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Abstract: Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality
partially due to the limited tools available for diagnosis and classification. Measuring panels of
protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI,
inform treatment decisions, and monitor the progression of the injury. Being able to measure these
protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to
the patient’s hospital bedside. In this review, we provide a detailed discussion of devices reported in
the academic literature and available on the market that have been designed to measure TBI protein
biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI
biomarker measurement devices and suggest future research directions to encourage translation of
these devices to clinical use.

Keywords: traumatic brain injury; biomarkers; microfluidics; electrochemical detection; optical
detection; immunosensors

1. Introduction

Traumatic brain injury (TBI) is considered to be a “silent epidemic” as public awareness
remains low and no new treatments have been approved in the past 30 years [1]. TBI is
the leading global cause of morbidity and mortality in children and young adults, mainly
resulting from motor vehicle accidents, sports injuries, falls, and blasts [2]. An estimated
69 million (95% confidence interval 64–74 million) people across the globe suffer a TBI
annually [3]. In the United States alone, approximately 2.5 million people sustain a TBI
each year, and 52,844 of these individuals die of their injuries [4]. Furthermore, 70–90%
of the annually reported TBIs (1.75–2.25 million) in the United States are considered to be
mild, but even a mild TBI (mTBI) can have a significant effect on an individual’s quality of
life [1,5,6]. In fact, 47.4% of individuals aged 40 years or older in the United States with a
history of head injury are living with a disability, corresponding to 11.4 million people [7].

The high rates of morbidity and mortality associated with TBI are partially due to
limited tools for diagnosis and classification that fail to capture the heterogeneity of TBI-
related injuries and make the development of new treatments challenging [1,8]. Current
diagnostic methods rely on neurological examination (Glasgow Coma Scale (GCS)) and
neuroimaging techniques (computed tomography (CT)) to assess the severity of the injury
and the extent of brain tissue damage. The GCS is used to classify TBI into mild (GCS 13–15),
moderate (GCS 9–12), or severe (GCS 3–8) by examining an individual’s motor, verbal, and
eye-opening response. The GCS was first proposed in 1974 to aid in the clinical assessment
of unconsciousness and has since been used extensively in trauma and critical illness
classification schemes [9]. However, the GCS assessment can be confounded by factors
such as other traumatic injuries, age, medications, and intoxication [10]. Furthermore,
classification of TBI into mild, moderate, or severe has limited utility in the prediction

Biosensors 2021, 11, 319. https://doi.org/10.3390/bios11090319 https://www.mdpi.com/journal/biosensors

https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-8045-1623
https://doi.org/10.3390/bios11090319
https://doi.org/10.3390/bios11090319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bios11090319
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios11090319?type=check_update&version=2


Biosensors 2021, 11, 319 2 of 22

of outcomes for an individual patient [11]. Computed tomography (CT) can be used to
visualize tissue damage and to assess the need for neurosurgical intervention. However,
mTBI is often not associated with abnormalities on head CTs, incurring unnecessary
medical costs and exposing patients to unnecessary radiation [10,12].

Given the limitations in the current TBI assessment methods, there is a need for tools
that can provide precise diagnoses and prognoses across all categories of TBI and enable
accurate and rapid triage and treatment. The measurement of biofluid-based protein
biomarkers released from damaged brain cells into systemic circulation following a TBI
has been proposed to fulfill this clinical need.

2. Traumatic Brain Injury Biofluid Biomarkers

Generally, biomarkers can be classified into three main categories: diagnostic, prog-
nostic, and predictive [13]. A diagnostic marker can be used to detect the presence of a
disease or condition of interest such as blood sugar or hemoglobin A1c in Type 2 diabetes
mellitus [14]. A prognostic marker is used to determine the likelihood of a clinical event or
disease progression. For example, increasing concentrations of prostate-specific antigen
can be used to assess the likelihood of cancer progression [15]. A predictive marker can be
used to identify individuals who are more likely to experience favorable or unfavorable
effects from a therapy. BRCA1/2 mutations are often used to identify patients who are
likely to respond to PARP inhibitors [16]. The classification of protein biomarkers for TBI
assessment is ongoing, and it is likely that the same biomarker could be classified into mul-
tiple categories. For example, glial fibrillary acidic protein (GFAP), a marker of astroglial
damage, has been studied as both a diagnostic and prognostic marker for TBI [17,18].

Regardless of classification, a biomarker must be sensitive and specific [1,19]. Clini-
cally, sensitivity refers to a biomarker’s ability to identify patients who have a disease or
condition, while specificity refers to the biomarker’s ability to identify patients who do not
have the disease [20]. These parameters are influenced by a variety of factors including
assay performance, comorbid conditions, and where and in what quantities a biomarker
is released within the body. In the case of TBI, biomarkers should be measured that are
released primarily from the central nervous system (CNS), and the measurement methods
used should be able to accurately quantify protein concentrations on the order of tens of
picograms per milliliter. To capture the diversity of injured cell types, panels of biomarkers
have been proposed to assess traumatic brain injuries [5,21,22]. As of June 2021, only GFAP
and ubiquitin c-terminal hydrolase L1 (UCH-L1) are FDA cleared to aid in determining the
need for evaluation with a head CT scan in the United States [23]. S100B is currently used
for the same purpose in Europe and may result in a decrease in head CT utilization [24].
Thorough discussions of the current state of TBI biofluid biomarkers can be found in recent
reviews by Wang et al. (2018), Gan et al., and Slavoaca et al. [25–27].

This review summarizes biomarker measurement methods that target TBI assessment.
We categorize these devices both by stage of development (early-stage (academia) or late-
stage (commercially available)) and by detection mechanism. There is a large body of
literature on protein measurement devices and TBI biomarkers have been studied in the
context of other conditions, so we focused on the measurement of proteins in the context of
TBI. For example, there are many studies in which IL-6 was measured, but most are related
to inflammation and sepsis [28–30]. The scope of this review ensures that all included
devices were designed to measure biomarker concentrations in a range that is clinically
relevant to TBI and that any validation experiments were performed using clinical samples
from TBI patients. These parameters allow direct comparisons to be made between devices
and methods. Table 1 provides a detailed list of the TBI protein biomarkers measured by
the devices discussed in this review.
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Table 1. Traumatic brain injury (TBI) protein biomarkers measured by the devices included in this review.

Biomarker Physiological Concentration
Relevant Devices

Name Abbreviation Injury
Information Normal Traumatic

Brain Injury

Adenosine Ado Severity [31] 4–8 nM in CSF [32]
Severe TBI: 8–16 nM up

to 100–800 nM
in CSF [31]

Gunawardhana and
Lunte [33]

Cleaved tau C-tau Neuronal damage
(axons) [34]

2.48–66.54 pg/mL
in serum [35]

Severe TBI:
36.44–192.34 pg/mL

in serum [35]
Khetani et al. [36]

C-reactive protein CRP Prognosis [37,38] 0.642–2.785 mg/L
in serum [39]

mTBI:
2.110–30.932 mg/L in

serum [39]
Apori and Herr [40]

Glial Fibrillary
Acidic Protein GFAP Astrocyte

damage [41]
7–20 pg/mL

in plasma [17]
mTBI: 69–1196 pg/mL

in plasma [17]

Agostini et al. [42]
Arya et al. [43]

Cardinell et al. [44]
Huang et al. [45]
Krausz et al. [46]

Ma et al. [47]
Rickard et al. [48]

Song et al. [49]
Wang et al. [50]

Glutamate - Neuronal damage
(synapses) [51]

0.3–2 µmol/L in brain
extracellular fluid [52]

Severe TBI:
>20 µmol/L in brain

extracellular fluid [53]
Halámek et al. [54]

Zhou et al. [55]

Interleukin-6 IL-6 Inflammation [56] ≤1.8 pg/mL
in serum [57]

Severe TBI:
0–1100 pg/mL in

serum [57]
Krausz et al. [46]

Interleukin-8 IL-8 Inflammation [56] ≤14.6 pg/mL
in serum [58]

Severe TBI:
0–2400 pg/mL in

serum [57]
Krausz et al. [46]

Lactate - Prognosis [59] 6.7–13.9 mg/dL
in whole blood [60]

Moderate to Severe TBI:
5.54–11.34 mg/dL in

whole blood [60]

Manesh et al. [61]
Pita et al. [62]

Lactate
dehydrogenase LDH Severity [63] 77.3–126.3 IU/L

in serum [64]
mTBI:

152.24–247.58 IU/L in
serum [64]

Zhou et al. [55]

N-acetylasparate NAA Neuronal
damage [65]

15.3–36.7 µmol/L in
brain extracellular

fluid [65]

Severe TBI:
8.8–19.1 µmol/L in
brain extracellular

fluid [65]
Rickard et al. [48]

Neurofilament
light NF-L Axonal white matter

damage [66]
11–17 pg/mL
in serum [66]

Severe TBI:
89–413 pg/mL in

serum [66]
Khetani et al. [36]

Neuron Specific
Enolase NSE Neuronal

damage [67]
≤0.15 µg/L

in serum [67]
>0.15 µg/L

in serum [67]

Cardinell et al. [44]
Gao et al. [68]
Li et al. [69]

Wang et al. [70]

Norepinephrine NE Blood-brain barrier
(BBB) disruption [71]

185–275 pg/mL
in plasma [71]

Severe TBI:
>275 pg/mL in plasma

[71]

Cardinell and La Belle [72]
Halámek et al. [54]

Haselwood and
La Belle [73]

Manesh et al. [61]
Pita et al. [62]

S100 Calcium
Binding Protein B S100B Astrocyte

damage [74]
0.06–0.13 µg/L
in serum [17]

mTBI: 0.07–0.24 µg/L
in serum [17]

Apori and Herr [40]
Cardinell et al. [44]

Gao et al. [75]
Han et al. [76]

Kim and Searson [77]
Rickard et al. [48]
Wang et al. [70]

Tumor Necrosis
Factor α TNF-α Ischemia [78] ≤4.4 pg/mL

in serum [79]

Severe TBI:
0–157 pg/mL in serum

[57]
Cardinell et al. [44]

Visinin-like
protein 1 VILIP-1 Neuronal

damage [80]
21.7–195.3 pg/mL

in serum a [80]

mTBI:
39.3–160.2 pg/mL in

serum a [80]
Bradley-Whitman et al. [81]

Note: a The reference ranges for visinin-like protein 1 overlap.
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3. Design Considerations for TBI Protein Biomarker Measurement Devices

TBI biofluid biomarkers have the potential to revolutionize the way TBI is assessed
and treated beyond evaluating the need for a head CT [82]. Biomarkers could be used
by military personnel for rapid triage in the field, by paramedics to assess a patient’s
condition prior to arrival at a hospital, by clinicians to monitor a patient’s response to
neuroprotective treatments and provide accurate prognoses, and by clinical research teams
to accurately enroll and group patients for clinical trials. However, for biomarkers to be
useful in each of these settings, a rapid, robust, accurate, and easy-to-use measurement
platform is needed. The ideal TBI protein biomarker measurement device would possess
the following characteristics:

• Usability Considerations

# Usable by untrained personnel;
# Functional in austere conditions (extreme temperature and humidity);
# Requires minimal hands-on time.

• Assay Considerations

# Requires minimal sample preparation;
# Assay performed on a drop (50 µL) of capillary whole blood obtained via

a fingerstick;
# Simultaneous measurement of at least 2 and up to 10 biomarkers (multiplexing);
# Precise readings within the same run (intra-assay coefficient of variation (CV)

≤ 10%) and between runs (inter-assay CV ≤ 15%);
# Linear range extends across the concentrations of interest for a specific biomarker;
# Lower limit of detection (LLOD) is below the cutoff concentration used to

distinguish a physiological concentration of a biomarker from a concentration
indicative of TBI;

# Results obtained in less than 15 min (timeframe based on current clinical
management workflows).

• Mass Production Considerations

# Reagents stable for a year or longer;
# Inexpensive to manufacture.

• Clinical Utility Considerations

# Portable;
# Accurately identifies patients with a TBI;
# Accurately identifies patients without a TBI.

Achieving just one of these ideal characteristics is a challenge, so device development
often focuses on innovating in one of the areas of consideration listed above. We discuss
how the sensors covered in this review have achieved these ideal characteristics and which
areas present opportunities for continued innovation in the Discussion and Outlook section.

4. Early-Stage Measurement Methods for Detection of TBI Protein Biomarkers

Our review identified 24 sensor designs and measurement methods in the early
stages of development that specifically listed TBI as an application. To the best of our
knowledge, these sensors have only been described in the academic literature and are
not yet commercially available. We have categorized these sensors according to detection
method: electrochemical (including field-effect transistors (FET)), optical, surface-enhanced
Raman spectroscopy (SERS) (a specific type of optical detection), and surface acoustic wave
(SAW). A summary of the assay characteristics for each early-stage sensor can be found in
Table 2.
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Table 2. Summary of early-stage sensors for traumatic brain injury protein biomarker measurement.

Detection
Technique Biomarker(s) Multiplex Sample Type Sample

Volume Analysis Time Lower Limit of
Detection (LLOD) Range Ref(s).

Electrochemical
(EIS and Z-t) NE No

Buffer and
10% rabbit

whole blood
50 µL ~90 s EIS: 98 pg/mL

Z-t: 8 pg/mL 1–10,000 pg/mL [72,73]

Electrochemical
(EIS and Z-t)

GFAP
NSE

S100B
TNF-α

No

Buffer and
5%, 12.5%, and
90% rat whole

blood and
plasma

100 µL ~33 s
Buffer: 2–5 pg/mL
90% whole blood:

14–67 pg/mL a

GFAP:
0.1–2800 pg/mL

NSE:
1–25,000 pg/mL
S100B: 1–10,000

TNF-α:
0.1–75 pg/mL

[44]

Electrochemical
(EIS) GFAP No Buffer 15 µL or 60 µL ~30 min 1 pg/mL 1 pg/mL–

100 ng/mL [43]

Electrochemical
(Amperometric)

NE
Lactate
Glucose

(AND and
XOR logic

gates)

Yes Buffer 1 mL ~15 min
Glucose: 4 mM
Lactate: 2 mM
NE: 2.2 nM b

Glucose: 4–30 mM
Lactate: 2–13 mM

NE: 2.2 nM–3.5 µM b
[62]

Electrochemical
(Amperometric)

NE
Lactate
Glucose

(AND and
IDENTITY
logic gates)

Yes Buffer 1 mL ~15 min
Glucose: 4 mM
Lactate: 2 mM
NE: 2.2 nM b

Glucose: 4–30 mM
Lactate: 2–13 mM

NE: 2.2 nM–3.5 µM b
[61]

Electrochemical
(Chronoampero-

metric)

NE
Glutamate Yes Buffer 1 mL or 500

µL ~5 min Glutamate: 40 µM
NE: 2.2 nM b

Glutamate: 40–
140 µM

NE: 2.2 nM–3.5 µM b
[54]

Electrochemical
(Chronoampero-

metric)

Glutamate
LDH Yes

Buffer and
human
serum

27 µL ~15 s Glutamate: 40 µM
LDH: 0.15 U/mL b

Glutamate: 40–
140 µM

LDH: 0.15–1 U/mL b
[55]

Electrochemical
(Amperometric)

Adenosine
Hypoxanthine

Guanosine
Inosine

Yes Buffer ~1.5 µL c ~85 s

Adenosine: 25 µM
Hypoxanthine:

10 µM
Guanosine: 25 µM

Inosine: 33 µM

Adenosine:
75–400 µM

Hypoxanthine:
20–100 µM
Guanosine:
75–400 µM

Inosine:
75–150 µM

[33]

Electrochemical
(Amperometric)

C-tau
NF-L Yes d

Buffer and
human
serum

- ~30 min

C-tau (buffer):
0.14 pg/mL

C-tau (serum):
0.1 pg/mL

NFL (buffer):
0.16 pg/mL

NFL (serum):
0.11 pg/mL

Buffer:
1 pg/mL–1 µg/mL

Serum:
10 pg/mL–
100 ng/mL

[36]

Electrochemical
(Amperometric) GFAP No Buffer - - 0.04 µg/mL 0.2–10 µg/mL [50]

SERS
NAA
S100B
GFAP

Yes e Human
plasma ~50–100 µL f ~2–3 min

NAA: 0.021 pg/mL
(0.12 pM)

S100B: 3.99 pg/mL
(0.19 pM)

GFAP: 3.35 pg/mL
(0.02 pM)

1 fM–100 nM [48]

SERS NSE No
80% human
plasma and

20% PBS
100 µL ~30 min 0.86 ng/mL 1–75 ng/mL [68]

SERS S100B No
80% human
plasma and

20% PBS
100 µL ~30 min 5.0 pg/mL 0.1–100 ng/mL [75]

SERS NSE No
80% human
plasma and

20% PBS
- ~30 min 0.36 ng/mL 0.5–85 ng/mL [69]

SERS NSE
S100B Yes Human

serum - - NSE: 0.1 ng/mL
S100B: 0.06 ng/mL 0.2–22 ng/mL [70]

SAW GFAP No
Buffer and

bovine
serum

albumin
200 µL - 35 pM (in bovine

serum albumin) g - [42]

Electrochemical
(FET) GFAP No Buffer 100 µL ~30 min 1 ng/mL 0.8–400 ng/mL [45]

Electrochemical
(FET) GFAP No Buffer - ~30 min 1 ng/mL 0.5–100 ng/mL [49]

Optical
Detection

(Fluorescence)
S100B
CRP Yes Ovalbumin

and CSF 5 µL ~5 min S100B (CSF): 65 nM
CRP (CSF): 3.25 nM

S100B (ovalbumin):
30 pM–1 µM h [40]
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Table 2. Cont.

Detection
Technique Biomarker(s) Multiplex Sample Type Sample

Volume Analysis Time Lower Limit of
Detection (LLOD) Range Ref(s).

Optical
Detection

(Colorimetric)
VILIP-1 No Rat serum 10 µL ~20 min 5.5 pg/mL ~2–50 pg/mL i [81]

Optical
Detection

(Fluorescence)
S100B No Human

serum 100 µL ~1 h 10 pg/mL 0.1–3 ng/mL [77]

Optical
Detection

(Fluorescence)
GFAP No

Buffer and
human
serum

200 µL ~90 min 25 pg/mL (buffer) 0.1–8 ng/mL
(buffer) [47]

Optical
Detection

(Fluorescence)
S100B No

Buffer and
human
serum

40 µL ~30 min 0.01 µg/mL
(buffer)

0.03–1 µg/mL
(buffer) [76]

Optical
Detection

(Fluorescence)

GFAP
IL-6
IL-8

Yes

Buffer,
human

serum, and
human whole

blood

100 µL ~40 min

GFAP (serum):
125 pg/mL
IL-6 (buffer):
437 pg/mL

IL-8 (buffer):
2 pg/mL

GFAP (serum and
whole blood):

100–10,000 pg/mL
IL-6 (buffer):

1000–25,000 pg/mL
IL-8 (buffer):

10–1000 pg/mL

[46]

Notes: a LLODs were listed as ranges and were not separated by measurement technique, sample matrix, or biomarker. b LLODs and
ranges were taken as the cutoff concentrations for each logic condition assignment. c Sample volume was determined based on the flow
rate (1 µL/min) and analysis time. d Measurements were run in parallel using separate electrodes on the same chip. e Three separate SERS
substrates (one for each biomarker) were incorporated into the microfluidic chip. f Stated that 1–2 drops of capillary whole blood were
used in the microfluidic chip. g This was the only concentration of GFAP that was tested. h A range of values was not provided for CRP. i

This range of values is an estimate as it was pulled from a graph.

4.1. Electrochemical Detection

Electrochemical sensors involve the transduction of chemical changes into an electrical
signal often using a three-electrode system (counter, working, and reference electrodes).
Typically, a counter electrode applies a stimulating signal to the working electrode on which
a chemical reaction takes place. In the case of TBI biomarker measurement systems, the
working electrode is functionalized either with enzymes that convert the target biomarker
into a product that is electrically detectable or antibodies that bind the biomarker of interest.
The signal of the working electrode is measured in relation to the reference electrode using
impedimetric, amperometric, and potentiometric techniques.

Electrochemical impedance spectroscopy (EIS) and impedance-time (Z-t) techniques
have been used to quantify norepinephrine (NE), GFAP, neuron specific enolase (NSE),
S100B, and tumor necrosis factor-α (TNF-α) [44,72,73]. For all measurements, the electro-
chemical cell consisted of a gold disk working electrode, a platinum wire counter electrode,
and an Ag/AgCl wire reference electrode. The surface of the gold disk electrode was
functionalized either with an enzyme to detect NE [72,73] or antibodies for either GFAP,
NSE, S100B, or TNF-α [44]. EIS was used to quantify the biomarker concentrations by
applying an AC potential with changing frequencies to stimulate the solution in the electro-
chemical cell while measuring current. Impedance and phase were then calculated in real
time based on the measured current [73]. The Z-t technique, which is the EIS technique
at a static frequency, was also used to quantify the TBI biomarkers. Using Z-t simplifies
the electronics and makes this electrochemical system more attractive for point-of-care
settings [72]. For the GFAP, NSE, S100B, and TNF-α measurements, the authors listed
the detection limits as 2–5 pg/mL in buffer and 14–67 pg/mL in 90% rat whole blood.
However, it was unclear whether EIS or Z-t was used to obtain these LLODs and which
limits corresponded to which assay [44]. Furthermore, separate electrochemical cells were
used to quantify each analyte, but a single cell functionalized with antibodies for all four
biomarkers could be used in the future.

The EIS technique was also employed by Arya et al. who examined how electrode
geometry and electrode functionalization protocols influenced the label-free detection of
GFAP [43]. A gold microdisk electrode array (MDEA) consisting of six, 100 µm diameter
microdisks and a gold macroelectrode with a comb structure (MECS) consisting of an
electrode that was 5 µm wide with 10 µm of spacing between comb fingers were fabricated
on an oxidized silicon wafer [83]. The electrodes were functionalized with anti-GFAP anti-
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bodies using two different protocols. The optimized functionalization protocols resulted in
a LLOD of 1 pg/mL for both the MDEA and the MECS in spiked buffer solutions, which is
below the cutoff for assessing mTBI [43]. However, this limit of detection could increase
when the complexity of the sample matrix increases (i.e., serum, plasma, or whole blood)
due to non-specific interactions with the antibodies.

An interesting application of electrochemical sensors to the diagnosis of TBI is am-
perometric enzyme-based logic systems [54,55,61,62,84,85]. These sensors digitally process
multiple biomarker signals by applying a constant potential and measuring the corre-
sponding current between the working and counter electrode to produce a final YES/NO
response through Boolean logic gates composed of enzymatic reactions [84]. Pita et al.
developed a system consisting of an AND and an XOR logic gate to distinguish between
hemorrhagic shock (HS), TBI, and an ischemic state [62]. The AND gate took oxygen and
NE as inputs and the XOR logic gate took glucose and lactate as inputs. The outputs from
each logic gate were measured using a glassy carbon working electrode, platinum wire
counter electrode, and Ag/AgCl reference electrode with physiologically normal concentra-
tions of the inputs assigned as logic 0 and pathological concentrations assigned as logic 1. If
the AND gate output was 1 and the XOR gate output was +1, signaling that NE and lactate
were at pathological concentrations, then a TBI was indicated. Manesh et al. also measured
glucose, lactate, and NE to distinguish between HS and TBI [61]. In this case, an AND gate
was used that accepted lactate and NE as inputs and an IDENTITY gate was used that
accepted glucose as an input. This system also indicated a TBI if NE and lactate were at
pathological concentrations such that the AND gate returned a logical 1 and the IDENTITY
gate returned a logical 0. Halámek et al. streamlined the logic such that the output of a
single gate could be used to determine the presence of a TBI [54]. An AND gate was used
that took glutamate and NE as inputs. The output from the logic gate was measured using a
screen-printed three electrode system where the working and counter electrode were made
using carbon-based ink and the reference electrode was printed using Ag/AgCl-based ink.
A TBI was indicated if the AND gate returned a logic value of 1, signaling that both NE and
glutamate were present at pathological concentrations. Finally, Zhou et al. demonstrated
the operation of enzyme logic gates with human serum samples [55]. A NAND gate was
used that had glutamate and lactate dehydrogenase as inputs. The output from the NAND
gate was measured using the same electrode employed by Pita et al. [62]. If the NAND
gate output a 0, indicating that glutamate and lactate dehydrogenase were at pathological
concentrations, then a TBI was implicated. Overall, these enzyme-logic gate sensors are a
unique application of electrochemical detection and have been shown to function in both
buffer and serum solutions. However, they are inherently semi-quantitative and cannot be
applied to all protein biomarkers. For a further discussion of enzyme-based logic systems,
the authors refer the reader to reviews by Wang and Katz [84,85].

Amperometric techniques can also be used to achieve continuous monitoring of TBI
biomarkers. Gunawardhana and Lunte developed a PDMS sensor that uses microdialysis
and microchip electrophoresis with end-channel amperometric detection to continuously
measure adenosine and its metabolites (inosine, hypoxanthine, and guanosine) [33]. The
PDMS microchip was reversibly sealed such that a 33 µm diameter carbon fiber microelec-
trode could be easily placed and reused. Furthermore, 1 mm diameter Pt and Ag/AgCl
wires were used as the counter and reference electrodes, respectively. The 5 cm long separa-
tion channel in the microchip achieved separation of all four purines in ~85 s. Future work
will focus on lowering the limits of detection for each analyte such that the device could be
used to continuously monitor the concentration of adenosine and its metabolites in brain
extracellular fluid after severe TBI. However, adenosine has not been extensively studied
in the context of TBI, so the clinical utility of this biomarker remains to be determined.

Khetani et al. used differential pulse voltammetry (DPV), a subclass of amperometry,
to make the testing of TBI biomarkers portable. DPV involves applying potential pulses
with a linear ramp in potential and measuring the corresponding current as a function of
potential. The authors developed µDrop, a low-cost potentiostat coupled with function-
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alized electrodes (immuno-biosensors) for the measurement of cleaved tau (C-tau) and
neurofilament light (NF-L) [36]. The µDrop consists of eight DPV modules, allowing the
measurement of eight immuno-biosensors in parallel (Figure 1). The immuno-biosensors in
the µDrop system were formed by functionalizing the surface of sputtered gold electrodes
with antibodies for C-tau and NF-L. The reference electrode was Pt, and the substrate for
the electrodes was glass. The µDrop system was used to measure six serum samples from
patients with a confirmed TBI and outperformed an ELISA in specificity and sensitivity.
Wang et al. also used DPV to quantify GFAP with screen-printed carbon electrodes (SPCEs)
coated with a molecularly imprinted polymer that contained multiwalled carbon nanotubes
(MWCNTs) [50]. However, this system was not portable and the LLOD of 0.04 µg/mL was
not clinically relevant to the diagnosis or monitoring of TBI.
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FET-based biosensors are a specific type of potentiometric electrochemical biosensor.
These sensors consist of a source and a drain connected by a gate. Typically, antibodies
for an analyte of interest are conjugated on the gate, and the gate voltage is affected by the
concentration of the analyte bound to the antibodies [86]. Song et al. developed an organic
field effect transistor (OFET) for measuring GFAP [49]. The design featured an extended
solution gate achieved by incorporating polyethylene glycol (PEG) into the antibody
layer to extend the Debye screening length (distance beyond which voltage changes are
not sensed) (Figure 2). The extended gate allows the sensing area to be separated from
the organic semiconductor and to work without a reference electrode, simplifying and
stabilizing the sensor. However, the LLOD of the sensor was only 1 ng/mL, above the
cutoff for a mTBI (GCS 13–15). Huang et al. designed an organic thin film transistor
(a special type of metal-oxide semiconductor field-effect transistor (MOSFET)) for GFAP
consisting of both p-channel and n-channel semiconductors to enable identification of
electrical crosstalk and false-positives [45]. The LLOD was the same as the device from
Huang et al. at 1 ng/mL.

For a discussion of electrochemical sensing of TBI biomarkers beyond that presented
here, the authors refer the reader to the recent review by Pankratova et al. [87].
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4.2. Optical Detection

Sensing techniques such as fluorescence, chemiluminescence, and colorimetry relate
the intensity of light or color generation to the concentration of an analyte. Optical detection
techniques are often used as the readout for sandwich immunoassays, a well-established
method for quantifying protein biomarkers. The optical sensing methods developed to
measure TBI biomarkers involve binding reactions that occur in a centrifuge tube, reactions
that occur on chip, and reactions that are multiplexed.

Kim and Searson developed an immunoassay for S100B using magnetic beads as
the substrate for the capture antibody and a quantum dot as the fluorescent readout [77].
By cleaving the quantum dots from the sandwich complex on the magnetic beads, they
achieved a LLOD of 10 pg/mL in human serum. A similar method using carbon dots was
developed by Ma et al. for detecting GFAP [47]. Han et al. used a ratiometric fluorescent
readout to quantify S100B by binding peptide functionalized nanoprobes (carbon dots
and gold nanoclusters) to the analyte [76]. When S100B bound to the peptide on the
nanoprobe, the fluorescence of the gold nanoclusters was quenched while the fluorescence
from the carbon dots remained unchanged. The intensity ratio of the carbon dots to the
gold nanoclusters correlated with the concentration of S100B in the sample.

The fluorescent immunoassay methods described in Kim and Searson, Ma et al., and
Han et al. were carried out in a centrifuge tube. Immunoassays must be coupled with an
analysis and readout device to be useful in point-of-care settings. To that end, Bradley-
Whitman et al. developed a lateral flow strip for visinin-like protein 1 (VILIP-1) with a
colorimetric readout that they tested using serum samples from Sprague Dawley rats [81].
Apori and Herr used a microfluidic device for immunosubtraction to simultaneously detect
S100B and C-reactive protein (CRP) in cerebrospinal fluid (CSF) [40]. A polyacrylamide
gel electrophoresis (PAGE) separation channel was incorporated into a microfluidic device
capable of sample enrichment, fluorescence labeling, and mixing of the sample and capture
antibody. The PAGE channel incorporated a step-decrease in separation matrix pore-size at
the start of the channel that excluded the immune-complex formed by the target protein
and capture antibody. If the capture antibodies were absent, then the PAGE assay contained
all protein peaks, but if the immune-complex was present, the assay contained no protein
peaks, hence immunosubtraction. The fluorescent readout of the PAGE assay came from
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labeling the target proteins with Quant-iT dye that undergoes fluorescent enhancement
when bound to proteins.

Multiplexing in TBI assessment is important as the simultaneous assessment of two or
more biomarkers increases the sensitivity and specificity of the assay. Krausz et al. have
recently developed a variable height device capable of passively multiplexing bead-based
immunoassays for GFAP, interleukin-6 (IL-6), and interleukin-8 (IL-8) [46]. The variable
height device gradually decreases in height between the channel inlet and outlet, causing
assay beads to become physically trapped where their diameter matches the channel
height. By using a different diameter bead for each assay, distinct bands form within
the channel, similar in appearance to an electrophoretic separation. A different colored
quantum dot was used as the fluorescent label for each assay to visualize potential bead
crossover between detection bands, since smaller beads flow through bands of larger beads
as they are forming (Figure 3). The observed bead crossover was minimal, allowing a
single quantum dot to be used for all three assays in the future, which would simplify the
development of portable optics. The variable height platform is highly flexible as additional
assays can be multiplexed simply by adding in beads of a different diameter, allowing the
platform to keep pace with advances in TBI biomarker discovery and validation.

Biosensors 2021, 11, x FOR PEER REVIEW 12 of 24 
 

 
Figure 3. The variable height device from Krausz et al. designed to passively multiplex bead-based QLISAs (quantum dot-
linked immunosorbent assays) for GFAP, IL-6, and IL-8 [46]. 

4.3. Surface-Enhanced Raman Spectroscopy (SERS) 
SERS is a specialized optical technique that utilizes the phenomenon in which inelas-

tic light scattering by molecules is enhanced (by factors of 108 or more) when the molecules 
are adsorbed to metal surfaces, such as gold nanoparticles [88]. This enhancement of light 
scattering can offer single-molecule resolution as well as molecular fingerprints for label-
free identification of analytes of interest [89]. TBI biomarker measurement devices use a 
variety of SERS probe designs to enhance inelastic light scattering. 

Rickard et al. developed an array of gold-coated nanopillars (500 nm tall) that they 
incorporated into a PDMS microfluidic device for the multiplexed analysis of N-acetylas-
parate (NAA), S100B, and GFAP (Figure 4) [48]. A fingerprick sample of whole blood was 
loaded into a microfluidic device that separated the red blood cells from the plasma, 
which then flowed across the SERS substrate (gold-coated nanopillars). The SERS spec-
trum was acquired using a miniaturized optics system and analyzed for pre-established 
biomarker fingerprints. The system was used to analyze blood samples collected from 
people with TBI and healthy volunteers and to temporally profile NAA concentrations 
post-TBI. This SERS-based system offers rapid and label-free detection. However, any im-
perfection on the SERS substrate significantly degrades analytic performance, which may 
limit the system’s deployment in point-of-care settings [90]. 

Figure 3. The variable height device from Krausz et al. designed to passively multiplex bead-based QLISAs (quantum
dot-linked immunosorbent assays) for GFAP, IL-6, and IL-8 [46].

4.3. Surface-Enhanced Raman Spectroscopy (SERS)

SERS is a specialized optical technique that utilizes the phenomenon in which inelastic
light scattering by molecules is enhanced (by factors of 108 or more) when the molecules
are adsorbed to metal surfaces, such as gold nanoparticles [88]. This enhancement of
light scattering can offer single-molecule resolution as well as molecular fingerprints for
label-free identification of analytes of interest [89]. TBI biomarker measurement devices
use a variety of SERS probe designs to enhance inelastic light scattering.

Rickard et al. developed an array of gold-coated nanopillars (500 nm tall) that
they incorporated into a PDMS microfluidic device for the multiplexed analysis of N-
acetylasparate (NAA), S100B, and GFAP (Figure 4) [48]. A fingerprick sample of whole
blood was loaded into a microfluidic device that separated the red blood cells from the
plasma, which then flowed across the SERS substrate (gold-coated nanopillars). The SERS
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spectrum was acquired using a miniaturized optics system and analyzed for pre-established
biomarker fingerprints. The system was used to analyze blood samples collected from
people with TBI and healthy volunteers and to temporally profile NAA concentrations
post-TBI. This SERS-based system offers rapid and label-free detection. However, any
imperfection on the SERS substrate significantly degrades analytic performance, which
may limit the system’s deployment in point-of-care settings [90].

Gao et al. developed a lateral-flow assay for neuron-specific enolase (NSE) with SERS-
based detection [68]. The system functioned as a typical lateral flow assay except that the
detection antibodies were conjugated to Au nanostar@Raman Reporter@silica sandwich
nanoparticles consisting of a Raman reporter sandwiched between an Au nanostar and a
thin silica shell. When used to analyze clinical plasma samples from TBI patients, the SERS
lateral-flow assay compared favorably to an ELISA with no significant difference between
the two methods. Gao et al. later achieved a lower limit of detection when measuring S100B
by conjugating the lateral-flow assay capture antibodies to a gold nano-pyramid array on
a quartz substrate [75]. When the detection antibody/S100B/capture antibody sandwich
was formed, SERS probes on the detection antibodies were brought into proximity to the
gold nano-pyramids, creating “hot spots” that amplified the SERS signal and increased the
sensitivity of the assay.

Wang et al. used a similar method to quantify NSE and S100B [70]. Hollow gold
nanospheres were functionalized with detection antibodies either for NSE or S100B, and a
glass slide with layers of hollow gold nanospheres was functionalized with capture anti-
bodies. When the hollow gold nanospheres were brought into proximity by binding with
the analyte of interest, the SERS signal was enhanced. There was found to be no significant
difference between the gold nanosphere assay and an ELISA when the comparison was
performed using clinical serum samples. Li et al. similarly used the proximity of antibody
functionalized Au nanocages contained within a lateral flow glass-hemostix to measure
NSE in diluted plasma samples (80% plasma and 20% PBS solution) [69]. The Au nanocage
method also compared favorably to an ELISA.
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4.4. Surface Acoustic Wave (SAW)

SAW biosensors detect frequency changes that occur due to mass-loading effects
in an acoustic wave traveling along a piezoelectric crystal surface [91]. Agostini et al.
developed an ultra-high-frequency surface-acoustic-wave (UHF-SAW) lab-on-a-chip to
measure GFAP in a bovine serum albumin matrix [42]. The UHF-SAW device consisted of
a SAW-resonator and waveguide adhered to PDMS microchannels for liquid manipulation
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(Figure 5) [92]. The SAW-resonator was functionalized with antibodies for GFAP, and the
shifts in resonance frequency depended on the concentration of GFAP in the sample. The
goal of this work was to determine the optimal functionalization protocol, so GFAP was not
measured at clinically relevant concentrations. However, the UHF-SAW device is equipped
with four resonators, allowing for multiplexed measurements in the future.
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5. Late-Stage Measurement Methods for Detection of TBI Protein Biomarkers

There are currently three sensor systems for TBI protein biomarkers that can be
considered as late-stage, meaning that these devices are either being used in clinical studies
or are already on the market for measuring biomarkers in clinical practice. Two of these
devices use optical detection and one uses electrochemical detection to quantify biofluid
biomarkers. A summary of the assay characteristics for each late-stage device can be found
in Table 3.

Table 3. Summary of late-stage sensors for traumatic brain injury protein biomarker measurement.

Device Detection
Technique Biomarker(s) Multiplex Sample Type Sample

Volume Analysis Time
Lower Limit of
Quantitation

(LLOQ)
Range Clinical

Studies

Banyan
BTITM

Optical
Detection

(Chemilumi-
nescence)

GFAP
UCH-L1 No Human serum

[93] 250 µL [93] >2 h [93]
GFAP:

10 pg/mL
UCH-L1:

80 pg/mL [93]

GFAP:
10–320 pg/mL

UCH-L1:
80–2560 pg/mL

[93]

[94–105]

Abbott
i-STAT
Alinity

Electrochemical
Detection (Am-

perometric)
GFAP

UCH-L1 Yes Human
plasma [106] 20 µL [106] 15 min [106]

GFAP:
23 pg/mL
UCH-L1:

70 pg/mL [106]

GFAP:
30–10,000 pg/mL

UCH-L1:
200–3200 pg/mL

[106]

[17,23]

Quanterix
Simoa®

Optical
Detection

(Fluorescence)

GFAP
UCH-L1

Tau
NF-L

NSE [107]

Yes
Human CSF,
serum, and

plasma [108]
100–152 µL

[108,109]

2 h and 30 min
per 96-well
plate [110]

GFAP:
0.467 pg/mL

UCH-L1:
5.45 pg/mL

Tau: 0.053 pg/mL
NF-L:

0.241 pg/mL
NSE:

9.88 pg/mL
[108,109]

GFAP:
0–4000 pg/mL

UCH-L1:
0–40 ng/mL

Tau:
0–400 pg/mL

NF-L:
0–2000 pg/mL

NSE: 0–120 ng/mL
[108,109]

[111–114]

5.1. Banyan BTITM

The Banyan Brain Trauma Indicator (BTI) from Banyan Biomarkers is a traditional
test kit for GFAP and UCH-L1 consisting of 96-well plates coated with capture antibodies
for each biomarker. A trained technician must manually perform the assay and insert
the plates into a reader to quantify the chemiluminescence and determine the biomarker
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concentrations [93]. The kit was FDA cleared in February 2018 via the de novo pathway
and is intended to aid in the evaluation of patients 18 years of age or older with a suspected
GCS 13–15 TBI (mTBI) [115]. A positive result occurs if one or both of the GFAP and
UCH-L1 concentrations are above the cutoff values (22 pg/mL for GFAP and 327 pg/mL
for UCH-L1) and necessitates a CT scan. A negative result is associated with the absence
of lesions on a CT scan, ruling out the need for a scan. However, the Banyan BTITM test
takes over 2 h to run, potentially rendering the results unactionable within current clinical
management workflows. The BTITM has been useful in several clinical studies to establish
the kinetics [95], diagnostic accuracy [99], and association with CT findings [96,100,104,105]
of GFAP and UCH-L1, but the treatment decisions did not depend on the test results. To
improve the assay time and render the test usable for making treatment decisions in real
time, Banyan Biomarkers provided a non-exclusive license of their TBI biomarkers to
Abbott [116].

5.2. Abbott i-STAT Alinity

The TBI Plasma cartridge for the Abbott i-STAT Alinity was FDA cleared via the
510(k) pathway in January 2021 using the Banyan BTITM as the predicate device [117]. The
cartridge measures GFAP and UCH-L1 amperometrically using gold working electrodes
and a Ag/AgCl reference electrode fabricated on a silicon substrate [118]. The i-STAT
Alinity is portable and is designed to be used with the TBI Plasma cartridge in clinical
laboratory settings by trained personnel [106]. The i-STAT provides results 15 min after
loading a plasma sample onto the cartridge, allowing for the test to be used clinically
to assist in determining the need for a head CT scan. Similarly to the Banyan BTITM,
a positive result occurs if one or both of the GFAP and UCH-L1 concentrations are above
the cutoff values (30 pg/mL for GFAP and 360 pg/mL for UCH-L1) [106]. A positive
result necessitates a head CT scan while a negative result rules out the need for a head
CT [117]. TRACK-TBI (Transforming Research and Clinical Knowledge in Traumatic Brain
Injury) studies using the i-STAT have recently concluded [17,23], and the device is set to be
deployed in select hospitals in the United States by the end of 2021.

As of now the i-STAT Alinity TBI cartridge requires a plasma sample, but Abbott is
working on a test that utilizes a whole blood sample, which would allow the device to
be used at the point-of-care in healthcare settings [119]. If GFAP, UCH-L1, or other TBI
biomarkers are eventually used for more than ruling out the need for a head CT scan, the
Abbott i-STAT Alinity could potentially be adapted for use in field settings, since the device
is already portable.

5.3. Quanterix Simoa®

The Quanterix Simoa® bead technology has been used in several clinical studies of
TBI protein biomarkers [114]. This technology enables the measurement of single protein
molecules by confining assay beads with completed sandwich immunocomplexes in wells
of extremely small volume (~50 fL) (contained on the Simoa® disc) [120]. The immuno-
complexes are a conventional ELISA (enzyme-linked immunosorbent assay), but the wells
confine the fluorophores generated by the enzyme, leading to a high local concentration
of fluorescent signal. At extremely low protein concentrations, the ratio of protein to
beads is less than 1:1, so if protein is present, the beads are labeled with a single enzyme.
A digital immunoassay can be performed by calculating the ratio of wells that have a
fluorescent signal to those that only contain a bead and then correlating this ratio to the
protein concentration in the sample [120]. These assays can also be multiplexed by labeling
microbeads with their own fluorescent signatures. The bead fluorescence and the enzyme-
generated fluorescence are both measured to determine the signal for each biomarker in the
multiplex [121]. Quanterix developed laboratory analyzers, such as the HD-1 and HD-X, to
fully automate these assays and provide users with sample-in, results-out workflows [122].

Quanterix has developed assays for many different TBI biomarkers, including GFAP,
UCH-L1, tau, NF-L, and NSE [107]. However, these assays are for research use only, and
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the results cannot be used to make clinical decisions. Quanterix is currently enabling
clinical research into different contexts of use for emerging TBI biomarkers [111–113], but
an FDA cleared assay will need to be available before clinical translation can occur.

6. Discussion and Outlook

We have provided a detailed overview of sensors developed for detection of traumatic
brain injury biofluid protein biomarkers with a focus on those described in the academic
literature as well as commercially available devices. These sensors used electrochemical,
optical, and acoustic techniques to quantify TBI biomarkers. Electrochemical sensors have
been successfully used as monitoring devices for blood glucose, so there is a precedent
for deploying these sensors at the point-of-care and in the field [123]. With optimized
limits of detection, multiplexing, and portable electronics, electrochemical biosensors could
potentially be used by patients to determine whether to seek treatment for a head injury and
to monitor their recovery after seeking medical treatment. Sandwich immunoassays with
an optical readout have been widely used to quantify protein biomarkers in a laboratory
setting with low limits of detection and high sensitivity and specificity. The challenge
for deploying these methods at the point-of-care is designing optics that are sufficiently
small and robust and incorporating reagent mixing and washing steps onto a chip. SERS, a
specialized optical technique, offers label-free detection with single-molecule resolution,
but the fragility of the substrates and complexity of the optics may make this detection
method difficult to realize at the point-of-care. SAW biosensors are attractive for TBI
assessment since they offer label-free detection, but the materials and fabrication can be
expensive. Furthermore, any changes to the path of the wave will result in a change in
output, potentially limiting the deployment of these sensors in field settings.

Several of these sensors were designed for use at the point-of-care, but further de-
velopment is needed to move these devices out of a healthcare setting and into the field.
A device that can be used both inside and outside of a hospital would enable rapid triage at
the site of an injury, monitoring and assessment in an ambulance, and serial measurements
in a hospital setting to monitor a patient’s response to neuroprotective treatments and to
predict outcomes.

To achieve this ideal use case, development of biomarker measurement devices and
clinical validation of protein biomarkers must occur simultaneously. Biomarkers must
be cleared for determining whether to seek medical treatment for an injury, to enable
rapid triage at the site of an injury; for determining injury severity, to enable monitoring
and assessment in an ambulance; and for monitoring patient response to treatment and
determining prognoses, to enable the utility of serial measurements in a hospital setting.
FDA authorizations will be challenging to obtain if point-of-care devices do not exist to
measure TBI protein biomarkers in each of these contexts.

Ideal characteristics for such point-of-care devices are described in Section 3. Most of
the devices covered in this review have achieved a relatively short analysis time, low sample
and reagent consumption due to the use of microfluidics, and inexpensive manufactura-
bility as microfabrication approaches can be easily scaled. However, clinical parameters
in addition to the features of the device itself need to be considered when developing
a biomarker measurement device.

The first clinical parameter is the choice of biomarker. GFAP and UCH-L1 are FDA
cleared for assessing TBIs in the United States, and S100B is approved in Europe [23,24],
but only 9 out of 25 devices described in the literature measured GFAP, 7 devices measured
S100B, and not a single device measured UCH-L1. To improve the chances of device
translation, the measured biomarkers should already have proven clinical utility. If the
purpose of developing a new device is to study a novel, promising biomarker, then it may be
advantageous to choose a clinically established detection method, such as electrochemical
or optical detection, so that the results of the novel device can be more readily compared to
clinical tests. Multiplexed systems would also allow for the exploration of novel biomarkers
while simultaneously quantifying proteins with proven utility in TBI evaluation.
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After choosing a biomarker to measure, the second clinical parameter to consider is
the biofluid used as the sample [124]. Clinically, protein biomarkers have been measured
in CSF, serum, and plasma. Abbott is working on a test to measure biomarkers in whole
blood, and Krausz et al. demonstrated proof-of-concept GFAP measurements using spiked
whole blood from a single donor [46,119]. Rickard et al. demonstrated NAA measurements
using fingerstick blood samples, but to the best of our knowledge, no one in industry has
measured TBI protein biomarkers in a fingerstick blood sample, even though this sample
is ideal for point-of-care biomarker measurements [48]. This may be due to potential
analytical interference from hemolysis caused by excessive squeezing or massaging of the
puncture site during blood collection [125]. In general, the choice of biofluid dictates the
sample collection technique as well as the bioavailability [126] and kinetics [127,128] of
the biomarker which in turn determine the sample processing [129] that needs to occur on
the measurement device, the necessary limit of detection of the assay, and the time frame
in which a device can be used to obtain meaningful protein concentrations. For example,
GFAP is present in serum samples at detectable concentrations (>0.030 ng/mL) within 1
h of injury [99]. Therefore, a device to measure GFAP must be used 1 h or more after an
injury, requires a quantification limit of 0.030 ng/mL, and requires the ability to separate
serum from whole blood. It is worth noting that GFAP might be present in serum sooner
than 1 h after the injury, but in the study by Papa et al., samples were collected once a
patient arrived at a hospital [99]. A device that is capable of quantifying GFAP in field
settings could help to determine the first time point at which the biomarker is present in
serum samples.

The choice of biofluid for the assay also determines the third clinical parameter, the
context of use, which in turn dictates the usability and robustness requirements of the
measurement device. CSF can only be collected in a hospital setting, whereas fingerstick
whole blood can be easily collected in the field. Serum and plasma could be used in
either a healthcare or field setting depending on the sample preparation capabilities of the
biomarker measurement device. Assuming that fingerstick whole blood can be used as the
sample for the biomarker measurement and that the device is going to be used in the field
by untrained personnel, then the user should only have to perform 1–3 steps to run the
test, and the device should withstand falls as well as extreme temperatures and humidity.

To fully assess the interconnectedness of clinical, assay, and device parameters, part-
nering with clinicians is paramount. Clinicians can determine which biomarkers to measure
and what the cutoff concentrations should be, how the device will fit into existing clinical
workflows, the required sensitivity and specificity for the test, and the context in which
the device will be used clinically (e.g., in the field, in an ambulance, in an emergency
department, etc.). These parameters then determine the features of the sensing system
such as the detection mechanism (e.g., optical, electrochemical, acoustic, etc.), required
robustness, usability, and limit of detection. Once a device exists to monitor biomarkers
in the desired context of use, results from clinical validation studies can further refine the
device features, allowing the feedback cycle between clinicians and engineers to repeat
(Figure 6). Initial clinical validation can take place with a prototype device that does not
achieve all the requirements for an ideal device. To accelerate translation, it is important to
enter the feedback loop between clinicians and engineers as quickly as possible so that the
prototype device can be refined based on clinical feedback.

To achieve testable prototypes as quickly as possible, TBI biomarker measurement
device development should focus on multiplexing, assay evaluation with complex samples
(serum, plasma, and/or whole blood), usability, and robustness. GFAP and UCH-L1 must
be measured together in the United States to assess the need for a head CT scan [23],
and panels of three or more biomarkers have been proposed [130,131]. Therefore, a TBI
biomarker device is only clinically useful if it can measure at least two biomarkers simulta-
neously. Most of the devices covered in this review only evaluated spiked buffer solutions.
While this approach is useful for optimizing assay parameters, buffer solutions are not
reflective of the complexity inherent in biofluids. Any interfering substances present in the
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complex biofluid matrix must be assessed before the measurement device can be validated
clinically. Additionally, a device must be initially usable by trained personnel in a hospital
laboratory setting at the minimum. As such, users besides the developers must be able
to obtain repeatable biomarker concentrations using the device, and the measurements
cannot be influenced by ambient temperature, humidity, or particulates.
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for TBI assessment into clinical practice came with the recent FDA clearance of the i-
STAT Alinity from Abbott. The device is portable, so it has the potential to be used in
multiple contexts beyond the hospital laboratory setting it is approved to be used in
as of June 2021. Data obtained using the i-STAT Alinity will inform clinical cutoffs for
GFAP and UCH-L1, which can be used to continue to innovate in the development of
biomarker measurement tools. With ongoing innovation in sample preparation, usability,
and robustness in both academia and industry, biomarkers could be measured at every
stage of TBI assessment from the site of the injury to the hospital bedside, enabling precision
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