysics. The obtained results show some principal possibilities
of using this device as a highly sensitive semiconductor nanobiosensor which performs
signal integration, controlled by surface charge.

2. Methods

The initial state of the dynamical PIN diode was when the anode and the gate were
kept under negative bias voltage [34]. The measuring cycle started when the anode
negative bias was switched to the forward one (Figure 1). The following figure represents
the operating scheme where only one potential barrier is shown.
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with permission from ref. [36]. Copyright 2019 IEEE.  
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described process. 
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Figure 1. Operating scheme of dynamical semiconductor sensor. Ja is the anode current. Reprinted
with permission from ref. [36]. Copyright 2019 IEEE.

Initially, electrons and holes, trapped by electrostatic potential barriers above Fermi
level, move faster near the depletion regions’ borders. The charge carriers outside of the
depletion region are relatively slow due to the absence of a strong static electric field.
During the filling of depletion regions by current flowing from the cathode, potential
barriers become lower and narrower due to charge carriers accumulating under the gate
and shielding the electric field. The device switches on from a low zero-field current to a
high-current state after a certain triggering delay. Switching occurs abruptly due to tunnel
breakdown through the narrow residual barrier. The positive feedback effect of electrons
and holes mutually enhances motion between anode and cathode, which intensifies the
described process.

Without external irradiation, the zero-field thermo-generated current Ithermo can de-
termine the value of self-triggering time,

Ttrig =
Qc

Ithermo
, (1)

where Qc is a critical value of the accumulated charge. Further, the device switches on
abruptly to a high-current state after a certain time delay.

Since the irradiating intensity decreases the triggering time, one can obtain a higher
measurement sensitivity by changing the external irradiating intensity. Under light illu-
mination in a visible wavelength range of approximately 400 to 800 nm, photo-generated
electron-hole pairs are separated by an internal electric field inside a semiconductor target.
Electrons drift under the gate, whereas holes move to the cathode. Over time, the accumu-
lation of electrons under the gate starts to shield the electric field. Finally, the decrease in
the depletion region de-isolates the anode, which emits holes that can lower the cathode
barrier by locally increasing the potential.

The total critical charge Qc(τ) value, accumulated by the flow of summed thermo-
generation and photo-generation currents, is described by the following expression [37]:

Qc(τ) ∼
∫ τ

0
dt · T2exp

(
−Ub − ∆Ub(Φ, T, t)

kT

)
, (2)

where the employed parameters are: time t, pulse duration τ, temperature T, Boltzmann
constant k, and embedded potential barrier height Ub. Potential shift ∆Ub (Φ,T,t) describes
an instantaneous effective decrease in the barrier height due to space charge neutralization
by thermo- and photo-generated carriers, where Φ is the visible light external irradia-
tion dose.

The model corresponding to Formula (2) considers the contribution of the photocur-
rent to barrier charge neutralization, modulation of the barrier height by photogenerated
carrier charge, and the temperature dependence of the Boltzmann barrier height [36]. Us-
ing Expression (2), one can estimate the dependence of the barrier height on the charge
accumulation leading to the internal signal generation.

The Semiconductor Module of COMSOL Multiphysics solves Poisson’s equation
in conjunction with the continuity equations for charge carriers. The mobility model
defines both electron and hole mobilities. Constant and user-defined doping profiles can be
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specified, or an approximate Gaussian doping profile can be used. In the model employed
here, the user-defined profile was set.

A stationary study type was applied, where the variables used were the electric
potential V, electron N, and the hole P concentration. Dealing with this set of variables
was sufficient for this study’s task, where the potential and the electric field as well as
the electron and hole concentration distributions were studied. Figure 2a–d show the
calculated COMSOL 2D distribution of potential inside the model device, with different
charges immobilized on the surface between gate and cathode.
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Figure 2. Potential distribution inside the p-type GaAs target (concentration of dopant is p = 1012

cm−3) with positive surface charge located between cathode and anode of the model device with
uniform surface density ρ, C·m−2 (a,c) and three surface islands (b,d): (a) +10−3; (b) +10−2; (c)
−10−3; (d) −10−2. Thin oxide or dielectric layer was located between the surface charge and the
bulk. Cathode voltage Uct = 0.5 V, anode voltage Uan = 1 V, gate voltage Ug = 3 V. Color gradation
presents the potential distribution range, as shown in the color lines.

Evidently, even at a low surface charge of approximately 0.01 in one monolayer (the
thickness of the film in the picture is conditional, in fact, the film is infinitely thin), this is
reflected in the results as a disturbed potential. For the shown device model, we realized
COMSOL [38] computer modeling of potential barriers’ characteristics, controlled by a
charged film situated in the area between cathode and anode on an Si or GaAs surface.

3. Results

We considered the dynamics of the processes occurring in the absence of external
irradiation, which would lead to the generation of photoelectrons. Accordingly, the exis-
tence of two currents is possible, namely, the current caused by the thermal generation of
electrons Ithermo, and the leakage current Ileak, caused by the action of the electric field at
the cathode. The variations in the charge accumulated under the gate and the reduction in
the depletion region are shown in the graphs below.

The potential shift ∆U(Qs) between the cathode potential and the minimum potential
was considered. One can introduce the parameter p = (∆U − ∆U0)/Qs, where ∆U0 ≈
0.58 V for surface charge Qs = 0. This parameter remains almost constant for Qs when
the surface charge is in the range from −10−4 to +10−4 C·m−2 but decreases for absolute
values more than 10−4.
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The quasi-parabolic potential trap (Figure 3) controlled the injection of electrons from
the cathode into the embedded depletion region. Further, one can determine the leakage
current of electrons coming from the cathode n+ region into the potential well,

Ileak = I0·exp
(

∆U(Qs)− ∆U0

kT

)
(3)

Table 1. Surface charge values and corresponding approximation functions for the potential shift.

Surface Charge Qs, C·m−2 Approximation Function The Potential Difference ∆U, V p=(∆U−∆U0)/Qs

1 10−3 2.3987x2 − 2.9071x − 2.9603 0.163415 591.75
2 10−4 1.6546x2 − 1.1781x − 3.8982 0.390072 1977.19
3 10−5 2.1176x2 − 1.3315x − 4.0729 0.558116 1964.37
4 0 2.1703x2 − 1.3498x − 4.0924 0.577734 0
5 −10−5 2.2232x2 − 1.3683x − 4.1118 0.597378 1961.84
6 −10−4 2.7016x2 − 1.5384x − 4.2868 0.775454 1876.63
7 −10−3 3.4629x2 − 1.7135x − 4.7383 1.16948 414.32
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Figure 3. Electric potential distribution at different surface charge density values on two scales on the X-axis. The cutline
Y = 0.5 µm, Uct = 0.5 V, Uan = 1 V, Ug = 3 V. The target is GaAs, p-type, the dopant concentration equal p = 1012 cm−3. Barrier
−height ∆U was determined for each curve between the cathode potential and the minimum potential (shown for curve
number 2). Surface charge values are shown in Table 1 below.

The leakage current is locked by the potential shift ∆U < 0 and could be shifted by
surface charges.

In the absence of both external illumination and thermo-generation, the switching
time Ttrig may be determined by the leakage current of electrons from the cathode area:

Ttrig =
Qc

Ileak
=

Qc

I0
∆exp

(
− pQs

kT

)
(4)

In accordance with the analytical expression (4), Figure 4 demonstrates the linear
dependences of the values ln

(
Ttrig

)
on the surface charge density.
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Figure 4. The dependence of normalized triggering time on the surface charge density Qs, target Si
and GaAs, p-type. Uct = 0.5 V, Uan = 1 V, Ug = 3 V. The dopant concentration, [cm−3], equal for p-Si:
(1) 1012; (2) 1014; (3) 1016; and for p-GaAs: (4) 1012; (5) 1014; (6) 1016.

The calculated graphs with the potential shift value ∆U = p·Qs + ∆U0 (Table 1) are
shown on a logarithmic scale in Figure 4. Their linearity in a wide range of the surface
charge density, as well as for different concentrations of ligands in the range of up to four
orders, is in accordance with the approximation by the exponential function, and with
expressions (2) and (4). The advantages of the weak doping of semiconductors at a level of
1012 cm−3 are obvious for obtaining the highest sensitivity of surface charge detection.

Further, it was calculated by means of the potential approximation function that the
electric field has a steep dependence on the surface charge density for absolute minimum
values of less than 5 × 10−4 C·m−2, which determined the high sensitivity of the device as
a sensor. Such dependencies were obtained at different levels of doping in a wide range
(Figure 5).
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The electric −5 × 10−14 field near the surface reached high values in the order of
104 V·cm−1 (see Figure 5). Such a field acts not only perpendicular to the surface but
also along it. In a strong electric field, an ensemble of charged particles can be separated
spontaneously along the surface into separate islands. Apart from the transverse field, a
strong lateral electric field appears between the islands in the longitudinal direction along
the surface.

The effect of a dashed, surface-charged film with (i) three and (ii) fourteen islands,
into which the continuous homogeneous film was separated, is shown as an example
(Figures 6–8). Due to the action of an electric field transverse to the surface, the distribution
of the electric potential in the volume of the semiconductor at different depth values
demonstrates, in a certain way, the effect of the film island structure (Figures 6 and 7). The
type of the curve depends on the Y-position of the cutline along the substrate depth.

Biosensors 2021, 11, x FOR PEER REVIEW 7 of 11 
 

−The electric−5 × 10−14 field near the surface reached high values in the order of 104 
V∙cm−1 (see Figure 5). Such a field acts not only perpendicular to the surface but also along 
it. In a strong electric field, an ensemble of charged particles can be separated spontane-
ously along the surface into separate islands. Apart from the transverse field, a strong 
lateral electric field appears between the islands in the longitudinal direction along the 
surface. 

The effect of a dashed, surface-charged film with (i) three and (ii) fourteen islands, 
into which the continuous homogeneous film was separated, is shown as an example (Fig-
ures 6–8). Due to the action of an electric field transverse to the surface, the distribution of 
the electric potential in the volume of the semiconductor at different depth values demon-
strates, in a certain way, the effect of the film island structure (Figures 6 and 7). The type 
of the curve depends on the Y-position of the cutline along the substrate depth. 

 
Figure 6. Electric potential distribution. Different number of surface charge 𝑄  segments. Uct = 0.5 
V, Uan = 1 V, Ug = 3 V. Cutline Y = 0.65 μm, GaAs, p-type, p = 1012 cm−3. Surface charge density ρ = 
10−3 C ∙ m . Uniform charged film (1) was divided for three islands (2), as shown in Figure 2 above. 

One can observe the expected gradual reduction in the surface charge effect along 
the substrate depth (Figure 7). 

Figure 6. Electric potential distribution. Different number of surface charge Qs segments. Uct = 0.5 V,
Uan = 1 V, Ug = 3 V. Cutline Y = 0.65 µm, GaAs, p-type, p = 1012 cm−3. Surface charge density ρ =
10−3 C·m−2. Uniform charged film (1) was divided for three islands (2), as shown in Figure 2 above.
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One can observe the expected gradual reduction in the surface charge effect along the
substrate depth (Figure 7).

Figure 8 shows the electric field distribution in the target volume generated by the
surface charge, with a different number of charged islands. The Coulomb splitting of the
islands was observed not only for low numbers (Figure 8a), but even for high numbers
(Figure 8b). The presence of a high peak at X = 1.2 µm (Figure 8) can be explained by an
edge effect at the contact point between the metal gate and substrate.

4. Discussion

For the considered device, whose operation scheme is shown in Figure 1, the depen-
dence of potential barriers inside the semiconductor volume, ∆U = p · Qs, p ≈ const on
surface charge, Qs, was revealed. Thus, the relationship between the measured signal, in
the form of the current pulse duration (triggering time), and the surface charge value was
determined in expression (4) and the graphs in Figure 4. Employing these results, one can
measure the switching time Ttrig for calculation of the instantaneous surface charge density
Qs and of its dynamics at a frequency range lower than 1/Ttrig.

The electric field near the surface reached high values in the order of 104 V·cm−1,
which can be estimated by the same method by which the dependencies are shown in
Figure 5. In such high electric fields, generated by the absence of neutralized charge in
the surface molecular films, appropriate biophysical and biochemical reactions could be
activated. Even though the details of this phenomenon have not been determined, the
very fact that molecular charging on the surface occurs, especially in the presence of water
molecules, corresponds to modern ideas about the adsorbed layer. Surface charges generate
an electric field that changes the appearance of the potential barriers in semiconductor
targets. Comparing Figures 6–8, it can be seen that the separation of surface charge into
islands does not violate the concept of the influence of this charge on the structure of
potential barriers in the volume of the substrate, and, accordingly, on the emission of
current from the cathode.

5. Conclusions

The identified interactions suggest a new possible design of a nanobiosensor based
on the dynamic PIN diode. This new device is a hybrid one, in which the transducer is a
microelectronic, semiconducting diode with an additional gate electrode, operating in a
dynamic mode. This device has a built-in molecular, including biomolecular, object, in the
form of a film on the semiconductor surface in the area surrounding the gate.

The hybrid device made it possible to detect and measure bound surface charges, and
monitor ionization of molecules, which were either self-generated or induced by external
influences in the film. High sensitivity and low noise levels were achieved through the
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ability of the device to provide the internal summation, and integration of the transferred
space charges that enter the electrical potential well. The internal integration distinguishes
this device from known nanobiosensors based on transistors and other diodes. As a result,
the integral dose with a background of the averaged noise as well as the enhanced signal-
to-noise ratio were measured instead of the instantaneous signal with the background
of the real noise. On the basis of the measurements, specific surface analytes and their
reactions can be determined, and knowledge of the ionization characteristics of molecules,
including biomolecules, can be developed.
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