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Abstract: Rapid and accurate differentiation between live and dead cells is highly desirable for the
evaluation of cell viability. Here, we report the application of the orange-emitting sulfur-doped
organosilica nanodots (S-OSiNDs) for ultrafast (30 s), ultrasensitive (1 µg/mL), and universal stain-
ing of the dead bacterial, fungal, and mammalian cells but not the live ones, which satisfies the
requirements of a fluorescent probe that can specifically stain the dead cells. We further verify that
the fluorescence distribution range of S-OSiNDs (which are distributed in cytoplasm and nucleus)
is much larger than that of the commercial dead/fixed cell/tissue staining dye RedDot2 (which
is distributed in the nucleus) in terms of dead mammalian cell staining, indicating that S-OSiNDs
possess a better staining effect of dead cells than RedDot2. Overall, S-OSiNDs can be used as a robust
fluorescent probe for ultrafast and accurate discrimination between dead and live cells at a single cell
level, which may find a variety of applications in the biomedical field.

Keywords: nanoprobe; fluorescence imaging; live/dead staining; bacteria; mammalian cells; fungi

1. Introduction

Rapidly, sensitively, and accurately distinguishing between live and dead cells is of
tremendous significance to various biomedical fields, such as cancer therapy and microbial
infection treatment [1–7]. However, a simple and efficient method for fast and accurate
live/dead cell discrimination at a single-cell level is still lacking, and additionally, some
existing methods, such as atomic force microscopy [8], Fourier transform infrared spec-
troscopy [9], electron microscopy [10,11], Raman spectroscopy [12,13], and nucleic acid
sequence-based amplification [14], are complicated, expensive, time-consuming, and labo-
rious, seriously restricting their practical applications in the discrimination between live
and dead cells.

In recent years, fluorescence labeling technology has gained much attention due to
its outstanding advantages, including rapid response, simple operation, high sensitivity,
ease of quantification, etc. [15–21]. The frequently used fluorescent reagents capable of
realizing the discrimination between live and dead cells include SYTOX Green nucleic acid
stain [22,23], propidium iodide (PI) [24], rhodamine 123 [25], fluorescein derivatives [26–28],
calcein acetoxymethyl ester [29], RedDot2 [30], and carbon dots [31–38]. Most of these
reagents selectively stain the dead cells via penetrating compromised cell membranes and
staining the cell nucleus (e.g., RedDot2). However, these commercial dyes are relatively
expensive, sometimes toxic, and require a long staining time before imaging. Carbon dots
(a class of alternative materials for staining dead cells) usually have multicolor fluorescence
emission, which overlaps with that of the live cell probes and severely limits their practical
applications. Therefore, developing economical, low-toxic, and rapid imaging reagents
with excellent optical properties for the discrimination between live and dead cells is
highly required.
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Fluorescent silicon nanoparticles (SiNPs), with satisfactory biocompatibility, outstand-
ing photoluminescence stability, and convenient surface modification property [39], have
been extensively applied in organic solar cells [40], antibacterial application [41,42], drug de-
livery [43], cancer therapy [44,45], sensing [46–51], and bioimaging [3,52–54]. Organosilica
nanodots (OSiNDs) are one typical type of SiNPs prepared from organic silane molecules.
In a previous research, our group fabricated OSiNDs through the hydrothermal treatment
of rose bengal (RB) and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane, and
the OSiNDs possess the properties of small size (2.0 nm) and green fluorescence emission
(525 nm) [54]. The OSiNDs were applied as an imaging reagent for lysosomal imaging for
various types of cells and cells in different states (such as living, fixed, and permeabilized
cells). Besides, in a later study, the OSiNDs were also applied for the wash-free, rapid,
and universal staining of dead mammalian, bacterial, and fungal cells [3]. In addition,
our group prepared another type of OSiNDs via a one-step hydrothermal reaction of an
epoxy group-containing silane molecule, 3-glycidoxypropyltrimethoxysilane (GPTMS),
and RB, and the resulting OSiNDs possessed the properties of small size (3.7 nm) and green
fluorescence emission (529 nm) [42]. The OSiNDs were applied as an imaging reagent
for visualizing various bacteria/biofilms. However, the above-mentioned OSiNDs all
possess relatively short emission wavelengths (green fluorescence), which may decrease the
imaging accuracy and limit further applications in organs or tissues in vivo. Besides, up till
now, there is only one kind of OSiNDs that can be used for the fluorescence imaging-based
discrimination between live and dead cells [3]. Therefore, the development of a sensitive
and rapid fluorescent probe with long emission wavelengths (orange, red, or near-infrared
fluorescence) for live/dead cell discrimination is highly desirable.

In 2021, we prepared orange-emitting sulfur-doped OSiNDs (S-OSiNDs) with a photolu-
minescence quantum yield (PLQY) of 13.4% (solvent: water) by the solvothermal treatment
of citric acid, urea, and bis[3-(triethoxysilyl)propyl]tetrasulfide in N, N-dimethylformamide
(DMF) at 200 ◦C for 12 h [51]. The S-OSiNDs realized the detection of multiple metal
ions and achieved cancer/normal cell discrimination. Besides, the metal ion-induced
fluorescence quenching of S-OSiNDs could be selectively restored by glutathione (GSH),
and thus the metal ion-treated S-OSiNDs exhibited a sensitive GSH detection capability.
Here, we demonstrate that the same S-OSiNDs can be used as a fluorescent probe for the
differentiation between live and dead microbial (bacterial and fungal) and mammalian cells
(Scheme 1). The S-OSiNDs can realize ultrafast (30 s), highly sensitive (required dose of
S-OSiNDs: 1 µg/mL), accurate, universal, and selective staining of dead cells. Compared
with RedDot2 (a commercial far-red cell membrane-impermeant nuclear dye suitable for
selective dead/fixed cell/tissue staining), the fluorescence distribution range of S-OSiNDs
(which are distributed in cytoplasm and nucleus) is much larger than that of RedDot2
(which is distributed in the nucleus) in terms of dead mammalian cell staining. The results
indicate that S-OSiNDs possess a better staining effect of dead cells than RedDot2 and
represent a promising probe for accurate discrimination between live and dead cells.
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Scheme 1. Scheme depicting (A) the synthesis of S-OSiNDs and (B) their application for the discrimi-
nation between live and dead cells.

2. Materials and Methods
2.1. Preparation of Live/Dead Cells

For bacterial (Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus)) and fungal
cells (Saccharomyces cerevisiae (S. cerevisiae) yeast), the cells (108 colonies forming unit
(CFU)/mL) were centrifugated (8000 rpm, 5 min) and then collected after being washed
with physiological saline. Then, the cells were divided into two groups (live and dead
groups). The cells in the dead group were treated with 1% benzalkonium bromide solution
for 2 h, followed by washing with physiological saline. The cells in the live group were
resuspended in physiological saline. For mammalian cells (HPAEpiCs (normal human
pulmonary alveolar epithelial cells) and A549 (human lung cancer cells)), the cells were
cultured in a 96-well glass bottom plate (5 × 103 cells/well). Next, the dead cells were
obtained after treating the cells with ethanol for 10 min, while the live cells were incubated
in Dulbecco’s modified Eagle’s medium (DMEM).

2.2. Evaluation of the Staining Performance of S-OSiNDs toward Live and Dead Bacteria

Live/dead E. coli and S. aureus cells (108 CFU/mL) were separately treated with
different concentrations of S-OSiNDs (0, 1, 2, 5, 10, 20, and 50 µg/mL) for different time
periods (30 s, 1, 2, 5, 10, and 30 min). Then, the cells were washed with physiological
saline for 3 times and evaluated by flow cytometry using a flow cytometer (NovoCyte
2070R, ACEA Biosciences Inc., San Diego, CA, USA). In addition, the treated cells were
imaged under a confocal microscope (TCS SP8, Leica, Wetzlar, Germany) at an excitation
wavelength of 552 nm.
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2.3. Evaluation of the Staining Performance of S-OSiNDs toward Live and Dead Fungi

For confocal imaging, the live/dead S. cerevisiae cells (108 CFU/mL) were exposed
to different concentrations of S-OSiNDs (1, 2, 5, 10, 20, and 50 µg/mL) for different time
periods (30 s, 1, 2, 5, 10, and 30 min), and then imaged using the confocal microscope at an
excitation wavelength of 552 nm. For flow cytometry analysis, the live/dead S. cerevisiae
cells (108 CFU/mL) were first exposed to different concentrations of S-OSiNDs (0, 1, 2, 5,
10, 20, and 50 µg/mL) for different time periods (30 s, 1, 2, 5, 10, and 30 min). Then, after
washing the treated fungal cells with physiological saline for 3 times, we quantified the
cellular fluorescence intensities by flow cytometry.

2.4. Evaluation of the Staining Performance of S-OSiNDs toward Normal and Cancerous
Mammalian Cells

For confocal imaging, the normal/cancerous mammalian cells (HPAEpiC/A549) were
mixed with different concentrations of S-OSiNDs (1, 2, 5, 10, 20, or 50 µg/mL) for different
time periods (30 s, 1, 2, 5, 10, or 30 min). Afterward, the cells were imaged under the
confocal microscope at an excitation wavelength of 552 nm. For flow cytometry analysis,
the live/dead HPAEpiCs and A549 cells were first treated with different concentrations
of S-OSiNDs (0, 1, 2, 5, 10, 20, or 50 µg/mL) for different time periods (30 s, 1, 2, 5, 10, or
30 min). Then, after washing the treated HPAEpiCs and A549 cells with phosphate-buffered
saline (PBS, pH 7.4) for 3 times, we measured the cellular fluorescence intensities using
flow cytometry.

2.5. Comparison between S-OSiNDs and RedDot2 on the Live/Dead Cell
Discrimination Performance

To compare the live/dead differentiation performance of S-OSiNDs and RedDot2
(a commercial dye for nuclear DNA imaging), the live/dead bacteria (E. coli/S. aureus),
fungi (S. cerevisiae yeast), and normal/cancerous mammalian cells (HPAEpiC/A549) were
stained by the mixture of S-OSiNDs (5 µg/mL) and RedDot2 (diluted with physiological
saline (for bacteria and fungi)/PBS (for mammalian cells) using a 1:200 ratio) for 10 min
in the dark. Then the cells were imaged by the confocal microscope. The excitation
wavelength of S-OSiNDs was 552 nm, while that of RedDot2 was 638 nm. Since the
fluorescence emission color of S-OSiNDs was orange, which might be interfered with that
of RedDot2 (red), the imaging color of S-OSiNDs was set as green.

3. Results and Discussion
3.1. Staining Performance of S-OSiNDs for Live and Dead Bacteria

S-OSiNDs were prepared according to our previous report [51]. The as-prepared S-
OSiNDs exhibit a uniform size distribution with an average size of 1.3 ± 0.3 nm
(Figure S1A,B, Supplementary Materials). The ultraviolet–visible (UV–vis) absorption spec-
trum of the S-OSiNDs shows an absorption peak at 335 nm and two broad absorption bands
centering at around 470 and 558 nm, the latter of which is related to the fluorescence excita-
tion of S-OSiNDs (Figure S1C). As shown by the fluorescence emission spectra, S-OSiNDs
display excitation-independent fluorescence emission with the maximum excitation and
emission peaks at 558 and 583 nm, respectively (Figure S1D,E). Besides, the PLQY of S-
OSiNDs in water was calculated to be 13.4%. The Fourier transform infrared spectroscopy
(FTIR) and X-ray photoelectron spectroscopy (XPS) data demonstrated that the obtained
S-OSiNDs possess various groups/moieties, including C–H, O–H/N–H, C–O/C–N, C–C,
Si–O, C=O, C–S, etc. (Figure S1F–I).

To evaluate if S-OSiNDs can be adapted to distinguish between live and dead bac-
terial cells, we chose E. coli and S. aureus as the representatives of the Gram-negative
and Gram-positive bacteria, respectively. The results in Figures 1A and 2A revealed that
the live bacterial cells (both E. coli and S. aureus) were hardly labeled by all the tested
concentrations of S-OSiNDs, while the dead cells were observed to exhibit strong fluo-
rescence signals. According to the flow cytometric results (Figures 1B–D and 2B–D), the
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dead cells exhibited much higher fluorescence intensities than the live ones. Also, the
effect of staining time on the live/dead cell discrimination performance of S-OSiNDs was
further evaluated (Figures 3 and 4). Strong fluorescence signals were observed for the dead
cells after incubation with S-OSiNDs after 30 s, whereas the live cells that we treated with
S-OSiNDs for different time periods did not display noticeable fluorescence. Moreover,
the fluorescence intensities of the dead cells reached a plateau after 1 min (for E. coli)/30 s
(for S. aureus) (Figures 3D and 4D), demonstrating that the dead bacterial cell staining by
S-OSiNDs is very fast. Besides, the results of the cellular fluorescence intensities obtained
by flow cytometry (Figures 1B–D and 2B–D) agreed well with the confocal imaging results
(Figures 3A and 4A).
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Figure 1. (A) Confocal images of dead and live E. coli cells incubated with various concentrations of
S-OSiNDs for 30 s. Scale bar = 10 µm. Flow cytometric results of the dead (B) and live (C) E. coli cells
incubated with different concentrations of S-OSiNDs for 30 s and (D) corresponding quantitative
mean fluorescence intensities derived from the flow cytometric results.
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Figure 2. (A) Confocal images of dead and live S. aureus cells incubated with various concentrations
of S-OSiNDs for 30 s. Scale bar = 10 µm. Flow cytometric results of the dead (B) and live (C) S. aureus
cells incubated with different concentrations of S-OSiNDs for 30 s and (D) corresponding quantitative
mean fluorescence intensities derived from the flow cytometric results.
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Figure 3. (A) Confocal images of dead and live E. coli cells treated with S-OSiNDs (5 µg/mL) for
different time periods. Scale bar = 10 µm. Flow cytometric results of dead (B) and live (C) E. coli cells
incubated without (control) or with S-OSiNDs (5 µg/mL) for different time periods and (D) corre-
sponding quantitative mean fluorescence intensities derived from the flow cytometric results.
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Figure 4. (A) Confocal images of dead and live S. aureus cells treated with S-OSiNDs (5 µg/mL) for
different time periods. Scale bar = 10 µm. Flow cytometric results of the dead (B) and live (C) S. au-
reus cells incubated without (control) or with S-OSiNDs (5 µg/mL) for different time periods and
(D) corresponding quantitative mean fluorescence intensities derived from the flow cytometric results.

Furthermore, we compared the fluorescence intensities between the S-OSiND-stained
E. coli and S. aureus. According to the flow cytometric results (Figures 1D, 2D, 3D and 4D),
the fluorescence intensities of the dead E. coli cells were higher than those of the dead
S. aureus cells at the same S-OSiND concentrations/incubation time (at the plateau stages).
This is because the size/volume of E. coli is larger than that of S. aureus, and therefore a
higher intracellular content of S-OSiNDs can be found in the dead E. coli cells than that in
the dead S. aureus cells.

Collectively, the above results demonstrated that S-OSiNDs were able to achieve rapid
and accurate differentiation between live and dead bacterial cells.
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3.2. Staining Performance of S-OSiNDs for Live and Dead Fungi

Besides the bacterial cells, we also tested the capacity S-OSiNDs to distinguish between
live and dead fungal cells. To this end, the S. cerevisiae yeast was chosen. As shown in
Figure 5A, only dead yeasts were successfully stained by the synthesized S-OSiNDs with
strong red fluorescence, while the live yeasts did not show any fluorescence (compared
with the untreated control group). In addition, the fluorescence intensities of the dead
and live yeasts were measured using flow cytometry. The results showed that at all the
tested concentrations, the cellular content of S-OSiNDs in the dead yeasts was much higher
than that in the live cells (Figure 5B–D). Moreover, we further investigated the effect of
incubation time on the live/dead cell discrimination performance of S-OSiNDs. It could be
found that strong red fluorescence signals could be seen in the dead cells after incubation
with S-OSiNDs for 30 s or longer, whereas the live cells that were treated with S-OSiNDs
for different time periods did not display noticeable fluorescence (Figure 6A). In addition,
as revealed by the corresponding flow cytometric results (Figure 6B–D), the fluorescence
intensity of the dead yeasts reached a plateau after 30 s, demonstrating the rapid S-OSiND
staining effect toward dead yeasts.
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Figure 5. (A) Confocal images of dead and live S. cerevisiae cells incubated with various concentrations
of S-OSiNDs for 30 s. Scale bar = 10 µm. Flow cytometric results of the dead (B) and live (C) S. cerevisiae
cells incubated with different concentrations of S-OSiNDs for 30 s and (D) corresponding quantitative
mean fluorescence intensities derived from the flow cytometric results.
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Figure 6. (A) Confocal images of dead and live S. cerevisiae cells treated with S-OSiNDs (5 µg/mL)
for different time periods. Scale bar = 10 µm. Flow cytometric results of the dead (B) and live
(C) S. cerevisiae cells incubated without (control) or with S-OSiNDs (5 µg/mL) for different time
periods and (D) corresponding quantitative mean fluorescence intensities derived from the flow
cytometric results.

To check the sensitivity of live/dead fungal cell discrimination of S-OSiNDs, we
first defined the discrimination sensitivity as Idead/Ilive (in which Idead represents the
fluorescence intensity of dead cells, and Ilive represents the fluorescence intensity of live
cells). When the value of Idead/Ilive is above 1, the live and dead cells can be theoretically
discriminated. In addition, the larger the value of Idead/Ilive is, the better the live/dead
cell discrimination effect is. As shown in Figure 6D, after staining for 30 s, we could see
that the value of Idead/Ilive was 15.3–16.8, which is much larger than 1, indicating that the
discrimination is successful. In addition, Figure 5D exhibited that the fluorescence intensity
of dead cells was concentration-dependent, and a higher S-OSiND concentration resulted
in a stronger fluorescence emission, which accordingly led to a higher Idead/Ilive value and
a higher discrimination sensitivity.

Collectively, the above results suggested that S-OSiNDs could achieve fast and accurate
live/dead fungal cell discrimination.
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3.3. Staining Performance of S-OSiNDs for Normal and Cancerous Mammalian Cells

Inspired by the above-mentioned live/dead microbial cell discrimination results of
S-OSiNDs, we further tested the feasibility of using S-OSiNDs for distinguishing between
live/dead normal/cancerous mammalian cells. We chose the normal HPAEpiCs and the
cancerous A549 cells as two representative mammalian cell lines for the live/dead cell
staining assay. As shown in Figures 7 and 8, the dead HPAEpiCs and A549 cells could be
selectively labeled by different concentrations of S-OSiNDs, whereas almost no fluorescence
was detected from the live cells even when the concentration increased to 50 µg/mL
(Figures 7A and 8A). The corresponding flow cytometric results in Figures 7B–D and 8B–D
further indicated that in all cases, the dead cells exhibited much higher fluorescence
intensities than the live cells. The fluorescence intensity of the dead cells was concentration-
dependent, and a dramatically enhanced fluorescence could be observed even at a very
low S-OSiND concentration of 1µg/mL.
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Figure 7. (A) Confocal images of dead and live HPAEpiCs incubated with various concentrations of
S-OSiNDs for 30 s. Scale bar = 25 µm. Flow cytometric results of dead (B) and live (C) HPAEpiCs
incubated with different concentrations of S-OSiNDs for 30 s and (D) corresponding quantitative
mean fluorescence intensities derived from the flow cytometric results.
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Figure 8. (A) Confocal images of dead and live A549 cells incubated with various concentrations of
S-OSiNDs for 30 s. Scale bar = 25 µm. Flow cytometric results of dead (B) and live (C) A549 cells
incubated with different concentrations of S-OSiNDs for 30 s and (D) corresponding quantitative
mean fluorescence intensities derived from the flow cytometric results.

Moreover, we checked the effect of staining time on the live/dead mammalian cell
differentiation performance of S-OSiNDs. As shown in Figures 9A and 10A, after incuba-
tion for only 30 s, the dead cells could be successfully stained by S-OSiNDs with strong
red fluorescence, and the red fluorescence signals were distributed in the entire cells, in-
cluding cytoplasm and nucleus, whereas no fluorescence was detected in the live cells even
when the staining time was increased to 30 min. The results of the cellular fluorescence
intensities obtained by flow cytometry (Figures 9B–D and 10B–D) were consistent with
the confocal imaging results. Additionally, according to the flow cytometric results in
Figures 9B–D and 10B–D, we could clearly see that there were no evident changes in the
fluorescence intensity of the dead HPAEpiCs and A549 cells with the increase of staining
time after 30 s.
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Figure 9. (A) Confocal images of dead and live HPAEpiCs treated with S-OSiNDs (5 µg/mL) for
different time periods. Scale bar = 25 µm. Flow cytometric results of dead (B) and live (C) HPAEpiCs
incubated without (control) or with S-OSiNDs (5 µg/mL) for different time periods and (D) corre-
sponding quantitative mean fluorescence intensities derived from the flow cytometric results.
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Figure 10. (A) Confocal images of dead and live A549 cells treated with S-OSiNDs (5 µg/mL) for
different time periods. Scale bar = 25 µm. Flow cytometric results of dead (B) and live (C) A549 cells
incubated without (control) or with S-OSiNDs (5 µg/mL) for different time periods and (D) corre-
sponding quantitative mean fluorescence intensities derived from the flow cytometric results.

Furthermore, we compared the fluorescence intensities between the HPAEpiCs and
A549 cells. It was found that the fluorescence intensities of the dead HPAEpiCs were higher
than those of the dead A549 cells at the same S-OSiND concentrations/incubation time (at
the plateau stages) (Figures 7D, 8D, 9D and 10D). Besides, according to the flow cytometric
results (data not shown), the size/volume of HPAEpiCs is larger than that of A549 cells.
Therefore, more intracellular S-OSiNDs can be accommodated in the dead HPAEpiCs than
in the dead A549 cells.
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Collectively, S-OSiNDs represent a promising and universal fluorescent probe for
successfully discriminating between live and dead cells and realizing ultrafast (30 s) and
sensitive staining (required dose of S-OSiNDs: 1 µg/mL) of dead cells.

3.4. Comparison between S-OSiNDs and RedDot2 on the Discrimination between Live and
Dead Cells

To further evaluate the capability of S-OSiNDs in live/dead cell discrimination and
uncover the selective labeling mechanism of dead cells, we treated the live and dead cells
with the mixtures of S-OSiNDs and RedDot2. As shown in Figure 11, little fluorescence was
observed in the live cells, revealing that the live cells were neither stained by S-OSiNDs nor
RedDot2. On the other hand, strong yellow fluorescence could be observed in the merged
confocal images of dead cells, confirming that S-OSiNDs (shown as green in the images)
and RedDot2 (red fluorescence) can both selectively light up the dead cells and the dead
cell staining mechanism of S-OSiNDs is the same as that of RedDot2. Specifically, for the
dead HPAEpiCs and A549 cells, the red fluorescence of RedDot2 was mainly located in
the nucleus, while the green signals (pseudo color) of S-OSiNDs were distributed in both
the cytoplasm and nucleus, which illustrated that the fluorescence distribution range of
S-OSiNDs was much larger than that of RedDot2 under the same staining condition. The
larger fluorescence distribution range of S-OSiNDs indicated their better staining ability of
the dead cells than that of RedDot2, which may help them to realize more sensitive and
accurate discrimination of dead and live cells.
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Figure 11. Confocal images of live/dead cells (HPAEpiC, A549, E. coli, S. aureus, and S. cere-
visiae yeast) stained with S-OSiNDs (5 µg/mL) and RedDot2 (diluted with PBS (for mammalian
cells)/physiological saline (for bacteria and fungi) using a 1:200 ratio) for 10 min. Note that the
fluorescence emission color of S-OSiNDs was set as green.
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3.5. Cytotoxicity Evaluation of S-OSiNDs

Next, the cytotoxicity of S-OSiNDs to the bacterial, fungal, and mammalian cells was
also evaluated. The corresponding results are shown in Figure 12. It could be found that
S-OSiNDs had negligible toxicity to E. coli, S. aureus, and yeast cells at concentrations of
50 µg/mL. Even when the concentration increased to 500 µg/mL, S-OSiNDs only had
slight toxicity to E. coli (viability: ~76%), S. aureus (viability: ~84%), and yeast (viability:
~85%). When the concentration of S-OSiNDs was 500 µg/mL, the relative viabilities of
HPAEpiCs and A549 cells were ~93% and ~99%, respectively. It is worth noting that the
S-OSiND concentration of 500 µg/mL is much higher than the working concentration of
5 µg/mL. These results revealed the superb cytocompatibility of S-OSiNDs, ensuring their
practical applications in cell imaging.
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Figure 12. Cytotoxicity evaluation results of S-OSiNDs toward bacterial, fungal, and mammalian
cells. Optical density at 600 nm (OD600) values of (A) E. coli and (B) S. aureus bacterial suspensions
treated with various concentrations of S-OSiNDs for different time periods. (C) Photographs of
the agar plates showing the formed colonies of S. cerevisiae yeasts that were treated with various
concentrations of S-OSiNDs for 24 h and (D) corresponding statistical data. (E) Relative viabilities of
HPAEpiCs and A549 cells after treatment with different concentrations of S-OSiNDs for 24 h.
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4. Conclusions

In this work, we demonstrated that S-OSiNDs could realize sensitive (1 µg/mL), ultra-
fast (30 s), and selective fluorescence staining of dead bacterial, fungal, and mammalian
cells. We have also proved that S-OSiNDs possessed good cytocompatibility. As a result,
S-OSiNDs can be adopted as a robust fluorescent probe for successful fluorescence discrim-
ination between live and dead cells regardless of the cell type. For mammalian cells, we
confirmed that the fluorescence distribution range of S-OSiNDs (which are distributed in
the cytoplasm and nucleus) is much larger than that of RedDot2 (which is distributed in
the nucleus). These advantages demonstrate the bright application prospect of S-OSiNDs
in cell imaging and cell viability evaluation. We surely believe that the S-OSiNDs can find
a variety of applications in the biomedical field.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12111000/s1, Figure S1: Characterizations of S-OSiNDs.
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