



Supplementary material

## Label-Free and Highly-Sensitive Detection of Ochratoxin A Using One-Pot Synthesized Reduced Graphene Oxide/Gold Nanoparticles-Based Impedimetric Aptasensor

Yasmin Alhamoud <sup>1</sup>, Yingying Li <sup>1</sup>, Haibo Zhou <sup>2</sup>, Ragwa Al-Wazer <sup>3</sup>, Yiying Gong <sup>1</sup>, Shuai Zhi <sup>1,\*</sup> and Danting Yang <sup>1,\*</sup>

- <sup>1</sup> Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; yasminalhamoud@zju.edu.cn (Y.A.); 176001260@nbu.edu.cn (Y.L.); 176001002@nbu.edu.cn (Y.G.)
- <sup>2</sup> Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; haibo.zhou@jnu.edu.cn
- <sup>3</sup> Department of Pharmacy, Faculty of Applied Medical Sciences, Yemeni Jordanian University, 1833 Sana'a, Yemen; a\_ragwa@outlook.com
- \* Correspondence: zhishuai@nbu.edu.cn (S.Z.); yangdanting@nbu.edu.cn (D.Y.)

| Sample | GO   | HAuCl4·4H2O (µL) | Glucose | Temperature | Reaction |
|--------|------|------------------|---------|-------------|----------|
|        | (mg) |                  | (mg)    |             | Time     |
| а      | 20   | 0                | 0       | RT          | 0        |
| b      | 20   | 400              | 20      | RT          | 12 h     |
| С      | 20   | 400              | 20      | 180 °C      | 12 h     |
| d      | 20   | 400              | 0       | 180 °C      | 12 h     |

Table S1 Investigations of glucose role in thermal reduction process for 3D-rGO/AuNPs nanocomposites



Figure S1 The optical images of sample a GO, b GO reduction without high temperature, c rGO/AuNPs with glucose and d rGO/AuNPs without glucose (detailed parameters were in Table S1)

| Sample | GO   | HAuCl <sub>4</sub> ·4H <sub>2</sub> O (µL) | Glucose | Reaction |
|--------|------|--------------------------------------------|---------|----------|
|        | (mg) |                                            | (mg)    | time (h) |
| а      | 20   | 200                                        | 20      | 12       |
| b      | 20   | 400                                        | 20      | 12       |
| С      | 20   | 1000                                       | 20      | 12       |
| d      | 20   | 1500                                       | 20      | 12       |

Table S2 Optimized parameters of different volumes of HAuCl<sub>4</sub>·4H<sub>2</sub>O for 3D-rGO/AuNPs nanocomposites

Table S3 Optimized parameters of different amounts of glucose for 3D-rGO/AuNPs nanocomposites

| Samp | le GO (mg | g) HAuCl4·4H | H2O Glucose | e Reaction |
|------|-----------|--------------|-------------|------------|
|      |           | (μL)         | (mg)        | time (h)   |
| а    | 20        | 400          | 20          | 12         |
| b    | 20        | 400          | 500         | 12         |
| С    | 20        | 400          | 1500        | 12         |



Figure S2 (A-C) The Nyquist plots of GCE after every step of fabrication of nanomaterial (b, c, d), aptamer, BSA, and OTA; (D) CV curves of sample b, c, and d fabricated GCE



Figure S3 Optimization of (A) concentrations of 3D-rGO/AuNPs, (B) concentrations of aptamer, (C) incubation time of aptamer, (D) incubation time of OTA with aptamer.



Figure S4 Calibration curve of detection of OTA in red wine based on  $\triangle R_{CT}$  vs. log (OTA concentration)