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Abstract: Diffuse optical tomography is emerging as a non-invasive optical modality used to evaluate
tissue information by obtaining the optical properties’ distribution. Two procedures are performed to
produce reconstructed absorption and reduced scattering images, which provide structural informa-
tion that can be used to locate inclusions within tissues with the assistance of a known light intensity
around the boundary. These methods are referred to as a forward problem and an inverse solution.
Once the reconstructed image is obtained, a subjective measurement is used as the conventional way
to assess the image. Hence, in this study, we developed an algorithm designed to numerically assess
reconstructed images to identify inclusions using the structural similarity (SSIM) index. We com-
pared four SSIM algorithms with 168 simulated reconstructed images involving the same inclusion
position with different contrast ratios and inclusion sizes. A multiscale, improved SSIM containing a
sharpness parameter (MS-ISSIM-S) was proposed to represent the potential evaluation compared
with the human visible perception. The results indicated that the proposed MS-ISSIM-S is suitable for
human visual perception by demonstrating a reduction of similarity score related to various contrasts
with a similar size of inclusion; thus, this metric is promising for the objective numerical assessment
of diffuse, optically reconstructed images.

Keywords: diffuse optical tomography; structural similarity; human visible perception; numerical
evaluation; biosensors

1. Introduction

Diffuse optical tomography (DOT) is a promising imaging technology designed to
reconstruct absorption and reduced scattering coefficients by obtaining the light propaga-
tion intensity around a tissue boundary [1]. DOT involves two major steps to accomplish
the entire process of obtaining the optical property map distribution, including measure-
ment and computation procedures. In the measurement system, several pairs of light
sources and detectors are attached around a subject or phantom model to acquire the light
radiance distribution. In the computation procedure, a reconstruction image algorithm
is utilized to predict optical properties inside the tissue [2,3]. The DOT technique is an
invasive modality because it uses the near-infrared (NIR) spectral window to image the
structural and functional properties of human tissue. For this reason, several works with
clinical and computational elements have explored three measurements, referred to as
continuous-wave (CW), frequency-domain (FD), and time-domain (TD) [4–6]. A CW-DOT
works with only the light intensity attenuation; thus, the direct current power voltage may
be implemented to drive the associated laser source; meanwhile, an FD-DOT applies an
amplitude-modulated light source with a typical frequency of 100 MHz. In contrast, to
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reduce the ill-posedness of CW-DOT and FD-DOT, TD-DOT, which produces photons with
a time-of-flight distribution, can propagate in three regimes, such as ballistic, snake, and
diffused photon patterns. It is considered possible to perform improved measurements via
the TD-DOT method [7,8].

To complete the entire DOT computation, a forward problem based on the finite
element method (FEM) and an inverse solution with a regularization algorithm must be
solved [9]. Once these two procedures have been fulfilled, the optical property distribution
indicated by the reconstructed images can be obtained. The reconstructed images provide
structural or functional information related to tissue conditions. In the case of breast
imaging, the distribution map of optical properties offers information associated with
the presence of tumors. To assess the reconstructed images from DOT, the subjective
knowledge and insight of medical image analysis experts are required, which tend to be
costly and time consuming. The medical image analysis technique relies normally on
the mean square error (MSE), peak signal-to-noise ratio (PSNR), and contrast-to-noise
ratio (CNR); however, these assessments often present inconsistencies with the human
visual system (HVS) [10–12]. A contrast-and-size detail (CSD) analysis was developed
to deal with contrast ratio and size, and exhibited the capability to separate visible and
invisible inclusions [13,14]. However, CSD is not appropriate for human perception and
lacks a threshold value to distinguish the presence of inclusions. To overcome this issue,
a structural similarity (SSIM) index was first introduced in 2004 to accord with the HVS
by considering luminance, contrast, and structure calculation [12]. Since then, SSIM has
become more popular in the field of image quality assessment (IQA), even in biomedical
and clinical applications [15–19].

In optical modality, SSIM is capable of evaluating image enhancement, whereas in
microwave imaging, SSIM offers image inspection of the breast [20,21]. In addition, radi-
ological image assessments for computed tomography and magnetic resonance imaging
have been conducted [22–25]. Moreover, to detect dopamine from the alternation of pH
and histamine, as well as radiotherapy, SSIM can be used to objectively assess images
with the assistance of a reference image [26,27]. The abovementioned researches concern
SSIM in the medical field because several reports have demonstrated that SSIM is feasible
for improving the sensitivity based on the purpose by implementing image processing
insight [28]. The multiscale SSIM (MS-SSIM) may be more flexible than the mean SSIM
(MSSIM) because it provides multiscale image assessment with downsampling by two im-
ages in each iteration [29,30]. In addition, SSIM has been repeatedly improved, with several
derivative methods developed, such as gradient-based SSIM (GSSIM), three-component
weighting region, four-component weighting region, complex wavelet, and an improved
SSIM with a sharpness comparison (ISSIM-S) [31–35]. In these advanced implementa-
tions, SSIM was transformed to demonstrate reasonable performance in assessing images
without a reference and can be used for image decomposition, identifying inter-patch
and intra-patch similarities, and deblurring IQA [36–39]. SSIM is used widely to evaluate
images, including medical images; therefore, this study presents four types of SSIM as
a computer-based observer to assess DOT reconstructed images. The emphasis of this
research was to evaluate simulated images to avoid uncertainty in a practical environment.
MSSIM, MS-SSIM, mean ISSIM-S (MISSIM-S), and multiscale ISSIM-S (MS-ISSIM-S) were
utilized to compare homogeneity and heterogeneity. To the best of our knowledge, com-
parisons of those four types of SSIM are described for the first time for evaluating DOT
reconstructed images. Additionally, MS-ISSIM-S is a novel, proposed image quality metric
in this research. A comparison of four SSIM algorithms was conducted with 168 simulated
reconstructed images involving the same inclusion position, as well as different contrast
ratios and inclusion sizes. The proposed MS-ISSIM-S measure is the ISSIM-S modified
by performing a multiscale technique, as presented in Section 2.4. To evaluate the perfor-
mance of these four SSIMs, the mean opinion score (MOS) calculated with Spearman’s
rank correlation, as described in Section 2.5, was completed.
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The remainder of this study is organized as follows. Section 2 describes the method-
ology and Section 3 describes the results and discussions. Section 4 presents some final
concluding remarks.

2. Methodology

The procedure begins with an image reconstruction process that yields reconstructed
images of optical properties. The initial estimation of the optical properties, light source in-
tensity, modulation frequency, and speed of light in the diffusion media must be completed
first to simulate the forward problem. Then, a forward problem algorithm is employed to
calculate the light distribution around the boundary in comparison with the light intensity
from the measurement. If the solution converges, the simulation is stopped. However, if the
solution does not converge, an inverse solution algorithm is used along with regularization
to update the absorption and diffusion coefficients related to the reduced scattering coeffi-
cient. This image reconstruction will occur continuously until the stop criterion is satisfied.
When the reconstructed images are obtained, two images are included, which separately
contain information on homogeneity and heterogeneity, which are then compared with
four numerical analysis assessment methods, including MSSIM, MISSIM-S, MS-SSIM, and
MS-ISSIM-S. These four numerical analyses result is in similarity values. Figure 1 shows a
diagram of the processes used to yield the similarity measures investigated in this study.

Figure 1. Block diagram of the process used to obtain similarity, where µa and D are absorption and diffusion coefficients,
respectively, S denotes the light source, ΦM expresses measured photon propagation, and ΦC is computed light from
solving DE.

A forward model with FEM is first discussed in Section 2.1. Additionally, Sections 2.2
and 2.3 review the inverse solution along with Tikhonov regularization (TR) and IQA
involving the original SSIM, MS-SSIM, and ISSIM-S, respectively. Section 2.4 describes the
proposed numerical image analysis measure of MS-ISSIM-S, and Section 2.5 describes the
correlation method in comparison with MOS by Spearman’s rank correlation.
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2.1. Forward Problem

This study describes the forward model of FD-DOT to express the light intensity
distribution Φ(r, ω) at position r and light modulation frequency ω with the known
absorption coefficient µa, diffusion coefficient D, light source term S0, and speed of light in
the media c by solving the diffusion equation (DE), as given below.

∇.D(r)∇Φ(r, ω)−
[

µa(r)−
iω
c

]
Φ(r, ω) = −S0(r, ω), (1)

where D is defined as

D =
1

3[µs(1− g) + µa]
=

1
3(µ′s + µa)

, (2)

where µs is the scattering coefficient, g denotes the average cosine of the scattering angle,
and µ′s refers to a reduced scattering coefficient.

To simulate the light distribution with DE, as in Equation (1), an FEM is implemented
with the exact optical property values of µa and µ′s, as well as the known S0(r, ω) and
the boundary condition. This study adopted the mixed boundary condition, as shown in
Equation (3). The FEM can be simulated using two procedures. The boundary condition is
substituted into a weak form, and the Galerkin method can be performed.

− D∇Φ·n̂ = αΦ, (3)

where n̂ refers to the unit vector and α denotes the incorporated reflection as the result of
the refractive index difference at the boundary. Therefore, the discrete equation in matrix
can be expressed as [

Abb
ij − αAbb

ij Abl
ij

Alb
ij All

ij

]{
Φb

j
Φl

j

}
=

{
Sb

j
Sl

j

}
, (4)

where A denotes the optical property matrix, b refers to the boundary node, l is the internal
node, and i and j are matrix indexes. Thus, Equation (4) can calculate the forward model Φ
in the simple matrix from optical property·radiance = source.

2.2. Inverse Solution

Because the goal of DOT is to reconstruct the optical properties inside the tissue with
the provided light intensity information around the boundary, the distribution χ2 can be
obtained by minimizing the misfit differences between the photon propagation rate being
investigated around the geometry ΦM and light intensity from solving the DE with the
estimated optical properties ΦC, as expressed in Equation (5).

χ2 = ‖∆Φ‖2
2 =‖ ∆ΦM −ΦC‖2

2. (5)

These data-model misfit differences can be minimized by iteratively solving I∆χ = ∆Φ,
where I =

[
∂ΦC/∂µa ∂ΦC/∂D

]
is the Jacobian matrix and ∆χ denotes [∆µa; ∆D], the

optical coefficient of the update vector at each iteration. However, solving this inverse
problem I∆χ = ∆Φ usually involves the difficulty of an ill-posed problem as the number of
model parameters increases. As a result, TR was introduced to overcome this issue. Hence,
the inverse problem in DOT is formulated as an optimization of the damped least-squares
problem.

min
∆χ

{
‖I∆χ− ∆Φ‖2

2 + λ2‖∆χ‖2
2

}
, (6)
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where λ is a regularization parameter. One can minimize this damped least-squares
problem iteratively and then solve the following updated equation,(

ITI + λ2 I
)

∆χ = IT∆Φ, (7)

where I is an identity matrix [40].

2.3. Image Quality Assessment

This section describes the three IQAs used herein. Section 2.3.1 reviews the original
SSIM, Section 2.3.2 discusses MS-SSIM, and Section 2.3.2 describes ISSIM-S.

2.3.1. Structural Similarity Index

SSIM was first introduced to overcome issues related to IQA. Previously, to measure
the image quality, the MSE, SNR, PSNR, and CNR were commonly used. Nonetheless,
these techniques are not suitable for human perception; in particular, MSE can generate
the same value for two distorted images, even though one image is more visible than
the other. In addition, SNR, PSNR, and CNR are attractive given their mathematical
simplicity and clear physical meaning. In addition, CSD is promising for evaluating an
image according to a comparison in terms of contrast and size but does not accord with
the HVS because it shows occasional inconsistency related to contrast [10,12,14]. Therefore,
SSIM emerged to overcome these issues, aiming to accord closely with human visual
perception by considering the luminance l, contrast c, and structure s.

Figure 2 shows a diagram of the original SSIM. Luminance is calculated first over the
two images. Image x is the homogeneous, reconstructed image as a reference, whereas the
image y denotes a given reconstructed image under the test. The contrast is then measured.
To obtain the structure, the covariance between x and y must be calculated. When these
three parameters have been acquired, the combination produces a similarity score ranging
from −1 to 1. However, in many cases, the similarity is between 0 and 1.

Figure 2. SSIM diagram to demonstrate the measurement procedure.

An SSIM score is a combination of comparison from the l, c, and s by calculating the
mean intensity µx and µy along with standard deviation σx and σy for images x and y, as
well as the covariance σxy between x and y. The SSIM can be formulated as

SSIM(x, y) = [l(x, y)]α·[c(x, y)]β·[s(x, y)]γ, (8)
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by setting α = β = γ = 1 with

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (9)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (10)

s(x, y) =
σxy + C3

σxσy + C3
, (11)

where the constant C1 = (K1L)2, C2 = (K2L)2, C3 = C2/2, and L = 255. By setting K1 and
K2 � 1, the instability can be avoided at µ2

x + µ2
y and σ2

x + σ2
y , and σxσy are close to zero.

Nevertheless, SSIM performs well in the local statistics; hence, in this study, a 9× 9 local
window with the assistance of a Gaussian weighting function w = {wi | i = 1, 2, 3, . . . , N},
a standard deviation of 1.5, and the unit sum of ∑N

i=1 wi = 1 were used. Hence, the mean
of SSIM can be expressed as

MSSIM(X, Y) =
1
M

M

∑
j=1

SSIM
(
xj, yj

)
. (12)

The window slides over the entire image, where X and Y are a reconstructed, homo-
geneous image and an examined reconstructed image, respectively, xj and yj are the image
contents at the j-th local window, and M is the number of local windows in the image [12].

2.3.2. Multiscale Structural Similarity

To improve the original SSIM, greater flexibility in viewing MS-SSIM was introduced,
and the proposed measure showed outstanding performance compared to single-scale
SSIM. Figure 3 shows a diagram of the MS-SSIM measurement. The measurement is simple,
as a single-scale SSIM. First, images x and y are processed as in the original SSIM to yield
the c and s in the first scale, and, in this case, the first scale is used as the original image
size. Second, the low-pass filter (LPF) is deployed over the entire image and downsampled
by 2. This assessment is repeated until K-scale, and the similarity is obtained by calculating
the products of c and s in multiscale with the final l.

Figure 3. MS-SSIM diagram to demonstrate the measurement procedure. L denotes low-pass filtering and 2↓ refers to
down-sampling by 2.

The entire MS-SSIM score can be evaluated using a combination of all the measure-
ments via

MS− SSIM(x, y) = [lK(x, y)]αK
K

∏
k=1

[ck(x, y)]βk ·[sk(x, y)]γk , (13)

with β1 = 0.0448, β2 = 0.2856, β3 = 0.3001, β4 = 0.2363, and β5 = 0.1333, where
βk = γk = αk at k = 1, 2, 3, . . . , K [30,34]. In this study, we set K = 5.
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2.3.3. Improved Structural Similarity with Sharpness Comparison

The SSIM involves several shortcomings and, in such conditions, the similarity score
is over-evaluated by comparing a reference image and images filtered by LPF. In contrast,
slightly distorted images with geometrical transformations, such as spatial and rotation
translations, have low similarity. Regarding these issues, SSIM may overestimate the
filtered images. Hence, ISSIM-S was introduced to overcome these drawbacks [32]. In this
study, the reconstructed images are similar to the blurred and translated images, as they
were obtained by using different numbers of nodes and elements in the forward problem
and an inverse solution to avoid the inverse crime.

Figure 4 shows a diagram of the ISSIM-S measurement. Compared with Figure 2,
ISSIM-S has improvements in the sharpness and structure comparisons. The limitation of
the SSIM is defined in Equation (11). The structure is sensitive to translation, rotation, and
scaling; hence, a new structure comparison is necessary and can be formulated as

s̃(x, y) =

(
2σx−σy− + C2

)(
2σx+σy+ + C2

)(
σ2

x− + σ2
y− + C2

)(
σ2

x+ + σ2
y+ + C2

) , (14)

where σx− and σy− are the standard deviations for images x and y, which are smaller than
µx and µy, whereas σx+ and σy+ denote the standard deviations for images x and y, which
are higher than µx and µy. To decrease the overestimation, a new component, denoted as
sharpness comparison h(x, y), is utilized, which is correlated to the normalization digital
Laplacian, as shown in Equation (15).

h(x, y) =
2
∣∣∇2x

∣∣∣∣∇2y
∣∣+ C2

|∇2x|2|∇2y|2 + C2
, (15)

where ∇2x is the normalized digital Laplacian of image x, and ∇2y is the normalized
digital Laplacian of image y given by

∇2x = x− µx, (16)

∇2y = y− µy. (17)

Figure 4. ISSIM-S diagram showing the measurement procedure.
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Then, the ISSIM-S and MISSIM-S are calculated as

ISSIM− S(x, y) = l(x, y)·c(x, y)·s̃(x, y)·h(x, y), (18)

MISSIM− S(X, Y) =
1
M

M

∑
j=1

ISSIM− S
(

xj, yj
)
. (19)

2.4. Multiscale Improved Structural Similarity with Sharpness Comparison

The purpose of MISSIM-S is to decrease the overestimation of the blurred image
and to approximate the similarity score with translation and scaling. Nevertheless, the
reconstructed images are not only translation and scaling, but also aim to accord with the
inclusion contrast and size. As noted above, MS-SSIM is effective because it can assess
images at varying scales. By combining the principles of MISSIM-S and MS-SSIM, we
propose MS-ISSIM-S as a new assessment technique in this work.

Figure 5 shows a diagram of the MS-ISSIM-S measurement. The entire procedure is
similar to the assessment process in MS-SSIM, but h is calculated separately for each scale.
Once the h is acquired at each scale, the mean of h is used to obtain the MS-ISSIM-S, as
formulated in Equation (20).

MS− ISSIM− S(x, y) =

(
K

∑
k=1

hk(x, y)

)(
[lK(x, y)]αK

K

∏
k=1

[ck(x, y)]βk ·[sk(x, y)]γk

)
. (20)

We adopted K = 5.

Figure 5. MS-ISSIM-S measurement procedure diagram. L denotes low-pass filtering and 2↓ refers to down-sampling by a
factor of 2.

2.5. Spearman’s Rank Correlation

To analyze the similarity score in each method, as explained in Sections 2.3 and 2.4
with the HVS, a Spearman’s rank correlation [41] was used to determine the relationship
between two independent variables. Correlation is a statistical method used to assess the
association degree to aid in understanding the relationship between two variables, but not
to distinguish the fundamental relation [42,43]. This correlation is a numerical value used
to quantify the linear correlation between the MOS and reconstructed images analyzed for
each SSIM type in this study. The correlation values are between −1 and 1, with −1 indicat-
ing a negative linear correlation, 0 expressing no relation, and +1 denoting a perfect linear
correlation. This correlation measurement aims to identify the most appropriate method
for the four SSIM methods used in this study. Spearman’s rank correlation coefficient can
be obtained as

ρ = 1−
6 ∑P

p=1 d2
p

n(n2 − 1)
, (21)

where ρ denotes the correlation, dp expresses the difference in p-th rank between MOS and
reconstructed images, and n is the number of reconstructed images in each case for every
optical property, as stated in Section 3.1. In this case, n was 21. However, when there are
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ties in the rank, the correction factor c f is added as a summation to Equation (21); thus, it
can be expressed as

c f =
m3 −m

12
, (22)

ρ = 1−
6
(

∑P
p=1 d2

p +
m3

1−m1
12 +

m3
2−m2
12 + . . .

)
n(n2 − 1)

, (23)

where m1, m2, . . . are element numbers in the tie ranks. These c f will be in numbers
following the number of ties ranked.

3. Results and Discussions

To avoid uncertainty, we emphasized the use of reconstructed images from DOT
simulations. Section 3.1 states the image reconstruction model by describing the results
for the used simulation cases, and Section 3.2 defines the image assessment by showing
the results for each used SSIM type, which were then compared with MOS by applying
Spearman’s rank correlation.

3.1. Image Reconstruction Model

The simulated model used in this study was constructed to mimic breast tissue. A
circular array with a group of finite element meshes comprised 4225 nodes, and 8192 trian-
gle elements were implemented for the forward model. In addition, around the 80 mm of
the diameter model boundary, 16 light sources and 16 detectors were attached to obtain
the tissue information. Because there were 16 light sources and 16 detectors, the total
measurement was 256 for the image reconstruction procedure. The total source detector
(SD) was 32; hence, the distance between one source to another source and one detector
to another detector was 22.5◦. Moreover, the distance between SD was 11.25◦. Figure 6a
depicts the model geometry mesh designed to mimic breast tissue, with the attached red
dots indicating light sources and the green rectangles as the detectors. S1 indicates sensor
1, and d1 denotes detector 1. The measurement began with S1 as the light source, and then
proceeded from d1 to d16 as the detectors to obtain the light intensity around the boundary.
This measurement continued until S16 as the light source penetrated the light inside the
tissue model. Therefore, the measurement was rotated in a counterclockwise direction
(CCW). Figure 6b shows the artificial embedded inclusion inside the tissue to mimic a
breast tumor for exact µa distribution. The inclusion location and size were 90◦ and 7.5 mm
in radius, respectively.

Figure 6. Model geometry showing (a) light sources (red dot) and detectors (green rectangle) where
Sn is the n -th sensor and dn denotes the n -th detector, as well as (b) artificial embedded inclusion
position inside the tissue.
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To test the image reconstruction algorithm, a forward problem simulation was applied
to acquire the light distribution. As the FD-DOT was implemented, it offered two solutions
as the results, including light propagation and phase shift. Figure 7 depicts the light
distribution map and the phase shift when S1 was used as the source. Figure 7a,b shows
the photon propagation and phase shift distribution for a homogeneity model. It may
be observed that the light was distributed well inside the model by implementing the
background µa = 0.01 mm−1 and µ′s = 1 mm−1. Furthermore, Figure 7c,d depicts the
light and phase shift distributions when the case shown in Figure 6b was applied. The red
circles indicate inclusion locations. The distributions of the light source and phase shift
inside the inclusion are recognized differently compared with the homogeneity case. These
distributions verify that the inclusion exists in the specified position.

Figure 7. Distribution of (a) light propagation and (b) phase shift for homogeneous case; (c) light
propagation and (d) phase shift for heterogeneous case, as in Figure 6b with the red circle, which
shows the inclusion position when S1 was used as the source.

The log intensity measured around the boundary was inspected to confirm the results
shown in Figure 7. Figure 8 depicts the light and phase shift around the boundary by
using the simulated data from the detectors when S1 was used as the source. Figure 8a
demonstrates the intensity from d1 to d16. The light intensity from d4 to d9 indicated the
differences in the intensity between the homogeneous (black, dashed lines) and hetero-
geneous (red, dashed lines) cases, whereas the phase shift was varied from d4 to d9, as
shown in Figure 8b. These results indicated that the data around the boundary can be
obtained by the DE method using the FEM. The next step was an inverse solution to yield
the reconstructed optical property images.
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Figure 8. Obtained (a) light intensity and (b) phase shift from detectors attached around the model
when S1 was used as the source with a red, dashed line, indicating heterogeneity, and black, dashed
line for homogeneity.

To proceed with the entire process, an inverse solution was performed with different
numbers of elements and nodes to avoid inverse crime; hence, 1536 triangular elements
and 817 nodes were used. To achieve the purpose of this research, the reconstruction
was performed in two cases representing homogeneous, invisible, and visible inclusions,
as shown in Table 1. The representation of homogeneity in cases A1 and A2 was that
the inclusion radius, µa, and µ′s were zero. To imitate invisible inclusion in case A1, the
inclusion radius was 2.5 mm with µa = 0.02 mm−1 and µ

′
s = 2 mm−1, whereas the

visible inclusion was 10 mm of the radius alongside µa = 0.02 mm−1 and µ
′
s = 3 mm−1.

In contrast, for case A2, the unseeable inclusion used 2.5 mm of the radius along with
µa = 0.02 mm−1 and µ

′
s = 0.89 mm−1, whereas the distinguishable inclusion used 10 mm

as the radius, as well as µa = 0.03 mm−1 and µ
′
s = 0.89 mm−1.

Table 1. Simulation cases with the background µa = 0.01 mm−1 and µ′s = 1 mm−1.

Case Inclusion Radius (mm) µa
(
mm−1) µ’

s
(
mm−1) Represent

A1

0 0 0 Homogeneous

2.5 0.02 2 Invisible

10 0.02 3 Visible

A2

0 0 0 Homogeneous

2.5 0.02 0.89 Invisible

10 0.03 0.89 Visible

Figure 9 depicts the reconstructed images for case A1, whereas Figure 10 shows
the reconstructed images for case A2. Figures 9a–c and 10a–c depict the reconstructed
µa of homogeneous, invisible, and visible inclusions for cases A1 and A2, respectively,
whereas Figures 9d–f and 10d–f depict the reconstructed µ′s of homogeneous, invisible,
and visible inclusions for cases A1 and A2, respectively. These results indicated that the
algorithm successfully reconstructed the optical properties; thus, it may be promising for
the reconstruction using the other cases in simulation to accomplish the goal of this research.
The circular profile used to examine the reconstructed images was applied over the image.
Figures 11 and 12 depict the circular profile for Figures 9 and 10. Figure 11a a show the
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homogeneous circular profile for Figure 9a,d and Figure 10a,d. Moreover, Figures 11b
and 12b illustrate the invisible circular profile in Figure 9b,e and Figure 10b,e, whereas
Figures 11c and 12c show the visible circular profiles in Figure 9c,f and Figure 10c,f. These
circular profiles demonstrated that 2.5 mm as an inclusion radius with a low-ratio contrast
could not be reconstructed; however, with the large inclusion size with high contrast, it
was possible to reconstruct the optical properties.

Figure 9. Reconstructed image of case A1, as shown in Table 1, representing (a) µa homogeneous,
(b) µa invisible inclusion, (c) µa visible inclusion, (d) µ′s homogeneous, (e) µ′s invisible inclusion, and
(f) µ′s visible inclusion.

Figure 10. Reconstructed image of case A2, as shown in Table 1, representing (a) µa homogeneous,
(b) µa invisible inclusion, (c) µa visible inclusion, (d) µ′s homogeneous, (e) µ′s invisible inclusion, and
(f) µ′s visible inclusion.
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Figure 11. Circular profile of case A1 for (a) homogeneous, (b) invisible inclusion, and (c) visible inclusion.

Figure 12. Circular profile of case A2 for (a) homogeneous, (b) invisible inclusion, and (c) visible inclusion.

3.2. Image Assessment

As the results show in Section 3.1, the simulation proceeded to image assessment
based on the computer observer using the reconstructed images to test numerical assess-
ment with four types of SSIM: MSSIM, MS-SSIM, MISSIM-S, and MS-ISSIM-S. Hence, the
objective decision numerically could be determined to distinguish between detectable and
undetectable inclusions. Several uncertainties are encountered in medical image analysis;
thus, medical image insight along with the medical background is required to prevent
misconceptions, and individual or subjective assessments are highly preferable. This
research attempted to manage the assessment method to analyze reconstructed images
numerically; thus, the inspection could be more objective because the numerical method
(computer-based observer) tended to be used. To avoid ambiguities in measuring the
reconstructed DOT images, only simulated images were assigned in this study.

To obtain the reconstructed images, the cases shown in Table 2 were simulated with
the inclusion location, as shown in Figure 6b. Additionally, 1% noise amplitude and 10%
noise amplitude, phase, and optical properties were simultaneously completed to imitate
the real environment. In this study, 168 reconstructed images involving 84 µa and 84 µ′s
images were used. The inclusion radii were 2.5, 3.75, 5, 6.25, 7.5, 8.75, and 10 mm with
the same µa = 0.02 mm−1 by changing µ

′
s = 2, 2.5, and 3 mm−1, namely, case B1. Case

B2 had the same situation as case B1, but different optical properties, such as the same
µ
′
s = 0.89 mm−1 with µa = 0.02, 0.025, and 0.03 mm−1. A total of 672 assessments were

performed.
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Table 2. Simulation cases for image assessment.

Case Inclusion Radius (mm) µa
(
mm−1) µ’

s
(
mm−1)

B1
2.5/3.75/5/6.25/7.5/8.75/10

0.02 2/2.5/3

B2 0.02/0.025/0.03 0.89

Because the SSIM is a full-reference image analysis, four reference images were nec-
essary. Figure 9a,d was utilized as the µa and µ′s reference images for case B1 with 1%
noise amplitude and 10% noise amplitude, phase, and optical properties. Figure 10a,d
was employed for case B2 with 1% noise amplitude and 10% noise amplitude, phase, and
optical properties. Figure 13 depicts the comparison of the four types of SSIM evaluations
for case B1 with 1% noise amplitude. The MS-ISSIM-S score decreased with the contrast
ratio and inclusion size, as well as when every part, denoted by a magenta, dashed line, was
examined in detail, and the similarity scores for MS-ISSIM-S showed a decreasing relation-
ship with the contrast, as shown in Figure 13a. Meanwhile, for µ′s, MS-SSIM exhibited an
almost similar trend to that of MS-ISSIM-S, as shown in Figure 13b. MSSIM and MISSIM-S
demonstrated inconsistency in contrast and size. In addition, case B1 was observed with
10% noise amplitude, phase, and optical properties. Again, MS-ISSIM-S showed reliability
related to the contrast and size for each part with the magenta, dashed line border, whereas
MSSIM, MS-SSIM, and MISSIM-S were inappropriate with respect to contrast and size, and
even similarities scores fluctuated, as shown in Figure 14a. MS-SSIM compared with MS-
ISSIM-S, as shown in Figure 14b, had a slightly different trend, but showed inconsistency in
contrast, whereas MSSIM and MISSIM-S were exceptionally inconsistent with the contrast
and size. Figure 15a illustrates a similar tendency for MS-ISSIM-S and MS-SSIM when the
contrast was increased. The similarity score must be decreased because the inclusion inside
the tissue was to be detectable, as well as with the larger inclusion size. However, MSSIM
and MISSIM-S were difficult to use in terms of contrast and size. Similar results are also
shown in Figure 15b. To complete the entire computer-based observer evaluation, case B2
was simulated with 10% noise amplitude, phase, and optical properties. Even though the
applied noise was 10%, the performance of MS-ISSIM-S was superior to that of MSSIM,
MS-SSIM, and MISSIM-S because the similarity score was decreased with respect to the
contrast and decreased relatively with the larger inclusion size, as shown in Figure 16a.
Moreover, for µ′s, MS-ISSIM-S exhibited reasonable similarity scores associated with the
contrast and size by showing that with the larger inclusion size and higher contrast the
similarity was reduced. Nevertheless, MSSIM, MISSIM-S, and MS-SSIM were compli-
cated to fit with the contrast ratio in each part, as shown in Figure 16b. As mentioned in
Section 2.3.3, a MISSIM-S improved the MSSIM related to overestimation in the blurred
images and underestimation with respect to translation and scaling; thus, it showed clearly,
especially in Figure 16b, MSSIM overestimated the similarity score of reconstructed images,
while MISSIM-S tried to suit inclusion size by presenting a lower similarity score when the
µ
′
s = 0.89 mm−1, with µa and inclusion sizes at 0.03 mm−1 and 5 mm, and 0.02 mm−1 and

8.75 mm, as well as 0.03 mm−1 and 8.75 mm, respectively. Nonetheless, the performances
of MSSIM and MISSIM-S demonstrated inconsistency with the contrast ratio and inclusion
size. In contrast, MS-ISSIM-S offered stability in measuring the DOT-reconstructed images
by performing the reducing of similarity scores following the raising of inclusion contrast,
as shown in Figures 13–16.
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Figure 13. Four types of SSIM similarity score of case B1 with 1% noise amplitude for (a) µa and (b) µ′s.
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Figure 14. Four types of SSIM similarity score of case B1 with 10% noise amplitude, phase, and optical properties for (a) µa

and (b) µ′s.
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Figure 15. Four types of SSIM similarity score of case B2 with 1% noise amplitude for (a) µa and (b) µ′s.
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Figure 16. Four types of SSIM similarity score of case B2 with 10% noise amplitude, phase, and optical properties for (a) µa

and (b) µ′s.

To confirm the performance of these four types of SSIM, the MOS and Spearman’s
rank correlation were used, as described in Section 2.5. There were 20 test subjects, none
of whom had eye issues, such as color blindness. To measure the MOS, the subjects were
shown the reconstructed images, as in Table 2, and provided their opinion in scores in the
range of 1 (the inclusion is not detectable) until 5 (the inclusion is very detectable). The
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experiments were performed under an adjusted illumination and display. These MOS
scores were subjective according to the participant’s own individual opinions; thus, they
are not credible. However, the MOS scores can imply a relative comparison by using the
Spearman’s rank correlation when the comparisons were performed between the similarity
scores in four SSIM types with MOS scores.

Table 3 shows the correlation scores for the four SSIM types. MISSIM-S was not appro-
priate in terms of human visual perception in the case of assessing the DOT-reconstructed
images because this technique is designed to overcome the MSSIM underestimation related
to translation and scaling and overestimation associated with blurred images. Therefore,
MISSIM-S is superior when the comparison is regarding translation and scaling images.
However, MS-SSIM is better than MSSIM because it measures images at various scales.
Apparently, MS-SSIM works satisfactorily because it can evaluate distorted images well;
thus, MS-ISSIM-S was developed in this research based on the advantages of MISSIM-S
and MS-SSIM. As shown in Table 3, MS-ISSIM-S presents the highest correlation average
score compared to MOS, followed by MS-SSIM, MSSIM, and MISSIM-S. MS-ISSIM-S was
more stable in assessing the DOT-reconstructed images with correlation scores from 0.8552
to 0.9955, although the reconstructed images had several image distortions due to the
limitations of the algorithm, such as resolution and sensitivity. In addition, MS-SSIM was
shown to be promising for the objective assessment of the DOT-reconstructed images, but
it had uncertainty in case B1 with 10% noise amplitude, phase, and optical properties, with
a correlation score of 0.6864. Nonetheless, the correlation scores were between 0.6864 and
0.9964. MSSIM and MISSIM-S presented unsatisfactory correlations, as it may be observed
that MSSIM correlations were 0.6532 to 0.9740 and the MISSIM-S correlations were −0.0974
to 0.9487.

Table 3. Correlation by providing the average score using Spearman’s rank between MOS and four
types of SSIM.

Case MSSIM MISSIM-S MS-SSIM MS-ISSIM-S

B1 with 1% noise amplitude
0.9273 0.7636 0.9964 0.9955

0.9403 0.8545 0.9792 0.9565

B1 with 10% noise amplitude,
phase, and optical properties

0.8091 –0.0974 0.6864 0.9623

0.8630 0.7578 0.9325 0.8552

B2 with 1% noise amplitude
0.9640 0.9487 0.9909 0.9857

0.9740 0.4146 0.9205 0.9425

B2 with 10% noise amplitude,
phase, and optical properties

0.6532 0.2019 0.9792 0.9805

0.9208 0.5779 0.9481 0.8831

Average 0.8815 0.5527 0.9291 0.9452

Using Spearman’s rank correlation, it is evident that MS-ISSIM-S performed a robust
assessment by showing the best correlation scores and suitable values for the contrast and
inclusion size, as shown in Table 3 and Figures 13–16. Therefore, a median was used as the
threshold value to separate the visible and invisible inclusions. Because the ultimate goal
of this research was to evaluate the image numerically based on a computer decision, a
comparison was performed between MS-ISSIM-S and MOS to validate the algorithm, as
shown in Figures 17–20.

Figure 17a–d depicts the comparison for case B1 with 1% noise amplitude, as well as
the red line to distinguish visible inclusions on the right and invisible on the left. Figure 17
shows that MS-ISSIM-S (Figure 17a,c) had the same results as MOS (Figure 17b,d); thus, in
this case, MS-ISSIM-S performed perfectly. Moreover, Figure 18a,b has a similar condition
for splitting the detectable and undetectable inclusions. However, for µ

′
s, case B1 with 10%

noise amplitude, phase, and optical properties, as shown in Figure 18c, differed slightly
from Figure 18d. Unfortunately, due to aiming to mimic the real environment with adequate
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noise, Figure 18c shows two errors in assessing the images indicated by the red rectangles.
Two red rectangles mean detectable inclusion, whereas the true condition was undetectable
inclusion. Yet, to determine a value as a threshold value is not trivial [10]; thus, to determine
the algorithm performance, more simulated cases are needed. However, MS-ISSIM-S
exhibited more stable results in image assessment of DOT than the other models compared,
according to the results, as shown in Table 3. Figure 19a,b has the same results, indicating
that MS-ISSIM-S fit with the MOS, whereas Figure 19c depicts one detectable error for
size 3.75 mm with µ

′
s = 0.89 mm−1 and µa = 0.03 mm−1 compared with Figure 19d.

Figure 20a,b has slightly different results because this case had excessive implemented
noise. Furthermore, Figure 20c has one detectable error compared to Figure 20d. As
shown in Figures 17–20, MS-ISSIM-S can be promising in assessing a group of DOT-
reconstructed images with low noise. To complete the results, the MS-ISSIM-S similarity
scores represented in the color map were recorded. Figures 21 and 22 depict these color
maps. Figure 21a–d represents the reconstructed image, as shown in Figures 17a,c and 18a,c,
whereas Figure 22a–d demonstrates the reconstructed image, as shown in Figures 19a,c
and 20a,c. As can be seen, with lower optical property contrast and small inclusion, such
as µa = 0.02 mm−1, µ

′
s = 2 mm−1, and inclusion size 2.5 mm, the color map was bright,

indicating a high similarity score, and, thus, there was no inclusion. In contrast, with the
high contrast ratio and larger inclusion, for instance, µa = 0.02 mm−1, µ

′
s = 3 mm−1, and

an inclusion size of 10 mm, the similarity score was lower, represented by the dark color,
indicating the presence of an inclusion. With these results, SSIM, especially MS-ISSIM-S,
shows promise as an option to assess numerically and objectively the image based on
computer, regardless of insight in the medical image analysis field. However, experts are
necessary to reach a decision in medical applications. Moreover, since we only presented
the DOT-reconstructed images from simulation cases, to confirm the results in this paper,
clinical image analyses by medical doctors specialized in radiology are necessary to obtain
the comprehensive insight of the improved SSIM, especially for MS-ISSIM-S. Once again,
the goal of a computer-based observer for medical images is to assist radiologists to achieve
a conclusion in the medical field. The comparisons between radiologists’ points of view
with the results of this research shortly are essential. In addition, the threshold value
here was presented by employing the median for simplicity; hence, further research must
consider an appropriate method to conclude this threshold.

Figure 17. Reconstructed images of case B1 with 1% noise amplitude; red line indicates the invisible (left side) and visible
(right side) inclusions: (a) µa MS-ISSIM-S, (b) µa MOS, (c) µ′s MS-ISSIM-S, and (d) µ′s MOS.
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Figure 18. Reconstructed images of case B1 with 10% noise amplitude, phase, and optical properties; red line indicates the
invisible (left side) and visible (right side) inclusions: (a) µa MS-ISSIM-S, (b) µa MOS, (c) µ′s MS-ISSIM-S, and (d) µ′s MOS.

Figure 19. Reconstructed images of case B2 with 1% noise amplitude; red line indicates the invisible (left side) and visible
(right side) inclusions: (a) µa MS-ISSIM-S, (b) µa MOS, (c) µ′s MS-ISSIM-S, and (d) µ′s MOS.
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Figure 20. Reconstructed images of case B2 with 10% noise amplitude, phase, and optical properties; red line indicates the
invisible (left side) and visible (right side) inclusions: (a) µa MS-ISSIM-S, (b) µa MOS, (c) µ′s MS-ISSIM-S, and (d) µ′s MOS.

Figure 21. Color map of the MS-ISSIM-S score for (a) Figure 17a; (b) Figure 17c; (c) Figure 18a; and
(d) Figure 18c.
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Figure 22. Color map of the MS-ISSIM-S score for (a) Figure 19a; (b) Figure 19c; (c) Figure 20a; and
(d) Figure 20c.

4. Conclusions

A reconstruction algorithm was implemented to produce DOT-reconstructed images.
Simulated cases generating reconstructed images with 1% noise amplitude and 10% noise
amplitude, phase, and optical properties were employed. To numerically assess the images,
four types of SSIM were used to obtain the similarity scores. To confirm the results,
Spearman’s rank correlation was utilized to compare the four SSIMs with MOS. MS-ISSIM-
S showed the best correlation, with a score between 0.8552 and 0.9955 and an average
correlation of 0.9452, representing a robust image assessment regardless of the noise. A
comparison of MOS and MS-ISSIM-S to yield a suitable HVS was performed by separating
the image into two sections with the assistance of a threshold value, as indicated graphically
by a red line. MS-ISSIM-S demonstrated acceptable results when it measured images with
low noise, but the association with HVS was relatively reliable. In addition, with lower
optical property contrast and small inclusion, the color map was bright, indicating a
high similarity score; thus, there was no inclusion. In contrast, the similarity score of
regions with a high contrast ratio and larger inclusion was lower, represented by the dark
color; hence, an inclusion was present. These results indicated that SSIM, particularly MS-
ISSIM-S, is a promising option for the numerical and objective computational assessment
of reconstructed images, regardless of specialized insight in the field of medical image
analysis. However, experts naturally remain necessary to make specific medical decisions.
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