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Abstract: As an important DNA 3′-phosphatase, alkaline phosphatase can repair damaged DNA
caused by replication and recombination. It is essential to measure the level of alkaline phosphatase to
indicate some potential diseases, such as cancer, related to alkaline phosphatase. Here, we designed
a simple and fast method to detect alkaline phosphatase quantitively. When alkaline phosphatase is
present, the resulting poly T-DNA with a 3′-hydroxyl end was cleaved by exonuclease I, prohibiting
the formation of fluorescent copper nanoparticles. However, the fluorescent copper nanoparticles can
be monitored with the absence of alkaline phosphatase. Hence, we can detect alkaline phosphatase
with this turn-off strategy. The proposed method is able to quantify the concentration of alkaline
phosphatase with the LOD of 0.0098 U/L. Furthermore, we utilized this method to measure the
effects of inhibitor Na3VO4 on alkaline phosphatase. In addition, it was successfully applied to
quantify the level of alkaline phosphatase in human serum. The proposed strategy is sensitive,
selective, cost effective, and timesaving, having a great potential to detect alkaline phosphatase
quantitatively in clinical diagnosis.
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1. Introduction

Alkaline phosphatase (ALP), a ubiquitous enzyme found in human tissues such as
the liver, intestine, bone, kidney, and placenta, is a homodimeric enzyme with necessary
cofactors, including one magnesium atom and two zinc atoms [1,2]. Studies have shown
that ALP is able to catalyze alkaline hydrolysis of nucleic acids, proteins, and some small
molecules, which are phosphate [1,3–5]. Owing to the indispensable role in many physi-
ological processes such as cell cycle, growth, apoptosis, and signal transduction, ALP is
closely connected to multiple human diseases, especially bone and hepatic diseases [5–7].
The concentration of ALP in healthy people’s serum is 46–190 U/L [8]. Hence, any ab-
normal level of ALP in the serum may be an essential indicator of some diseases related
to ALP function, such as diabetes, breast cancer, prostatic cancer, bone diseases, such as
osteosarcoma, and hepatic diseases, e.g., Wilson’s disease. So ALP levels in the serum
may be an effective biomarker in medical diagnosis [9–11]. Furthermore, Prakash et al.
have recently found that the level of ALP in saliva (readily accessible, safe, and nonin-
vasive body fluid) may be able to serve as an early biomarker for diabetes mellitus and
some potentially malignant tumors [12]. In addition, ALP is capable of generating signals
for the analytes by conjugating to streptavidin or the second antibody in the biological
analysis, such as enzyme-linked immunosorbent assay (ELISA), histochemical staining,
and aptamer-based assay [13,14]. As a result, the detection limit of analytes is highly
dependent on the detection limit of ALP in these biological analyses. Besides, due to its
ability to monitor phosphorus-related water eutrophication, ALP is a good indicator of
algal boom [15]. Therefore, it is of great importance to developing a facile and sensitive
method to detect ALP.
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A number of diverse methods and techniques, including colorimetric assay, electro-
chemistry, chromatography, photometric assay, photoelectrochemical assay and surface-
enhanced Raman scattering methods, have been developed to date to detect the concentra-
tion of ALP that catalyzes the dephosphorylation process of different substrates [16–23].
However, these traditional methods inevitably suffer from one or more limitations, such
as time-consuming procedures, poor sensitivity, exorbitant material requirement, and use
of complex devices. Recently, fluorometric methods have caught people’s eyes for their
advantages such as simplicity, convenience, rapid response, and high sensitivity [24,25].

Due to the simplicity, high sensitivity, low cost, and rapidness, nanomaterial-based
probes have attracted considerable attention lately [26]. On account of the fluorescence of
some nanoparticles, including copper nanoparticles (CuNPs), silver nanoparticles (AgNPs),
and gold nanoparticles (AuNPs), the signals can be monitored by spectrometers [27,28]. In
recent years, some efforts have been made towards the detection of ALP by measuring the
fluorescence intensity of nanoparticles. Chen and his coworkers successfully screened the
concentration of ALP with a LOD of 0.125 U/L by constructing a sequentially triggered
nanoswitch depending on CuNPs using single-stranded poly-(thymine) (poly T) DNA
as a template [29]. Chen et al. reported that AgNPs formed by Ag+ and CdTe quantum
dots could detect ALP with LOD of 0.25 U/L [30]. Lin et al. proposed a rapid method
to detect ALP, based on redox-modulated silver deposition on AuNPs, with LOD of
0.52 U/L [31]. Among these assays, poly T DNA-templated CuNPs is remarkable owing
to their simple procedure, less necessity of DNA templates, and rapid formation with the
support of ascorbate to reduce Cu2+ within just a few minutes [32]. Moreover, poly T DNA-
templated CuNPs are a prominent fluorescence probe, which exhibits a maximum λem
at 615 nm with large MegaStrokes shifting with the ability to remove strong background
signal from complex biological systems [33]. Considering that poly T DNA, an ideal
template of fluorescent CuNPs, can be modified by the removal of a phosphate group from
the 3′-end catalyzed by ALP, we have proposed a method for the measurement of ALP
concentration with LOD of 0.0098 U/L requiring only 50 min based on terminal protection
and fluorescent CuNPs. As far as we know, this is the first exonuclease I-aided turn-off
fluorescent strategy for ALP assay based on terminal protection and CuNPs with high
sensitivity in a short time.

2. Materials and Methods
2.1. Materials and Reagents

The alkaline phosphatase and exonuclease I were purchased from Takara Biotechnol-
ogy Co., Ltd. (Dalian, China). Tris (hydroxymethyl) methyl aminomethane hydrochloric
acid (Tris-HCl), magnesium chloride (MgCl2), sodium chloride (NaCl), 3′-(Nmorpholino)
propanesulfonic acid (MOPS), copper sulfate (CuSO4), and sodium ascorbate were ob-
tained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Na3VO4 was
bought from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). The DNA probe
is T30: 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-p-3′, it was synthesized by Shanghai
Sangon Biotech Co. Ltd. (Shanghai, China). All the other reagents were of analytical grade.

2.2. Apparatus

The fluorescence emission spectra were recorded on Hitachi F-2700 fluorescence
spectrophotometer (Hitachi Ltd., Tokyo, Japan) at the excitation wavelength of 340 nm
that was obtained from 550 nm to 650 nm at room temperature. The resulting error was
obtained from three repeated measurements, and statistical methods were used to collate
and analyze the data during the experiment.

2.3. The Quantitative Detection of ALP

To measure the activity of ALP quantitatively, T30 (2 µM) and ALP solutions of different
concentrations were added into Tris-HCl buffer, and the resultant solution was incubated at
37 ◦C for 10 min and 80 ◦C for 20 min. After that, Exo I (40 U/mL) was added to the above
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solution, and the resulting solution was incubated at 37 ◦C for 10 min. Subsequently, 73 µL of
MOPS buffer, 0.36 µL of CuSO4 (28 mM), 1 µL of sodium ascorbate (500 mM) were added
into the solution to get a final volume of 100 µL, and the resulting solution was incubated
at room temperature for 10 min to form CuNPs. Finally, the fluorescence spectra of all the
samples were recorded by the F-2700 fluorescence spectrophotometer.

2.4. Gel Electrophoresis Analysis

The 20% denaturing urea polyacrylamide gel electrophoresis (Urea-PAGE) in 1xTBE
(89 mM Tris-boric acid, 2 mM EDTA, pH 8.3) was used to analyze the feasibility of the
proposed method at 150 V for 105 min. Afterwards, silver staining was employed as the
staining method to show the different products formed under different conditions.

3. Results
3.1. Sensing Strategy of ALP Detection

The method we proposed to measure the activity of ALP quantitatively is schemati-
cally illustrated in Scheme 1. A poly T-DNA with a phosphate modification at 3′-end is
designated as the substrate of ALP. In the presence of ALP, the phosphate group is removed
to liberate the phosphate group from the 3′-end so that there is a free 3′-OH which can
be discerned by 3′ single-stranded-specific exonuclease I (Exo I) [34]. Afterwards, the
poly T-DNA can be split off into small fragments losing its ability to act as the template
of CuNPs despite the existence of Cu2+ and sodium ascorbate. On the contrary, in the
absence of ALP, the poly T-DNA with a 3′-phosphoryl can’t be recognized by Exo I, so that
integrated poly T-DNA becomes an ideal template for the formation of fluorescent CuNPs
in the presence of Cu2+ and sodium ascorbate in the solution. Ultimately, the activity of
ALP can be quantified by screening the fluorescent intensity changes.
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Scheme 1. Schematic illustration of fluorescent ALP activity analysis based on DNA-templated CuNPs.

3.2. Verification of the Feasibility of the Sensing Strategy

In order to demonstrate the feasibility of the proposed strategy, a series of experiments
were carried out with or without ALP. As illustrated in Figure 1A, the CuNPs couldn’t
form in the presence of ALP and Exo I (curve a). However, in the absence of ALP or Exo I,
high fluorescence signals were observed (curve b, curve c). In addition, 20% Urea-PAGE
stained by silver was employed to verify the feasibility of the proposed approach as well.
Figure 1B shows that T30 disappeared in the presence of ALP and Exo I (lane 3). Nev-
ertheless, when there was no ALP and Exo I (lane 2) or no ALP present (lane1), T30
could be stained by silver. These results verified the feasibility of the proposed strategy to
detect ALP.
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3.3. Optimization of Experimental Conditions

We investigated the effects of different assay conditions, including the concentration
of T30, the concentration of Exo I, the concentration of Cu2+, the reaction time of ALP,
and the reaction time of Exo I. The fluorescence intensity ratios of the controlled group to
the experimental group (F0/F) changed with varying assay conditions. As illustrated in
Figure 2A–E, we found the optimal reaction condition as follows: 2 µM T30, 40 U/mL Exo I,
10 µM Cu2+ solution, a reaction time of 10 min between ALP and T30, and Exo I reaction
time of 10 min.
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3.4. Quantitative Fluorescence Measurement of ALP Activity

In the present study, we have investigated the fluorescence responses of the proposed
analytical method in varying concentrations of ALP under optimized conditions. As
displayed in Figure 3A, the peak of fluorescence intensities decreased gradually when
the concentrations of ALP increased from 0 to 20 U/L. The relationship between the F0-F
[the fluorescence intensities (at 615 nm) of the controlled group minus the fluorescence
intensities (at 615 nm) of the experimental group] and the activity of ALP is plotted in
Figure 3B, where we can observe that F0-F values linearly increased with the concentration
of ALP ranging from 0.01 to 5 U/L (regression coefficient R2 = 0.9979). The evaluated
detection limit of the proposed strategy is 0.0098 U/L according to the 3σ rule, which
is comparable or better than the existing methods (Table 1). Therefore, these results
demonstrated the satisfactory sensitivity of the proposed method towards ALP.
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Table 1. Comparison of different methods for the detection of ALP.

Methods LOD (U/L) Dynamic Range
(U/L) Reference

Colorimetric 0.52 3–18 [25]
Electrochemiluminescence 0.80 5–50 [20]

Photometric 0.68 1–210 [21]
Ratiometric assay 0.0017 0.005–60 [22]

Photoelectrochemical 0.06 0.1–4000 [23]
Electrochemical 0.20 3–50 [35]

Fluorescence AgNPs 0.25 1–1000 [30]
Fluorescence carbon dots 0.02 0.05–40 [4]

Fluorescence CuNPs 0.0098 0.01–5 This work

3.5. Selectivity Assay

To demonstrate the selectivity of the proposed strategy, the interfering proteins such
as UDG, T4 DNA Ligase and Nb. BtsI, in the same concentration as ALP [13,14,36], were
evaluated using the present method. As illustrated in Figure 4, the interfering proteins all
arouse strong fluorescence responses except ALP, indicating the prominent specificity of
the proposed approach.
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3.6. ALP Inhibition Investigation

Na3VO4, reported to be one of the inhibitors of ALP, was chosen as the inhibitor to
be applied. As shown in Figure 5, the value of relative activity of ALP decreased upon
increasing the concentration of Na3VO4 from 0 to 0.75 mM. The inset graph indicated a
linear relationship (R2 = 0.9126) between the relative activity and low Na3VO4 concentra-
tions. The half-maximal inhibitory concentration (IC50) of Na3VO4 was calculated to be
0.433 mM. The results demonstrate that the proposed method can be applied to screen ALP
inhibitors potentially.
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3.7. ALP Assay in Diluted Human Serum Samples

To investigate the practical feasibility of the proposed strategy, a variety of concentra-
tions of ALP, including 0.5 U/L, 3 U/L, and 5 U/L, were tested by the proposed method
while adding a human serum into the reaction buffer to simulate the complex biological
environment during the experimental procedures. As illustrated in Table 2, the recov-
ery rates of various concentrations of ALP in 1% human serum diluted were 97.15% for
0.5 U/L, 102.11% for 3 U/L and 99.89% for 5 U/L with R.S.D of 7.95%, 8.73%, and 1.09%,
respectively. Therefore, the results displayed that the proposed strategy has great potential
in practical applications.

Table 2. Recovery experiments of ALP in human serum samples.

Sample Added (U/L) Found (U/L) Recovery

1 0.5 0.49 ± 0.04 97.15%
2 3 3.06 ± 0.27 102.11%
3 5 4.99 ± 0.05 99.89%

4. Conclusions

The proposed turn-off strategy shows high sensitivity, high selectivity with facile
procedures in a short time in the quantification of ALP. Therefore, it has great poten-
tial to be utilized in the biological studies, early diagnosis and prognosis of some dis-
eases related to the activity of ALP, such as diabetes, breast cancer, and prostatic cancer
clinically [9–11]. However, there are still some challenges to overcome in practical applica-
tions. For example, this method requires a different reaction buffer which is a challenge in
practical applications.

In conclusion, based on the poly T-DNA-templated formation of fluorescent CuNPs,
we have proposed a facile but sensitive, selective, low-cost, and time-saving ALP assay.
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Besides, the assay depends on Exo I, which can only split off the one-stranded DNA with the
3′-hydroxyl end hydrolyzed by ALP. The proposed strategy showed superiority in a short
time (40 min). The LOD value of 0.0098 U/L for the proposed assay demonstrates its high
sensitivity. Compared with interfering enzymes, including UDG, T4 DNA Ligase, and Nb.
BtsI without obvious variation of fluorescent signals, this method showed high selectivity
to ALP. Moreover, when applied to test ALP levels in diluted human serum samples, with
high recovery rates and low R.S.D, the proposed strategy showed its potentially practical
value with satisfactory results. Given the simplicity, wonderful sensitivity, and high
selectivity of the proposed method, we can envisage that it may find a wide application in
clinical diagnosis and prognosis.
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