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Abstract: The lens-free shadow imaging technique (LSIT) is a well-established technique for the
characterization of microparticles and biological cells. Due to its simplicity and cost-effectiveness,
various low-cost solutions have been developed, such as automatic analysis of complete blood count
(CBC), cell viability, 2D cell morphology, 3D cell tomography, etc. The developed auto characterization
algorithm so far for this custom-developed LSIT cytometer was based on the handcrafted features
of the cell diffraction patterns from the LSIT cytometer, that were determined from our empirical
findings on thousands of samples of individual cell types, which limit the system in terms of induction
of a new cell type for auto classification or characterization. Further, its performance suffers from
poor image (cell diffraction pattern) signatures due to their small signal or background noise. In this
work, we address these issues by leveraging the artificial intelligence-powered auto signal enhancing
scheme such as denoising autoencoder and adaptive cell characterization technique based on the
transfer of learning in deep neural networks. The performance of our proposed method shows an
increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types,
such as red blood cell (RBC) and white blood cell (WBC). Furthermore, the model is adaptive to
learn new type of samples within a few learning iterations and able to successfully classify the newly
introduced sample along with the existing other sample types.

Keywords: artificial intelligence; lens-free shadow imaging technique; cell-line analysis; cell signal
enhancement; deep learning

1. Introduction

The lens-free shadow imaging technique (LSIT) is a well-established technique for
the characterization of microparticles and biological cells [1]. This technique is widely
popular for its simple imaging structure and cost-effectiveness. It comprises a lens-less
detector, such as a complementary metal-oxide semiconductor (CMOS) image sensor, a
semi-coherent light source, such as light-emitting diode (LED), and a disposable cell chip
(C-Chip). The absence of a lens or other optical arrangements allows it to fit into a very
small space, thereby reducing the size of the overall system (as described in Figure 1a in
the LSIT platform (Cellytics) built within a dimension of 100 × 120 × 80 mm3). Since this
arrangement consists of a few components, most of which are easily available at a low
price, it therefore reduces the overall cost of the system [2]. This simple and cost-effective
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nature facilitates the feasibility of the LSIT for the applications in the fields of point-of-care
systems or telemedicine systems [3–5].
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and subsequently analyze them based on the handcrafted parameters. However, the per-
formance of the system is dependent on the uniform illumination as well as the strong 
signatures of the microparticle samples. Since the diffraction signature of a microparticle 
depends on the size as well as the signal-to-noise ratio of the particle, therefore any back-
ground noise can affect the overall performance of the auto characterization system. Fur-
ther, the handcrafted approach of finding the features for every additional cell line is time-
consuming and prone to subjective errors. To address these limitations, in this work, we 
have developed an artificial intelligence (AI) powered signal enhancement scheme for the 
LSIT micrographs that can enhance the signal quality (signal to noise ratio (SNR)) for var-
ious cell lines in a heterogeneous cell sample. For this, we employed the autoencoder-
based denoising scheme [18]. Further, we have developed an auto characterization 
method based on a convolutional neural network [19,20] (CNN) architecture to classify 

Figure 1. Schematics of the LIST setup and the proposed neural network architecture for the auto
characterization of LSIT micrographs. (a) LSIT platform (Cellytics) (b) schematic of the principle
of diffraction, i.e., shadow, pattern generation of a micro-object, (c) schematic of the LSIT imaging
setup showing the simplicity of the setup, (d) schematic of the dataset creation process by automatic
cropping individual cell diffraction pattern from the whole LSIT micrograph, and (e) the schematic of
the proposed denoising and classification architecture. Here, the denoising autoencoder enhances the
signal of the individual cells which is then fed to the CNN module for classification.

Recent advancements in machine learning, especially deep learning, have facilitated
many applications concerning medical diagnostics [6–12], and have been widely adopted in
the field of microscopy [13–15]. In particular, deep learning has been incorporated with the
LSIT [14], where it is has been used to enhance the resolution of the LSIT micrographs [16]
and enabled polarization-based holographic microscopy [17].

In our previous work, we have successfully developed the LSIT imaging system for
the complete blood count using an analytical model based on handcrafted features [3] that
can automatically segment out the individual cells from a whole frame LSIT micrograph
and subsequently analyze them based on the handcrafted parameters. However, the per-
formance of the system is dependent on the uniform illumination as well as the strong
signatures of the microparticle samples. Since the diffraction signature of a microparti-
cle depends on the size as well as the signal-to-noise ratio of the particle, therefore any
background noise can affect the overall performance of the auto characterization system.
Further, the handcrafted approach of finding the features for every additional cell line is
time-consuming and prone to subjective errors. To address these limitations, in this work,
we have developed an artificial intelligence (AI) powered signal enhancement scheme for
the LSIT micrographs that can enhance the signal quality (signal to noise ratio (SNR)) for
various cell lines in a heterogeneous cell sample. For this, we employed the autoencoder-
based denoising scheme [18]. Further, we have developed an auto characterization method
based on a convolutional neural network [19,20] (CNN) architecture to classify the various
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cell lines from the LSIT micrograph. Here, we have first introduced the transfer of learning
scheme in a neural network, which can leverage the feasibility to introduce new cell types
to the algorithm and thus learn their characteristics within a few iterations. Thus, the LSIT
platform saves time and computation resources required to learn to classify the additional
cell types along with the existing ones.

In this article, we have described the detailed methods adopted for the designing
as well as optimization of various parameters to design a suitable model with better
accuracy. These optimized models are simple and light-weight, and require a smaller
number of samples for effectively learning the cell signatures. The details are as given in
the following sections.

2. Methods
2.1. LSIT Imaging Setup

The schematic of our proposed setup (Figure 1a) is as shown in Figure 1. When
light from the coherent or semi-coherent source passes through a micro-object, it produces
characteristic diffraction, i.e., shadow, pattern of the object [21,22] as shown in Figure 1b.
These diffraction patterns are prominent just beneath the sample, typically a few hundred
micrometers away from the sample plane, from where they are captured using a high-
density image sensor such as CCD or CMOS [21] (Figure 1c). As these signatures are
significant enough to be captured by the bared image sensor, it does not require any kind
of lens arrangement [23]. In our proposed setup, we used a pinhole conjugated semi-
coherent LED light source with a peak wavelength of 470 ± 5 nm (HT-P318FCHU-ZZZZ,
Harvatek, Hsinchu, Taiwan). The diffraction patterns were captured using a 5-megapixel
CMOS image sensor (EO-5012M, Edmund Optics, Barrington, NJ, USA), and a custom-
developed C-Chip (Infino, Seoul, Korea) was used to hold the cell samples [2,5]. All of
these components can fit in a compact dimension of 100 mm × 120 mm × 80 mm. Due to
the absence of a lens-based setup, the field-of-view of this system is about 20 times that of a
conventional optical microscope at 100×. This high-throughput nature provides an extra
advantage to characterize several thousand cells within a single digital frame.

2.2. Preparation of Various Cell Lines

In this work we used various cell lines, starting from red blood cell (RBC), white blood
cell (WBC), cancer cell lines HepG2 (human liver cell-line) and MCF7 (human breast cancer
cell-line), and polystyrene microbeads of 10 µm and 20 µm. The preparations of these cell
lines are as follows [2,3]. The use of human whole blood in the experiment was approved
by the Institutional Review Board (Approval No. # 2021AN0040 of Korea University Anam
Hospital (Seoul, Korea).

RBC: The RBC samples were prepared from the whole blood samples that were collected
from the Korea University Anam Hospital under IRB approval. The samples were diluted
about 16,000 times by using RPMI solution (Thermo Scientific, Waltham, MA, USA) [2,3].

WBC: First, Ficoll solution (Ficoll-Paque™ Plus, GE Healthcare, Chicago, IL, USA) was
used to isolate mononuclear cells from the whole blood. The samples of peripheral blood
mononuclear cells (PBMCs) obtained using the Ficoll solution are mixtures of lymphocytes
and monocytes. To separate these two cell types, the MACS (Magnetic-activated cell sorting)
device and antibodies (Miltenyi Biotec, Bergisch Gladbach, Germany) were utilized. The
helper-T cells in the lymphocytes were separated using the CD4 antibody (#130-090-877),
and the cytotoxic-T cells with the CD8 antibody (# 130-090-878). Finally, 10 µL of this
solution was then loaded into the unruled C-Chip cell counting chamber [2,3].

HepG2: The HepG2 cell lines were prepared from the American Type Culture Col-
lection (ATCC HB-8065) and incubated in a high-glucose medium (DMEM, Merck, Darm-
stadt, Germany) with 10% heat-inactivated fetal bovine serum, 0.1% gentamycin, and a
1 penicillin/streptomycin solution under 95% relative humidity and 5% CO2 at 370 ◦C. The
developed cells were then trypsinized and separated from 24 well pate and incubated from
2–5 min at 370 ◦C. These cells were then diluted with DMEM solution [2,3].
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MCF7: The MCF7 cell samples were prepared from the American Type Culture Col-
lection (ATCC HTB-22). The cells were preserved in a solution of DMEM containing 1%
penicillin/streptomycin solution, 0.1% gentamycin, and 10% calf serum at 95% relative humid-
ity and 5% CO2 at 370 ◦C. These cells were then trypsinized and separated from the 24 well
pate. These separated cells were then incubated for 2–5 min at 370 ◦C. The cells were then
washed with DMEM solution. 10 µL of this solution was then loaded in the C-Chip [2,3].

Polystyrene microbead: The 10 µm and 20 µm bead samples were prepared by dilut-
ing the respective polystyrene microbeads (Thermo Scientific, Waltham, MA, USA) with
de-ionized water [2,3].

2.3. Dataset Creation

A whole frame LSIT image (of cell diffraction patterns) contains an average of
~500 diffraction patterns of microparticles. Deep learning-based architectures utilize the
features of each class, and typically require a minimum of a few hundred diffraction pat-
terns of each cell type for optimal learning. Therefore, we cropped individual diffraction
patterns of each cell type (that were verified using a traditional microscope) with a window
of 66× 66 pixels as shown in Figure 1d. This window size included the complete sample
signature along with a minimal background that would provide complete cell-line information
during the auto-feature selection process in learning algorithms. We further augment this
base sample set by rotating the individual diffraction patterns with an increasing angle of
10 degrees clockwise. Finally, a dataset of 1980 samples for each of the six cell lines and
microparticles was created, totaling 11,880 samples for all of the classes under study. The
typical architecture of a CNN is illustrated in Figure 1e. As many learning algorithms are
black-box models, it is difficult to ascertain the optimal cell-signal size that covers the majority
of the information and minimal background. Naturally, a smaller cell-size would need lesser
computation and have lesser noise. Hence, we created the dataset for 60× 60, 56× 56, 50× 50,
46× 46, 40× 40, and 36× 36 cell sizes as input sets, with each set further divided into training
and test folds. As the data augmentation used sample rotation, the splitting of the dataset
into the train, validation, and test folds needs to be carried out while keeping a check on data
leakage. Augmented samples distributed across the train and test sets may bias the model
and may give a wrong estimate of its performance as the test data may not be of entirely
“unseen” samples. Accounting for this, the 1980 samples of each class were carefully split into
1490 training samples, 166 validation samples, and 324 testing samples.

Though the cell-lines may seem visually similar, there are significant differences in
the statistical distributions of the pixel illumination intensity in the cell diffraction pattern
as revealed in our exploratory data analysis. The 2D contour plots (in Figure 2) show the
observed variances. Hence, it is possible for intelligent algorithms to automatically identify
and utilize the descriptive features in signal enhancement as well as classification.

2.4. Denoising Modality

For denoising of the LSIT micrographs, we adopted the concept of autoencoder [24].
An autoencoder is an unsupervised scheme that scuffles to recreate the input at its output.
It consists of an input layer (x), an output layer (r), and a hidden layer (h). The hidden layer
h termed as a code layer stands for the input in a revised dimension. The whole network
structure can be labelled into two parts. The first part is an encoder, which tries to code the
input as h = f(x), and the second part is a decoder which tries to recreate the input from
the reduced code layer as r = g(h), where r is the recreated assortment of input x. Basically,
it tries to attain r = g(f(x)). However, this is not a linear transformation since the model is
enforced to learn the significant features of the input to encode it into the code layer.

In this work, we specifically used the denoising version of the autoencoder. Tradi-
tionally, the autoencoders try to reduce the loss as L(x, g(f(x))). However, the denoising
autoencoder attempts to reduce the cost as L(x, g(f(x’))) where x’ is the noisy form of the
input x. We tried two different methods to design the denoising architectures, namely,
extreme learning machine (ELM) and convolutional neural network (CNN).
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2.4.1. ELM

This is a single hidden layer fully connected architecture [25]. In this method, the
input weights are initiated randomly and kept intact. Only the output weights take part in
the learning process through a straightforward learning method [25–27]. For N arbitrary
input samples xi ∈ Rn and their counterpart targets ti ∈ Rm, the ELM achieves this mapping
using the following relation as shown in Equation (1).

Hβ = T (1)

Here, H is the hidden layer output matrix, β is the output weight matrix (i.e., between
the hidden layer and the output layer) and T is the target matrix or matrix of desired out-
put [26]. From Equation (1), we can obtain the β using Moore–Penrose pseudoinverse [25]
as shown in Equation (2).

β =
(

HT H
)−1

HTT (2)

In the extended sequential learning form of ELM, the β can update sequentially.
This provides an added advantage of updating the learning whenever a new type of
sample is available, thus providing the flexibility of transfer of learning. The β update
mechanism [28,29] is as shown in Equation (3).

βn = βn−1 + P−1
n ( Tn − Hnβn−1)HT

n (3)

Here
Pn = Pn−1 + Hn HT

n (4)

For n = 1,

Pn−1 = P0 =

(
1
C
+ H0HT

0

)
(5)

Here H0 is the hidden layer output with the first sample or first batch of samples [30].

2.4.2. CNN

Convolutional neural networks (CNN) [6,19,20] are a type of neural network widely
used in the analysis of spatial data such as image classification and object segmentation.
In this network, two-dimensional kernels are used to extract the spatial features from the
input patterns, using a convolution operation between the kernel and the input. The typical
architecture of a CNN is as shown in Figure 1e. Here, the kernel is shared spatially by the
input or by the feature map. The feature at the location (i, j) in the kth feature map of the
lth layer can be evaluated as shown in Equation (6).

Zl
i,j,k =

(
W l

K

)T
Xl

i,j + bl
k (6)

Here, W l
K and bl

k are the weights and the bias vector of the kth filter in the lth layer.
Here the weight layer is shared spatially which reduces the complexity. Xl

i,j is the value of
the input at location (i, j) of the lth layer. The nonlinearity in this network can be obtained
by introducing the activation function, denoted here as g(.). The activated output can be
represented as shown in Equation (7).

al
i,j,k = g

(
Zl

i,j,k

)
(7)

Additionally, there are pooling layers that introduce shift-invariance by reducing the
resolution of the activated feature maps. Each pooling layer connects the feature map to
the preceding convolutional layer. The expression for pooling is as shown in Equation (8).

yl
i,j,k = P

(
al

n,m,k

)
, ∀(m, n)εRij (8)
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Here P(.) is a pooling operation for the local neighborhood Rij around the location
(i, j). In this work, we used CNN for both denoising as well as classification. The details of
their architectures and their impacts are discussed in the Section 3.

3. Results and Discussion
3.1. Performance of Denoising Algorithms

For efficient and adaptive denoising, we analyzed various autoencoder schemes,
starting with the fully-connected autoencoder. In our first iteration, we experimented with
the fully connected network having three hidden layers with 512, 256, and 512 neurons,
respectively. The input layer is the 1D vectorized array of the input cell diffraction pattern,
e.g., of 66× 66 pixels. The input to the model is the noisy version of the input cell diffraction
pattern and the expected target output is the original cell diffraction pattern. The noisy
cell diffraction patterns were created using a Gaussian distribution with variance ranging
from 100 to 600 with zero mean (refer to the supplementary section for detail). Further,
we experimented with an increased network size having five hidden layers with 256, 128,
64, 128, and 256 neurons, respectively. In all of these networks, rectified linear unit (ReLU)
was used as the activation function while mean squared error (MSE) [31–34] was used to
calculate the loss. The Adam optimizer [35,36] was found to deliver better convergence and
hence used to perfect the weight and biases. The denoising performance was quantified in
terms of the improvement in SNR, measured in dB, denoted here by SNRimp, as given by
Equation (9) [37].

SNRimp = SNRout − SNRin (9)

where SNRout = 10log10

(
∑N

n=1 x2
i

∑N
n=1(x̂ι−xi )

2

)
, and SNRin = 10log10

(
∑N

n=1 x2
i

∑N
n=1(x̃ι−xi )

2

)
. Here xi is

the value of sampling point i in the original LSIT signal, x̃ι is the value of sampling point
i in the noisy LSIT, and x̂ι is the value of sampling point i in the denoised version of the
same cell diffraction pattern. N is the total number of sample points in that LSIT image
(cell diffraction patterns).

The fully connected network for both the above configuration shows no significant
improvement in SNRimp after reaching saturation at around −10.08 dB. For further improve-
ment, we experimented with CNN architecture using various models with a different number
of convolution layers and distinct kernel sizes. The configuration of the model which accom-
plished the best outcomes is 3× 3, 3× 3, 5× 5, 5× 5, 7× 7, 7× 7, 1× 1 with 32 filters in each
layer except the last layer. The last layer consists of a single pixel filter (1× 1 filter) that is
used to condense the output across all the 32 filters. Here, the input and output size are the
same. Padding was used to maintain the original size after the output of each convolutional
layer. The Adam optimizer was used to optimize the network to reduce the mean squared
error loss. The CNN results show a better reconstruction as shown in Figure 2.

The CNN network has been optimized for various parameters. First, the optimization
of the network for various design parameters, such as varying the convolution layers and
the kernel sizes, was carried out. The results in Figure 3a show that the architecture with
kernel sizes 3× 3, 3× 3, 5× 5, 5× 5, 7× 7, 7× 7, 1× 1 has a better performance in terms
of SNRimp. The performance of the optimized network for various noise parameters, as
shown in Figure 3b, indicates the network performs better reconstruction with increasing
noise variance in the image (cell diffraction pattern). An increase in the variance results
in a noisier image (cell diffraction pattern), which warrants a detailed reconstruction to
reverse it to the original form, and hence larger the value of SNRimp. Therefore, a higher
improvement in SNRimp implies the network has learned the optimal representational
features for the cell types which enables it to perform a better qualitative reconstruction.
Figure 3c compares the reconstruction performance of the model on different sizes of
the input image (cell diffraction pattern). Due to the black-box nature of deep learning
methods, we had to create datasets with multiple cell-signature dimensions, such that the
smallest size just covered the central signature of the cell and increased the window size
till it covered a significant background portion as well. The models were evaluated across
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varying cell sizes to determine the optimal signal to background ratio, the spatial extent up
to which the models covered the features, and to study its effects on the model performance.
This analysis is critical in understanding the model explainability and interpretability since
having a size larger than the optimum increases the inclusion of background artifacts that
affect denoising as well as overpower the cell signal while having a smaller one could
exclude the important deterministic features of the cell signature. The convergence in the
training phase of the network is as shown in Figure 3d. The results depict that the loss
across the first epoch, with a high variation in the initial phase, gets smoother towards the
end of the first iteration. The advantage of this system is that it generalizes well for all of
the types of cell lines using the same model.
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Figure 2. Reconstructed results from the optimized CNN. The top row is the original LSIT image (cell
diffraction pattern) of a single RBC, WBC, MCF7, HepG2, 10 µm beam, and 20 µm bead. The second row
is the noisy version (with variance 100) of the corresponding original images (cell diffraction pattern).
The third row is the denoised version of the corresponding original images (cell diffraction pattern) from
the noisy image (cell diffraction pattern). The fourth row is the 2D intensity contour plot of the original
image (cell diffraction pattern) to show the unique signature of each of these cell lines.

Further, we tried the ELM architecture which is well known for its fast conver-
gence [25]. The results in Figure 3e–h show the performance of the ELM architecture
with varying number of neurons in the hidden layer. As it can be concluded from Figure 3e,
the model with 2000 neurons provides better performance in terms of SNRimp. Further,
the optimized model has been used to test the performance across various noise levels as
shown in Figure 3f. It is observed that the model maintains the SNRimp value on increasing
the noise in the input image (cell diffraction pattern), i.e., the image (cell diffraction pattern)
quality of the output relative to the input remains the same. The results of the model
performance across different sizes of the input image (cell diffraction pattern), as shown in
Figure 3g, indicate that the 40× 40 is having a higher value of SNR. However, the variation
is of 2 as compared to the variation for the size 50× 50, which is of 1.5, representing the
lowest compared to all of the other sizes. Since CNN shows a substantial performance
with lower variance for the 50× 50 input size, therefore we fixed it as optimal for all of
the further studies and comparisons. Figure 3h shows the loss across the first epoch for
ELM which is remarkably high initially but converges faster, as compared to CNN, after
training with only a few thousand samples. This faster convergence may help save time
and resources during incremental training phases for newer cell types. The performances
of these optimized models have been compared with the traditional denoising methods
as shown in Table 1 (The comparative visual reconstructions are provided in the supple-
mentary document). It is concluded from the data that CNN shows better performance
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compared to the other modalities (The details of the traditional methods are provided in
the supplementary document). Therefore, we prefer to use CNN for denoising.
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Figure 3. Results from the CNN and ELM autoencoder. (a) The performance of the CNN autoencoder for
improved SNR (average of all of the classes) across various layers and kernel sizes. (b) The performance
of the CNN autoencoder across varying noise levels. Here, the variance of the Gaussian noise ranges from
100 to 600, and is evaluated on the optimal network architecture, i.e., 3,3,5,5,7,7,1. (c) The performance of
the CNN autoencoder across various input sizes (cropping size). Here, the sizes vary from 66 × 66 to
36 × 36. (d) The convergence of the optimal CNN network with the number of samples for the first epoch.
(e) The number of hidden layer neurons in ELM autoencoder vs. improvement in SNR, (f) variance
vs. improved SNR for ELM autoencoder, (g) Input size vs. improved SNR for ELM autoencoder, and
(h) The convergence of ELM autoencoder within the first epoch.
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Table 1. Comparison of improved SNR with respect to the variance for various denoising modalities
(here we keep input and output size as 50 × 50).

Variance Gaussian Average Median Bilateral BM3D CNN ELM

100 4.525580 4.237872 3.199475 −0.02635 5.684597 6.06905 5.79161
200 4.613044 4.198564 3.068866 −0.00640 5.713797 7.38544 6.31896
300 4.476552 4.259405 3.078091 −0.10943 5.119646 7.26487 6.57256
400 4.674922 4.703331 3.405470 −0.05448 3.792226 7.71265 6.36135
500 4.128021 4.201562 3.198964 −0.14542 2.206876 7.72364 6.09254
600 4.023621 4.183404 2.908946 −0.16924 1.683290 7.97877 6.19359

3.2. Performance of Classification Algorithm

Since the diffraction patterns of cells and microparticles in a LSIT micrograph depend
upon their physical and optical properties, therefore, the diffraction patterns carry the
unique signatures of each of the cell types as shown in the 2D contour plot in Figure 2.
These unique signatures can be utilized for the classification of these cell types. Since
our previous inference concludes that CNN works better for denoising, therefore we
experimented with the same modality for the classification as well. In this work, in order
to determine the optimal architecture of CNN for cell-line recognition, we first proceeded
to find the optimal depth of the network by studying the classification performance of the
model on increasing the depth, by adding convolutional and pooling layers, as well as by
varying number of kernels and kernel size, till we reached performance saturation. We
have experimented with and evaluated various shallow and deep CNN models to classify
cell lines. The details of the model architecture are as described in Figure 4.
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Figure 4. The CNN Architectures with varying depth. The models in the solid box are for the
optimization of the model with varying depth. The models inside the dotted box are for the optimiza-
tion of the parameters. Here, the orange line is the input layer and the rectangle represents the 2D
convolution layer. The kernel size and number of kernels are indicated inside the round brackets,
the dropout rate in square brackets, and the number of neurons in fully connected layers are placed
directly within the rectangle. The aqua blue, green, and purple lines are the max-pool layers. The red
line is the output layer and uses a SoftMax activation function. The final optimized architecture is as
represented by the last 3D figure.
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The Deep Model starts with a convolutional (Conv2D) layer having 512 kernels of size
3× 3, followed by a max-pooling layer of the same kernel size. The output from this is
further convoluted with 128 kernels of 3× 3 size with a dropout rate of 0.5, and then a max
pool with 2× 2 kernel. This output goes to a Conv2D layer with 64 of 3× 3 sized kernels
and a dropout rate of 0.2. We further reduce the dimension using a 2× 2 max pool kernel.
The output of this layer further convolves with 32 of 3× 3 kernels, then a dropout of 0.2.
The output dimension from this convoluted layer is further reduced by using the max pool
with a 3× 3 kernel. This again convolves with 16 of 3× 3 kernels, and a max pool layer
with 3× 3 kernel. The output of which is again convoluted with 8 of 3× 3 kernels, followed
by a 3× 3 max pool. This output is then vectorized and input to a fully connected (FC) layer
having 256 nodes, and then to another FC with 128 nodes and having a dropout of 0.2. The
final layer is a SoftMax function, with six output nodes. The model architectures used for
studying the impact of the network depth and breadth on performance are well described
in Figure 4. Once the approximate optimal depth and breadth had been determined, we
proceeded to fine-tune the hyper-parameters such as the number of kernels, kernel size,
and dropouts, to reach the best performance of the models across varying cell sizes (i.e.,
input dimension of cells). In all of the models, Adam [38] provided better convergence as
compared to other optimizers and has been used as the model optimizer, with categorical
cross-entropy [39,40] as a loss estimator. The result for depth and breadth optimization
indicates that the average accuracy of the intermediate model is >0.85 (including all of the
classes), whereas it is <0.85 for shallow and deep networks. Therefore, we proceed with this
intermediate model as an optimum model for further study. Considering the intermediate
model has the optimum breadth and depth, the further optimization of the parameters and
the results are as shown in Figure 5a.
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Figure 5. Results for the optimization of the CNN model. (a) Performance of the fine-tuned interme-
diate architecture. (b) The confusion matrix showing classification accuracy on the test dataset across
all cell lines using the fine-tuned and optimized model. (c) The receiver operating characteristic
(ROC) curve for each of the cell lines for the optimized model.

From Figure 5a, it is inferred that Model 3 shows better classification performance,
on the validation fold, of all of the models. The results depict that there is consistency
in performance for the input sizes 40× 40 to 66× 66, with a very small variance in the
accuracy. The performance of this optimized model is further evaluated over the test
dataset containing 324 samples of each cell type. The per-class performance of this model is
shown in the confusion matrix of Figure 5b. The results depict that the model can classify
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RBC, WBC, 10 µm, and 20 µm bead with over 99% accuracy. However, the comparatively
poor performance of about 90% for the cancer cells, HepG2 and MCF7, can be attributed
to the non-homogeneity in their signature characteristics as well as the lack of sufficient
original samples which further complicates the issue. This is well depicted in our previous
work [4] (see Figure 2 of the reference). From the receiver operating characteristic (ROC)
curve for all of the cell lines shown in Figure 5c, the area under the curve (AUC) for all of
the cell lines is >0.99, except MCF7 (~0.95) and HepG2 (~0.96). From these results, it can
be inferred that the classifier is working well, especially for RBC, WBC, 10 µm, and 20 µm
beads. The visualization of the internal activation maps, as shown in the Supplementary
Information, implies that the network is learning core descriptive features in the diffraction
signatures rather than using some random features.

The performance evaluation of the proposed Al model with various matrices such as
true positive (TP), true negative (TN), false positive (FP), false negative (FN), accuracy, recall,
specificity, sensitivity, F1 score, positive predictive value (PPV) and negative predictive
value (NPV) is summarized in Table 2.

Table 2. Performance evaluation scores of the proposed AI model using various metrics for different
cell types.

Sample
Type TP TN FP FN Accuracy Precision Recall Specificity Sensitivity F1 PPV NPV

10 µm bead 322 1614 2 6 0.9959 0.9938 0.9817 0.9988 0.9817 0.9877 0.9938 0.9963
20 µm bead 324 1611 0 9 0.9954 1.0000 0.9730 1.0000 0.9730 0.9863 1.0000 0.9944

MCF7 184 1571 140 49 0.9028 0.5679 0.7897 0.9182 0.7897 0.6607 0.5679 0.9698
HepG2 276 1494 48 126 0.9105 0.8519 0.6866 0.9689 0.6866 0.7603 0.8519 0.9222

RBC 324 1620 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
WBC 324 1620 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Additionally, we also investigate the transfer of learning to gauge the ability of the
trained network to adapt to newer cell types (Figure 6). For this scenario, the CNN was
initially trained with all of the cell lines except RBC. From the epoch vs. accuracy graph in
Figure 6a, the transfer training achieved higher accuracy with the same number of epochs
compared to the initial training. This is also validated by the epoch vs. loss graph in
Figure 6b. From these results, it can be inferred that the network can be effectively used to
adapt to newer cell lines with very less amount of training. From the per-class test accuracy
shown in Figure 6c, it is observed that the model misclassified all of the RBC samples as
WBC. In the transfer of the learning phase, the initially trained network is frozen except for
the last layer, which is modified to accommodate the newer class and kept trainable. The
network is then re-trained with a mix of RBC samples. The per-class test accuracy of the
re-trained model is shown in the confusion matrix of Figure 6d, where it is inferred that the
re-trained network can classify RBC correctly with substantial accuracy.

The comparison between the proposed AI method and the manual method for count-
ing various cell types from a heterogeneous sample is shown in Figure 7. This comparison
shows the robustness of the model.
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Figure 6. The results from the transfer of learning study. (a) Epoch vs. accuracy graph for the initial
epochs in the initial training phase without RBC and then the transfer of training with RBC. The
blue and saffron colors represent the initial training accuracy and validation curves. The green and
red lines represent the transfer learning accuracy and validation curves, (b) epoch vs. loss, (c) the
confusion matrix from the pre-trained model, and (d) the confusion matrix with the re-trained model.
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Figure 7. Comparison between the proposed AI method and the manual method for counting.
(a) A whole frame LSIT micrograph, (b) magnified region-of-interest (ROI) of the whole frame LSIT
micrograph, (c) automatically classified cell diffraction patterns of the ROI, and (d) comparison of the
cell counts between those two different modalities.
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4. Conclusions

In conclusion, we have explored the advantages of using neural networks in the
characterization of LSIT micrographs. Here, we have perfected neural networks that can
automatically improve the signal quality and classify the cell types. We find that this neural
network can classify the RBC and WBC with great accuracy (i.e., over 98%), and the cancer
cell with an accuracy of about 90%. This network is also flexible for adapting to newer
cell lines by retraining the trained network with very few samples. Together with this
algorithm, the lightweight and cost-effective LSIT setup can be utilized as a point of care
system for the diagnosis of pathological disorders in the resource-limited setup of our
world. In our future work, we aim to combine the denoising and classification modalities
due to the significant overlap in their operation. This will remove the dual training times as
well as minimize computation costs. Also, we aim to work on improving their performance
and deploying it in real scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12030144/s1, 1. Convolutional Neural Network workflow;
2. Gaussian Noise; 3. Traditional denoising methods; 4. Comparison of the denoised outputs from
various modalities; 5. SNR of individual samples of various cell types; 6. Grad-CAM and Saliency
maps of the individual cell-lines.
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