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Abstract: A hybrid structure composed of periodic monolayer graphene nanoribbons and a dielectric
multilayer structure was designed to generate a Fano resonance (FR). The strong interaction between
the surface plasmon resonance of graphene and the dielectric waveguide mode results in the FR. The
finite element method is utilized to investigate the behaviors of the FR, and it matches well with the
theoretical calculations using rigorous coupled wave theory. The results demonstrate that the profile
of the FR can be passively tuned by the period of the graphene nanoribbons and actively tuned by
the Fermi level of the graphene. The decoupled nature of the FR gives it potential applications as
a self-calibrated refractive index biosensor, and the sensitivity can reach as high as 4.615 µm/RIU.
Thus, this work provides a new idea for an excellent self-referencing refractive index biosensor.

Keywords: biosensors; Fano resonance; graphene

1. Introduction

The surface plasmon polariton (SPP), a surface evanescent wave formed by the in-
teraction of free electrons and photons on the surface of a metal or an insulator, has
been regarded as the information carrier in micro-nano optics with the most potential.
As the SPP can break through the diffraction limit in traditional optics and support the
propagation of light in acceptable wavelengths, it has promoted the development and
manufacturing of optical devices [1,2]. In addition, the SPP is a non-radiation mode with a
large near-field enhancement effect, giving it potential applications in photonic circuits [3],
optical absorbers [4,5], optical sensors [6–8], and optical switches [9]. However, traditional
metal-based plasmon devices suffer from high ohmic loss and poor active tunability, which
restrict their practical applications.

Graphene, emerging as a promising plasmon material, has been studied intensively
due to its excellent photoelectric properties, including low losses, tight field localization,
broad response spectrum, and flexible tunability. The extraordinary plasma properties
of graphene make it active in various coupling systems, such as plasmon-induced trans-
parency [4,5] and Fano resonances (FRs) [10–18]. FRs are generally considered to be a
feature of quantum systems and are also observed in optical systems. Generally, FRs are
generated by the interaction between a narrow resonance and a broad resonance [19], and
the sharp asymmetric spectra of FRs promise applications in nonlinear [20], lasing [21],
switching [22], and sensors [23]. Much of the work on graphene-based FRs so far has
focused on graphene-based metastructures or graphene-metal hybrid structures. While the
intrinsic loss of graphene always causes a low-quality factor of the FR, it should be noted
that an FR with a high-quality factor always indicates a high-performance device. In order
to achieve a tunable FR with a high-quality factor, the coupling between the graphene
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surface plasmon resonances (SPRs) and the other resonant modes with high quality is an
effective method.

In this work, we proposed a hybrid structure constructed by periodic monolayer
graphene nanoribbons and a dielectric waveguide to realize an active tunable FR, where
the waveguide mode supports the narrow resonance, and the graphene plasmon provides
the broad resonance. An FR with a high-quality factor can be observed when the graphene
SPR is coupled with the waveguide mode. The finite element method (FEM, Comsol Multi-
physics) was utilized to simulate the behaviors of the FR. To confirm the accuracy of the
results, the results were also calculated by rigorous coupled wave theory (RCWA) [24,25].
The results have shown that the profile of the proposed FR can be tuned passively by the
period of graphene nanoribbons and can be tuned actively by the surface conductivity of
the graphene. Meanwhile, it was found that the broad resonance of the proposed FR was
very sensitive to the surrounding refractive index (RI), while the sharp resonance was insen-
sitive. Therefore, the proposed FR satisfied the conditions for application to a self-reference
sensor with the sharp resonance as the reference channel. Compared with the traditional
single detect-signal optical sensors, which are easily affected by the unstable environment,
the self-reference sensors are more accurate in the evaluation of the analyte. It is worth
mentioning that based on the decoupling characteristics of the FRs, the sensitivity of the
proposed self-reference RI sensor can be as high as 4.615 µm/RIU, which is significantly
better than the sensors presented in Refs. [26–28]. Therefore, this work provides a new idea
for an excellent self-referencing RI sensor.

2. Structure and Theoretical Model

Figure 1a is a stereoscopic diagram of the proposed structure. The hybrid system
consists of periodic monolayer graphene nanoribbons and a 3-layer planar waveguide
(PWG) structure. Figure 1b shows a cross-sectional view of the structure and geometric
parameter information. The graphene nanoribbons with period Λ and the groove length ∆
in the x-axis direction are arranged on the PWG. In the following discussions, the substrate
and the cladding layer of the PWG are considered to be CaF2, with the refractive index
n1 = 1.3; the PWG core is set to be Ge with the refractive index n2 = 4. The thickness of each
layer is set to be d1 = 1.2 µm and d2 = 2.8 µm, respectively. Then, the FR can be excited at the
response wavelengths when the transverse magnetic (TM) light is incident on the structure
with an incident angle θ. For the experimental fabrication of this structure, the dielectric
multilayer can be prepared by the electron beam deposition method. The monolayer
graphene can be grown by chemical vapor deposition (CVD) and transferred onto the
planar waveguide. Then, the monolayer graphene can be utilized to fabricate the graphene
nanoribbons by the atomic-force-microscope- (AFM) based lithography method [29].
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Figure 1. (a) Schematic diagram of designed structure. (b) Cross-sectional view of the structure in
Figure 1a.
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As is mentioned above, the FR is achieved by the coupling between a broad resonance
and a narrow resonance. In this hybrid structure, the graphene nanoribbons were utilized
to excite a surface plasmon resonance as the broad resonance. In Figure 2b, we plotted
the transmission spectrum with the different ∆ of the structure that was composed of
the periodic monolayer graphene nanoribbons and a CaF2 substrate, and the graphene
surface plasmon resonance (GSPR) could be observed clearly. The refractive index of

monolayer graphene ng =
√

1 + iσ/(ωε0dg) was utilized for the simulation and theoretical
calculations, where ω is the angular frequency, ε0 is the vacuum permittivity, dg = 0.34 nm is
the thickness of the monolayer graphene, and σ is the surface conductivity of the graphene
constructed by intraband σintra and interband σinter, described as [14]

σintra = i
e2kBT

π}2(ω + iτ)
[

EF
kBT

+ 2 ln(e−
EF

kBT + 1)] (1)

σinter = i
e2

4π} ln
∣∣∣∣2EF − (ω + iτ)}
2EF + (ω + iτ)}

∣∣∣∣ (2)

where kB is the Boltzmann constant, } is the reduced Planck constant, T expresses the
absolute temperature of the environment, e is the elementary charge, and the carrier
relaxation time τ is expressed as τ = µEF/(ev2

f ), depending on the Fermi velocity vf, the
carrier mobility µ, and the Fermi energy EF. In this work, the Fermi velocity was set to be
v f = 106m/s and the carrier mobility was 1 m2/Vs.
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reflectance at ∆ = 1.98 µm.

The narrow resonance was provided by the waveguide mode in this coupled system.
In order to make the waveguide mode couple with the GSPR, we calculated the dispersion
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of the PWG mode to obtain the resonance wavelength of the waveguide mode, and the
dispersion is expressed as [30]

√
n2

2k2
0 − β2d2 = mπ + 2arctan(
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0n2
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where k0 is the wave vector of the plane incident wave in free space, β is the propagating
constant, and m is the mode order of PWG. By solving equation (3) and neff = β/k0, the effec-
tive refractive index was obtained and was plotted as the red solid line in Figure 2a. In this
hybrid structure, the momentum was provided by the graphene grating to excite the waveg-
uide mode, and the momentum matching condition was expressed as β = k0sinθ ± 2nπ/Λ.
Hence, the theoretical resonant wavelength of the waveguide mode could be easily derived.
With the incident angle θ = 0◦, the period Λ = 4 µm, the waveguide mode order m = 0, and
the diffraction mode order of grating n = 1, the resonant wavelength was calculated to be
13.24 µm, which was depicted in Figure 2a. From the formula of the momentum matching
condition provided by the grating, we can know that the resonant wavelength of PWG is
fixed at 13.24 with different ∆, as we plotted in Figure 2b (black solid dots). When the PWG
was added to the graphene plasmon nano system, we simulated the reflectance spectrum
with different ∆; in Figure 2c, the interference between the graphene plasmon and the
waveguide mode is clearly illustrated. We can see that there is a wide low-reflection band
generated by the graphene plasmons in Figure 2c, and the wide low-reflection band is
cut off by an extremely sharp high-reflection band that is generated by the waveguide
mode. The sharp resonance provided by the waveguide mode is fixed at 13.234, which is
consistent with the theory that calculated the resonant wavelength at 13.24 µm, indicating
the accuracy of our results. Finally, in order to intuitively observe the shape of the FR, we
plotted the reflectance spectrum when ∆ = 1.98 µm in Figure 2d. Obviously, it is a sharp
asymmetrical line shape.

3. Results and Discussion

Figure 2b shows that the groove ∆ plays a vital role on the shape of the FR. For a
grating, the period Λ is a key parameter of the momentum-matching condition, and one
may wonder how it influences the FR. So, in Figure 3, with ∆ = 2 µm, we show the reflection
spectra when the period Λ of the graphene nanoribbon is varied from 3.9 µm to 4.1 µm with
a step size of 0.05 µm. As the spectrum depicts, an increase in Λ causes an overall redshift
of the FR. The increased period of the graphene nanoribbon will cause a redshift of the
graphene SPR. Besides, the changed period of the graphene grating will lead to a redshift
of the waveguide mode resonance, which can be revealed by the dispersion relation of
the PWG. In summary, the FR phenomenon is also redshifted overall. Combined with
the continuously varying period sizes, the continuously varying FR response reflection
spectra can be obtained in Figure 3b to more visually express the effect of Λ on the system
response. Apparently, the resonance intersection of the graphene SPP and the PWG modes
can be adjusted by changing the period of the graphene nanoribbons in the structure.
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To investigate the dynamic tunability of the FR in the proposed structure, the Fermi
energy EF of the graphene was tuned from 0.95 eV to 0.99 eV. The reflection spectra were
simulated by the FEM (black solid line) and theoretically calculated by the RCWA (red dash
line), as seen in Figure 4a. The consistency of the calculation results indicated the accuracy
of our results. Obviously, when changing the Fermi level, the state of the waveguide mode
will remain unchanged, and we can observe that the sharp resonance provided by the
PWG mode is fixed. Hence, when the Fermi energy is changed, the change in the shape
of the FR is mainly caused by the shift of the broad resonance supported by the graphene
plasmon. The shape of the FR can be seen to transfer from asymmetric to symmetric and
then to asymmetric in Figure 4a. To further investigate the origin of the FR, the electric
field distributions were plotted as in Figure 4b–d, corresponding to the wavelength that is
labeled as ‘4’, ‘#’ and ‘�’ in Figure 4a, respectively. It was found that the electric field was
mainly concentrated on the graphene nanoribbons, as in Figure 4b, at the wavelength of
λ = 13.164 µm, indicating the graphene SPP. As seen in Figure 4c,d, the electromagnetic
energy was mainly confined at the graphene nanoribbons and planar waveguide, at the
wavelengths of 13.234 µm and 13.236 µm, respectively, which demonstrated that both the
waveguide mode and the graphene SPP were excited. Therefore, it indicates that the FR
originates from the strong interaction between these two modes in the coupled structure.
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According to the previous studies [10,12], FRs have a good application in RI sensors,
and the behaviors of the proposed structure in RI sensing are explored in Figure 5. Changes
in the analyte concentration caused a change in the refractive index. In this work, the
analyte was considered to be a gas. Therefore, we plotted the reflection spectra at the
different RI of the analyte n from 1 to 1.02, as shown in Figure 5a, to reveal the feasibility of
the proposed structures in terms of the RI sensors. We observed that the left resonance was
very sensitive to the variation of the surrounding n, while the wavelength of the right reso-
nance was almost fixed. It promises a potential application for self-referencing RI sensors.
In this sensing system, the right resonance works as a reference signal, and the absolute
RI can be measured according to the calibration curve when the calibration samples are
introduced. We plotted the change curve of the resonant wavelength versus n in Figure 5b
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and found that the FR position was insensible to the evolution of the solution/analyte
RI. The graphene SPR mode position linearly changes with the RI, where the slope called
sensitivity S = ∆λ/∆n, can be as high as 4.615 µm/RIU, which is significantly better than
the sensors presented in Refs. [26–28]. The excellent performance of the designed structure
as a self-referencing RI sensor has an important potential value in applications, such as
biomedical, environmental monitoring, and production safety.
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4. Conclusions

In summary, we proposed an actively tuned FR constructed by periodic monolayer
graphene nanoribbons hybridized on a distributed planar waveguide. In this structure,
the periodic monolayer graphene nanoribbons can not only excite the graphene SPPs, but
can also work as a grating to provide the momentum-matching condition for exciting
the waveguide mode. The FR can be observed when these two modes are coupled with
each other. The influences of the period and groove of the periodic monolayer graphene
nanoribbons on the shape of the FR were discussed and it was found that the period
and groove of the periodic monolayer graphene nanoribbons played a crucial role in the
FR shape. In addition, the studies have shown that the shape of the FR can be tuned
dynamically by the Fermi energy of graphene. Finally, we applied the results to the
self-referenced RI sensor, and its sensitivity could reach 4.615 µm/RIU. Thus, this work
provides a new idea for an excellent self-referencing RI sensor.
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