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Abstract: The findings from the synthetic mechanism of metal nanoclusters yield the etching chem-
istry based on coinage metal nanoclusters. The utilization of such chemistry as a tool that can alter
the optical properties of metal nanoclusters has inspired the development of a series of emerging lu-
minescent biosensors. Compared with other sensors, the luminescent biosensors have the advantages
of being more sensitive, saving time and saving cost. We reviewed topics on the luminescent sensors
based on the etching of emissive coinage metal nanoclusters. The molecules possessing varied etching
ability towards metal nanoclusters were categorized with discussions of corresponding etching mech-
anisms. The understanding of etching mechanisms favored the discussions of how to use etching
methods to detecting biochemical molecules. The emerging luminescent biosensors via etching
chemistry also provided challenges and new opportunities for analytical chemistry and sensors.

Keywords: coinage metal nanoclusters; luminescent probe; etching chemistry; biosensors

1. Introduction

Coinage metal nanoclusters (NCs) are typical core-shell structures, which consist of
several or even hundreds of metal atoms or ions as the core part, where organic ligand
molecules are bonded and act as outer protective groups [1]. The size of metal NCs is
generally less than 3 nm, which is close to the electron Fermi wavelength [1–3]. Metal NCs
therefore exhibit some unique physicochemical properties different from other nanoma-
terials, such as luminescence, chirality, magnetic, and catalytic properties [4–7]. Among
them, the luminescence of metal NCs is not only adjustable, but also has the characteristics
of large Stokes shift, long luminescence lifetime, and good stability [8,9]. In recent years,
we have paid more and more attention to its application as an optical material [10–12],
not only because metal NCs have special optical properties such as strong photolumi-
nescence [8,13,14] and molecular-like absorption [15–18], but also because metal NCs can
achieve atomic precision [4,19–22]. On the other hand, the ligands of metal NCs are abun-
dant and have significant impact on the structures and properties of the metal NCs. Small
molecule ligands such as thiols can freely interact with Au atoms and final are used to yield
metal NCs of thermodynamic stability [23]. Macromolecular ligands possess relatively
rigid scaffold structures and can offer abundant intramolecular binding sites and confined
space for the growth of metal NCs [24]. Therefore, the physicochemical properties of metal
NCs are closely associated with metal core and ligand shells [25–27].

In the past two decades, highly luminescent metal NCs have been developed as
luminescent probes for sensors construction due to their stable luminescence properties and
biocompatibility [27,28]. The luminescent biosensor includes two important components: a
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recognition element and a transducer component [27]. The recognition element can have a
specific reaction with the analyte, which determines the selective detection of the analyte
by the sensor, while the transducer component is used to convert the chemical signal into
a physical signal of luminescence change. Typical luminescent metal NCs are composed
of ligand shells and metal cores, both of which can be used as recognition elements. The
analyte can undergo metalophilic interactions with metal nuclei, deposit on the metal, or
specific reactions that dissolve the metal nuclei [29]. Analytes are also capable of specific
reactions with ligand shells through enzymatic reactions, cluster aggregation, and the
like [30,31]. Then, a signal of luminescence change is emitted through the transducer
component to constitute a completed sensor [27]. The constructed sensors can be used
to detect cations (such as Cr2+, Cu2+, and Hg2+) [30,32–36], anions (such as CN− and
S2−) [37–41] and biomolecules (such as thiols and glucose) [42–46], etc.

Etching technology has a long history and was mostly used for decoration in ancient
times [47]. In recent years, metal etching has developed rapidly and is widely used in
nanomaterials [48–51]. We have witnessed the booming development of etching technology
as an important factor in the synthesis, preservation, and application of metal nanomateri-
als [52,53]. The etching process can adjust the shape and size of metal nanomaterials during
the synthetic reaction [54–56] and has been recognized as an extremely important route in
the size-focusing process [4,20]. On the contrary, the storage and application stability of
metal nanomaterials are concentrated on the capability to resist etching [57]. In the area of
sensor fabrication, etching technology has also been utilized and pushed forward to the
rapid development of luminescence biosensors based on metal NCs [1,44]. However, to
the best of our knowledge, the topics that focus on the utilization of etching technology in
metal NC-based sensor fabrication are still blank.

In this review, the luminescent sensors based on the etching of luminescent metal NCs
are systematically investigated and the review topics are spreading with the logical structure
as shown in Figure 1. Firstly, the molecules that can etch metal NCs are classified according
to the etching functional groups, and related etching mechanisms are discussed. Next, we
investigate a wide variety of luminescence biosensors of metal NCs and discuss how to use
etching methods to detecting biochemical molecules. Finally, current opportunities and
challenges of coinage metal NC-related etching technology spurs the prospect and the new
development of valuable biosensors.
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2. Etching Chemistry of Metal NCs

The strong binding affinity of ligands towards metal NCs is a double-edged sword that
can protect metal NCs as well as etch the core metal part of metal NCs. The structure de-
struction of metal NCs correspondingly affects their physicochemical properties [37,39,42].
These molecules are also called etchants include thiols, cyanide, phosphine compounds,
iodine compounds, and some heavy metal ions. The etching chemistry not only establishes
the basis for the digestive ripening transformations of metal NCs [58], but also synthesizes
new coordination compounds from the debris of etching sculpture [59–61].

2.1. Thiol-Induced Etching

Thiol functional groups are important components in many biochemical formula-
tions [62] and can also act as building blocks in many chemical reactions [63,64]. Among
them, the chemical etching reaction of thiol-induced metal nanomaterials has attracted the
attention of researchers due to its wide range of applications, especially the etching of gold
NCs (Au NCs) [65–72]. Although etching with excess thiol is widely used, the mechanism
is not particularly clear so far [48,73–76]. Several research groups have attempted to explain
the active etching process and necessary conditions of thiol in the reaction. The current
consensus is that thiol etchants dissolve metal nuclei and release metal–thiolate complexes.

Early researchers found that thiol-induced etching resulted in a decrease in the core
size of the metal NCs and an increase in the amount of metal–thiolate complexes formed
during the etching process. Schaaff et al. [77] proposed that the thiol-induced clusters
etching process was similar to the formation of Au surface self-assembled monolayers
(SAMs). This was based on the observation by WÖll et al. [78] using scanning tunneling
microscopy that SAMs were formed by removing gold atoms from the outermost surface
of Au. Using techniques such as X-ray diffraction and mass spectrometry, Schaaff et al. [77]
directly showed that etching in pure thiol solution could reduce the core size of clusters,
and proposed that the mass of clusters decreased while that of Au(I)-SR polymers in-
creased was a plausible mechanism to explain the etching phenomenon. Therefore, rational
control of etching conditions may be able to obtain metal NCs with controlled core size.
Tsukuda et al. [79] pointed out that etching technology could be used to synthesize thiol-
stabilized Au NCs with a controlled core size (Aun:SR, n is the core size), and specifically
that excess thiols could etch and reduce the core size of Au:SR clusters. Taking the glu-
tathionate (GSH)-stabilized Au NCs (Aun(SG)m) as an example, it was pointed out that
when n < 25, the Au NCs would be etched into smaller clusters by the etchant. When
n ≥ 25, the etching products tended to form thermodynamically stable Au25:SG clusters.

Excess thiol-induced etching transforms metal NCs into a series of atomically precise
metal NCs of uniform and stable size, known as “size focusing” [38,48,73,80–84]. Un-
der the action of thiols, pure Au8, Au25, Au38, and other clusters have been successfully
synthesized by size-focusing technology. Among them, Tsukuda et al. [79] successfully
obtained GSH stable Au25 clusters, and pointed out that it was the most thermodynamically
stable. Dass et al. [80] obtained Au36 clusters by etching a mixture dominated by Au68
and Au102 clusters using thiophenol. We know that thermal etching induced by excess
thiol can selectively etch unstable clusters, resulting in narrow size distribution and ther-
modynamically stable clusters, but often an Au38(SR)24 and Au40(SR) 24 mixture. In this
regard, Dass et al. [85] proposed a route to obtain Au38 or Au40 in the etched product on the
premise of the etching of single-sized clusters. Jin et al. [73] thermally etched polydisperse
Aun clusters (n ≥ 38) with excess phenylethylthiol at 80 ◦C; that is to say, the size focusing
obtained high-purity Au38(SC2H4Ph)24 clusters (Figure 2). Since then, Qian et al. [83] also
successfully synthesized an Au38(SR)24 nanocluster using this method and explored its
structure and properties. In addition, Jin et al. [82] also found that, when dodecanethiols
exchanged ligands with GSH-protected AuNCs, dodecanethiols would etch the gold core,
causing secondary growth of the clusters to obtain Au38(SC12H25)24 with good dispersion
and high purity. Despite the good stability of Au38 clusters, Jin et al. [81] found that reacting
Au38(SCH2CH2Ph)24 with HSPh-tBu at 80 ◦C for more than 12 h transformed them into



Biosensors 2022, 12, 511 4 of 25

new Au36 NCs. Dass et al. [84] also obtained Au99 clusters by etching Au144 clusters with
benzenethiol at 80 ◦C for 3 h.

Biosensors 2022, 12, x FOR PEER REVIEW 4 of 25 
 

of Au. Using techniques such as X-ray diffraction and mass spectrometry, Schaaff et al. 

[77] directly showed that etching in pure thiol solution could reduce the core size of clus-

ters, and proposed that the mass of clusters decreased while that of Au(I)-SR polymers 

increased was a plausible mechanism to explain the etching phenomenon. Therefore, ra-

tional control of etching conditions may be able to obtain metal NCs with controlled core 

size. Tsukuda et al. [79] pointed out that etching technology could be used to synthesize 

thiol-stabilized Au NCs with a controlled core size (Aun:SR, n is the core size), and specif-

ically that excess thiols could etch and reduce the core size of Au:SR clusters. Taking the 

glutathionate (GSH)-stabilized Au NCs (Aun(SG)m) as an example, it was pointed out that 

when n < 25, the Au NCs would be etched into smaller clusters by the etchant. When n ≥ 

25, the etching products tended to form thermodynamically stable Au25:SG clusters. 

Excess thiol-induced etching transforms metal NCs into a series of atomically precise 

metal NCs of uniform and stable size, known as “size focusing” [38,48,73,80–84]. Under 

the action of thiols, pure Au8, Au25, Au38, and other clusters have been successfully syn-

thesized by size-focusing technology. Among them, Tsukuda et al. [79] successfully ob-

tained GSH stable Au25 clusters, and pointed out that it was the most thermodynamically 

stable. Dass et al. [80] obtained Au36 clusters by etching a mixture dominated by Au68 and 

Au102 clusters using thiophenol. We know that thermal etching induced by excess thiol 

can selectively etch unstable clusters, resulting in narrow size distribution and thermody-

namically stable clusters, but often an Au38(SR)24 and Au40(SR) 24 mixture. In this regard, 

Dass et al. [85] proposed a route to obtain Au38 or Au40 in the etched product on the prem-

ise of the etching of single-sized clusters. Jin et al. [73] thermally etched polydisperse Aun 

clusters (n≥ 38) with excess phenylethylthiol at 80 °C; that is to say, the size focusing ob-

tained high-purity Au38(SC2H4Ph)24 clusters (Figure 2). Since then, Qian et al. [83] also suc-

cessfully synthesized an Au38(SR)24 nanocluster using this method and explored its struc-

ture and properties. In addition, Jin et al. [82] also found that, when dodecanethiols ex-

changed ligands with GSH-protected AuNCs, dodecanethiols would etch the gold core, 

causing secondary growth of the clusters to obtain Au38(SC12H25)24 with good dispersion 

and high purity. Despite the good stability of Au38 clusters, Jin et al. [81] found that react-

ing Au38(SCH2CH2Ph)24 with HSPh-tBu at 80 °C for more than 12 h transformed them into 

new Au36 NCs. Dass et al. [84] also obtained Au99 clusters by etching Au144 clusters with 

benzenethiol at 80 °C for 3 h. 

 

Figure 2. Mechanism diagram of preparation of monodisperse Au38(SC2H4Ph)24 clusters by thermal 

etching of PhC2H4SH. Reprinted with permission from Ref. [73]. Copyright ©  2009 American Chem-

ical Society.Using metal NCs as precursors can also generate sub-nanometer clusters through a 

thiol-induced interface etching route. Pradeep et al. [66] developed an interface route based on thiol-

induced core etching technology, which enabled stable Au25 clusters to be etched into sub-nanome-

ter clusters. This was the first report on the preparation of gold sub-NCs by interface etching, and 

Figure 2. Mechanism diagram of preparation of monodisperse Au38(SC2H4Ph)24 clusters by thermal
etching of PhC2H4SH. Reprinted with permission from Ref. [73]. Copyright © 2009 American
Chemical Society. Using metal NCs as precursors can also generate sub-nanometer clusters through a
thiol-induced interface etching route. Pradeep et al. [66] developed an interface route based on thiol-
induced core etching technology, which enabled stable Au25 clusters to be etched into sub-nanometer
clusters. This was the first report on the preparation of gold sub-NCs by interface etching, and the
first report on the synthesis of gold sub-NCs using Au25 as a precursor. This report proposed two
different etching routes, interfacial etching and single-phase etching, which could generate three
different Au NCs, as shown in Figure 3. The team also synthesized two luminescent silver NCs (Ag
NCs) using thiol etching technology via the interfacial route [86].
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Thiol etching can be used to prepare sub-nanometer clusters, and then the conditions
and mechanism required for thiol etching of metal NCs will be introduced. For the etching
of metal NCs induced by thiols, Tsukuda et al. [79] believed that the etching was achieved
because thiols could enter the core part of the clusters, and pointed out that oxygen
could accelerate the etching process. Chechik et al. [87] pointed out that in the process
of ligand exchange between phosphine-based clusters and thiolates, oxygen also played
a decisive role. Later, Ackerson et al. [59] also pointed out that the process of etching
gold nanoparticles (Au NPs) into smaller Au NCs depended on oxygen, and the free
radical character of oxygen played a decisive role (Figure 4). When using thiol as ligand to
synthesize Au NCs, the Au (I)-thiolate oligomer was first reduced by reducing agent to
form Au NPs, and the disulfide and excess reducing agent generated during this process
remained in the solution. Next, the reducing agent would reduce the disulfides to free
thiols, and then the oxygen radicals would obtain protons from them to generate thiyl
radicals (1) and HOO˙ (previously, several scientific teams confirmed that oxygen could
react with thiols to form thiyl radicals [88,89]). Subsequently, the gold–sulfur bond was
broken under the action of the thiyl radical, and the core Au0 was exposed. The exposed
Au0 was oxidized to the AuI atom by the previously generated HOO˙ (3). Immediately,
the Au0-Au0 bond was homolytically cleaved to generate (5), and another thiol was now
attached to the cluster. The cleavage of Au-S in (5) generated an Au-thiolate monomer
and another exposed AuI, and then a new Au-S bond was formed (6). So far, the initial
cluster was successfully removed from one layer of Au. This cycle could be repeated in
the presence of oxygen until all AuNPs were etched to yield thermodynamically stable Au
NCs. It can be seen from Figure 4 that the etching cannot proceed without oxygen. Very
recently, Xie et al. [90] explained the etching process at the molecular level by monitoring
the changes of thiolate-stabilized Au NCs during the etching process in real time by
electrospray ionization mass spectrometry.

In addition, some research groups pointed out that the etching phenomenon caused
by thiol was affected by pH. Kawasaki et al. [67] found in the preparation of pepsin-
mediated Au NCs that if the pH was adjusted from 1 to 9, green-luminescent Au13 NCs
would generate blue-luminescent Au5 and Au8 NCs. Subsequently, after exploring the core
etching effect of different kinds of alkanethiols on Au8, Tseng et al. [91] pointed out that
the carboxyl group in the thiol etchant was the key to etch the cluster core, and the core
etching effect was enhanced with the decrease of the alkyl chain length in alkanethiols. At
the same time, it was pointed out that pH would also affect the etching effect. When the pH
was 9 compared to pH 3, the etchant could inject electrons into the clusters more effectively,
thereby accelerating the nucleation etching process. Liu et al. [69] also pointed out that the
etching effect was pH dependent when using the thiol core etching technique to prepare
Ag NCs.

2.2. Cyanide-Induced Etching

CN− has strong complexing ability with heavy metal ions. In the presence of dissolved
oxygen, gold can react with CN− to form Au(CN)2

−, which is the most stable of the Au(I)
complexes and has been used for gold extraction for a long time [85]. It is not only able
to form Au(CN)2

−, but CN− can also combine with silver, copper, and other metals to
form complexes [92]. This specific reaction enables CN− to also have the ability to etch
metal nanomaterials. Mulvaney et al. [93] found that CN− could completely oxidize and
dissolve the gold core through the etching process when preparing silica-coated Au NPs, as
shown in Figure 5. Zeng et al. [94] found that CN− was also able to etch Au@Ag core/shell
NPs. Later, Dong et al. [95,96] pointed out that CN− could also etch silver and gold NPs.
Likewise, CN− also has the ability to etch metal NCs. For example, Peng et al. [97] found
that CN− could be used to etch Ag NCs, and Shamsipur et al. [98] found that CN− could
also etch Au NCs. Tian et al. [39] found that CN− was able to etch bimetallic gold–silver
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NCs and proposed an etching mechanism. The reaction formula after the introduction of
CN− into this cluster is as follows:

4Au + 8CN− + O2 + 2H2O = 4[Au(CN)2]− + 4OH− (1)

4Ag + 8CN− + O2 + 2H2O = 4[Ag(CN)2]− + 4OH− (2)
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This also shows that CN− can form an Au(CN)2
− and Ag(CN)2

− complex through
coordination with Au+ and Ag+ generated by oxygen oxidation in the cluster, so as to realize
the etching. During the CN− etching of clusters, not only the presence of oxygen is crucial,
but the pH of the solution also affects the etching effect. This is because hydrocyanic acid
(HCN) is a weak acid (CN−+H2O 
 HCN+ OH−, pKa = 9:36), and when the pH is greater
than 9.36, the CN− form is in the majority, which is favorable for etching. Lu et al. [37]
used CN− to etch bovine serum albumin (BSA) -protected Au NCs, Chang et al. [98,99]
used CN− to etch copper clusters (Cu NCs), and other research teams [98] also hold the
same view.

Some researchers have proposed that the surface valence state of the clusters can
be used to explain the role of CN− in the induced etching of metal NCs. To this end,
Yuan et al. [40] prepared dual-emissive gold NCs (DE-AuNCs), which had different emis-
sion characters and surface valence states, and attempted to illustrate the importance of
surface valence states for driving CN− etching. Among them, R-Au NCs had a high content
of surface Au(I) with red emission, while B-Au NCs had no Au(I) surface but blue emission
(Figure 6). After the introduction of CN−, CN− was able to complex with Au(I) on the
surface of R-Au NCs, that is, etching occurred. Since the surface of B-Au NCs did not
have Au(I), etching could not be carried out. The change of luminescence before and after
etching confirmed this conjecture.
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2.3. Phosphine Compound-Induced Etching

Phosphine compounds can coordinate with a variety of metals and have wide appli-
cation prospects. For example, diphosphine can coordinate with Cu(I), and the resulting
complexes have fascinating phosphorescence properties based on the MLCT character [100].
Phosphine compounds can also coordinate with gold, such as alkynyl phosphine, and
tertiary phosphines. Figure 7 shows the molecular structures of some gold(I)–phosphine
complexes [101]. Ott et al. [102] also proposed that alkynyl (triphenylphosphine) could
coordinate with gold. It was also pointed out that tertiary phosphines were the most
widely studied because they were more stable [103]. Tertiary phosphines, like other metal
ligands (such as thiols), can be used as ligands for the synthesis of metal NCs or metal NPs.
At present, several teams have synthesized atomically precise Au NCs using phosphine
compounds as ligands [104–110]. However, Lotnyk et al. [111] reported that water-soluble
tertiary phosphines could reduce Au(III) to Au(0) and promote the oxidative dissolution of
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gold(0) nanocrystals by forming phosphine–Au(I) complexes. At the same time, studies
have shown that some phosphines, such as triphenylphosphine (PPh3), can not only be
used as protective agents during the synthesis of stable NCs, but also can etch the metal
core part of the clusters [112–115].
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Etchants such as phosphine compounds enable cluster-to-cluster interconversion.
Bour et al. [115] pointed out that Au NCs compounds could undergo cluster-to-cluster
interconversion at a fast rate; that is, the initial cluster was partially or completely broken
and then reassembled into a new cluster. Phosphine compounds as etching agents can
achieve this conversion. Au9 NCs synthesized with PPh3 as ligands were etched by excess
PPh3 and converted into Au8 NCs, and then etched by Ph2PCH2PPh2, where they were con-
verted into Au5 NCs. The Au9 NCs are also etched by 1,3-bis(diphenylphosphino)propane
(L3) and converted into Au6 NCs, as shown in the Figure 8 [112]. Later, Konishi et al. [114]
pointed out that Au6 NCs could also be etched by a diphosphine ligand, which could
recombine and generate two new Au8 NCs to complete the conversion between clus-
ters. In the same year, Hudgens et al. [112] clearly proposed for the first time that PPh3
could be used not only as a protective ligand, but also as an active etch agent for the size
selective synthesis of small clusters, and provided evidence through colorimetry. Follow-
ing this, Hudgens et al. [113] also emphasized the essential importance of etching in the
size-selective synthesis of monodisperse L3-protected gold clusters. Our team found that
tris(2-carboxyethyl)phosphine (TCEP) also had etching properties and could etch BSA-Au
NCs [61,116]. Through the UV-vis adsorption spectrum, X-ray photoelectron spectroscopy
(XPS), and other technologies, it has been proven that TCEP can etch the gold (0) core in
BSA-Au NCs, dissolve the Au NCs, and generate Au(I) complexes.
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2.4. Iodine Compound-Induced Etching

It has been reported that iodine also has the ability to etch metal NCs [117–119].
Mulvaney et al. [93] found that molecular iodine(I2) could completely oxidize the silver
core through the etching process when preparing silica-coated Ag NPs. The I2 could react
with the silver nucleus in the silver nanoparticles to generate AgI, which gradually made the
silver nucleus smaller and eventually disappeared completely. This process was observed
by transmission electron microscopy (TEM) (Figure 9). Subsequently, Wang et al. [120]
also confirmed that I2 could chemisorb with Au NPs, and observed fusion/fragmentation
and aggregation of Au NPs by TEM. In addition, Chen’s team found that I2 also had an
etching effect on gold nanorods [121,122]. Additionally, Huang et al. [123] used techniques,
such as scattered-light dark-field microscopic imaging (iDFM), to monitor the reaction
process in real time, revealing the etching process of I2 on NPs of various shapes. The
phenomenon that iodine can etch metal NPs has aroused the strong interest of scientific
researchers. If I2 can cause the same etching phenomenon of metal NCs, then a variety of
luminescence detection methods can be developed due to the luminescent properties of the
clusters. Therefore, researchers have turned their attention to whether I2 can etch metal
NCs. Subsequently, multiple research teams showed that I2 could etch metal NCs.

2IO3
− + 5C6H8O6 + 2H+ →5C6H6O6 + I2 + 6H20 (3)

2Ag + I2 → 2AgI↓ (4)

I2 is also capable of etching Au NCs, which Yan’s team conducted a lot of research
on [117,118,124]. They pointed out that iodide(I−) was oxidized to I2 by S2O8

2− under the
catalysis of Cu2+, and the generated I2 could etch the BSA-Au NCs [124]. I− itself did not
etch the clusters, but the combination of I2 and I− formed by oxidation was a strong etchant
for Au(0) according to the following reaction:

I2 + I− → I3
− (5)

I3
−+ I− + 2Au(s)→ 2AuI2

− (6)
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AuI2
− + I3

− → AuI4
− + I− (7)
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Figure 9. Electron microscope images of silica-coated silver nanoparticles exposed to I2 for different
times. Reproduced with permission from [93]. Copyright © 1997 Verlag GmbH & Co. KGaA,
WeinheimNumerous studies have shown that I2 has the ability to etch coinage noble metal NCs.
Mo et al. [119] proposed that I2 has an oxidative etching effect on lysozyme(Lys)-protected silver
NCs (Lys-AgNCs), and I2 was obtained through the redox reaction of iodate (IO3

−) and ascorbic acid
(AA). The reaction equations are as follows.

Later, the team also pointed out that the I2 obtained by catalyzing the I− into I2 process
by nitrite and molybdenum (Mo) could also etch Au NCs [117,118].

Not only does I2 have the ability to etch metal NCs, but Yan et al. [125] found that
iodate (IO3

−) can also oxidize and etch BSA-AuNCs to quench their luminescence. Through
dialysis, it was determined that IO3

− could directly etch the gold core of the clusters. In
addition, the strong oxidizing ability of IO3

− was enhanced under acidic conditions, which
could improve the etching effect. The research group also pointed out that extra I− could
enhance the etching process of IO3

− to Au NCs. Because I− would be oxidized by IO3
− to

I2 (1), I2 and I− generated more soluble triiodide ion(I3
−) (2), the combination of I3

− and
I− not only strongly etched Au(0) (3), but also oxidized Au(I) to soluble tetraiodoaurate
(III) complexes (4), and the reaction equations are as follows:

5I−+ IO3
− + 6H+ → 3I2(s) + 3H2O (8)

I2(s) + I− → I3
− (9)

2Aus +I− + I3
− → 2AuI2

− (10)

Au(I) + I− + I3
− → AuI4

− (11)

2AuI2
−+ 2I3

− → 2AuI4
− + 2I− (12)

2.5. Heavy Metal Ion-Induced Etching

Some heavy metal ions, such as chromium ions (Cr(VI)), one of the two most common
valence states of Chromium in nature, have also been found to have the ability to etch metal
nanomaterials [126,127]. Usually, Cr(VI) could play a strong oxidative effect to etch metal
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nanomaterials in the presence of bromide ions (Br−) [32,128]. Li et al. [129] pointed out that
Cr(VI) could selectively etch gold nanorods with lower aspect ratio, and pointed out that
the decrease of pH value, the increase of temperature, and the presence of Cl− or Br− could
promote the etching process. Xin et al. [130] and Li et al. [131] found that, in the presence of
Br−, Cr(VI) could also oxidize and etch bimetallic core-shell metal NPs. Of course, Cr(VI)
could also etch NPs such as gold and silver with the help of Br− [126–128,132].

After that, researchers focused on the etching of coinage metal NCs by Cr(VI). Guo et al. [32]
pointed out that Cr(VI) could etch BSA-AuNCs. Normally, Cr(VI)/Cr(III) has a lower
electron potential than Au(I)/Au(0), so Cr(VI) could not etch gold [128–130]. After adding
Br−, Br− would form AuBr2

− compounds with gold and reduce the electron potential of
Au(I)/Au(0), so that Cr(VI) could etch Au(0) in BSA-Au NCs. Zhang et al. [133] pointed
out that Cr(VI) could etch polyethyleneimine-protected Ag NCs, and the etching could also
be accomplished by oxidizing Cr(III) to Cr(VI) using H2O2 under alkaline conditions.

3. Sensor Construction Based on Metal Nanocluster Etching

The etchants can modify or even destroy the structure of metal NCs and therefore cause
the luminescent properties of metal NCs to be changed or quenched. The luminescent signal
alteration can be used to construct optical biosensors. The metal NCs act as recognition
components and recognize the analyte through a specific reaction, and then convert the
chemical signal into a physical signal of luminescence change, which is emitted by a
transducer component. Luminescence quenching and luminescence enhancement are
two common strategies for constructing biosensors based on metal NCs etching and can
quantify the analyte through the changing intensity of luminescence.

3.1. Etchant Detection

Etched metal NCs can be used to construct luminescent sensors for the detection of
etchants. Firstly, the biosensors for detecting thiols are introduced. Several studies have
shown that GSH can etch Au NCs. Chen et al. [42] pointed out that GSH could etch the
core of Au8 clusters synthesized with (Lys VI) as a ligand and make them quench their
luminescence. In other words, the invisible etch reaction triggered by GSH was converted
into luminescence signals that could be recognized by naked eyes, and a luminescence sen-
sor for GSH detection could be constructed based on this. The luminescence signal can be
used as a basis for constructing a luminescence biosensor to detect GSH. Wu et al. [44] con-
structed a sensor to detect lactate dehydrogenase (LDH). LDH can be used as a biomarker
for common diseases, and its surface contains free thiol groups and thus also has the ability
to etch metal NCs. This report took this as an entry point, using free thiols in LDH to
etch Au NCs protected by adenosine monophosphate (AMP), and then the luminescence
emission of AMP-AuNCs could be quenched. This detection method using etching metal
NCs to construct a luminescence sensor has higher sensitivity and lower detection line,
which is in line with the scope of clinical diagnosis.

In addition, our group found that cysteamine could etch BSA-stabilized Au25 NCs to
quench their luminescence, while cysteine and even other 19 natural amino acids did not
have this function [45]. A luminescent biosensor capable of selectively detecting cysteamine
was developed. Later, we [46] found that cysteine could etch Au NCs with aggregation-
induced emission (AIE) property to quench their luminescence, as shown in Figure 10.
The AIE-type Au NCs that we synthesized contained a large amount of Au(I)–thiolate
complexes. Since the permeability of Au(I)–thiolate complexes to cysteine was affected by
pH, pH would also affect the etching effect of cysteine on the Au NCs. The experimental
results showed that low concentrations of cysteine could enhance the luminescence of
the Au NCs, but high concentrations of cysteine could still quench the luminescence, and
the higher the pH of the solution, the more obvious the etching effect. Therefore, we
constructed a cysteine biosensor based on the etching of AIE-Au NCs by cysteine under
alkaline conditions. In addition to building sensors to detect thiols, many teams have also
built sensors to detect other types of etchants, which are described in turn below.
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with permission from Ref. [46]. Copyright © 2019 RSC Pub.

Cyanide is widely found in nature and has a variety of uses. It is indispensable in
industry, mining, and organic synthesis [134,135]. However, cyanide is highly toxic: CN−

has super complex ability to heavy metal ions, can combine with intracellular metal ions,
or destroy the human respiratory chain and other physiological functions by inhibiting
enzyme activity, endangering life. In human activities such as gold mining, electroplating,
etc., cyanide leakage can cause serious harm to water and soil [136]. At present, researchers
have taken various measures to reduce the harm caused by cyanide leakage, such as the
use of biodegradation [137] and biosorbents [138]. At the same time, how to detect cyanide
quickly and effectively is also very important. Due to the strong complexing ability of CN−

with heavy metal ions, this specific reaction can etch metal NCs, so it can be used to design
CN−-sensing probes with metal nanomaterials.

Etching metal NCs with cyanide can be used to construct biosensors to detect CN−.
This photochemical sensing method stands out among numerous approaches such as
potentiometric, amperometric, and titrimetric approaches due to its simplicity, sensitivity,
and efficiency. It has been introduced that cyanide can induce the etching of metal NCs,
so the purpose of detecting cyanide can also be achieved by using the luminescence
quenching of metal NCs after etching as a signal. Lu et al. [37] successfully constructed a
nano-luminescent sensor for detecting cyanide using etching technology, which can be used
for the detection of cyanide in water samples, food, soil, and other samples. Subsequently,
Dong et al. [38] found that under the etching effect of cyanide, Lys-Au NCs would quench
the red luminescence of the Au NCs itself, and appeared as blue luminescence, and the
luminescence intensity was linearly related to the concentration of CN−. Thus, the sensor
constructed could be used to detect cyanide in the environment. Li et al. [39] prepared
bimetallic gold–silver NCs with stronger luminescence, which were highly sensitive and
selective to cyanide. Sensors built on this basis can be used not only for sensing cyanide,
but also for temperature sensing and cell imaging. Yuan et al. [40] also constructed a novel
ratiometric sensor to detect CN− based on the fact that dual-emissive Au NCs could be
etched by CN−. This sensor saved time and was more sensitive than previous chemical
sensors that detected CN− [139–141]. In addition, the preparation of sensors based on
cyanide etched clusters was also reported by other groups [97–99,142,143].

Cr(III) in the correct amount is an essential nutrient; however, when present in ex-
cessive concentrations, it will damage the cell structure and cause harm to the human
body [144]. In contrast, Cr(VI) is more dangerous because of its strong oxidizing properties,
and once it enters the human body, it will cause damage to organs such as the liver [145,146].
Using large-scale instruments, such as X-ray luminescence [147] and atomic absorption
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spectroscopy [148], can effectively detect Chromium, but the cost is high and cumbersome,
and it is not suitable for real-time monitoring. Using the etching ability of Cr(VI) to metal
NCs to develop a sensitive luminescence method to detect Cr(VI) is efficient, simple, and
more practical.

Next, we introduce the construction of a sensor for chromium ion detection based
on etching metal NCs. Liu et al. [33] constructed a nano-luminescence sensor for the
detection of Cr (III) and Cr(VI) in water samples. The schematic diagram is shown in
Figure 11. In this experiment, luminescent GSH-Au NCs were first synthesized, and
then it was found that the etching ability of Cr(III) and Cr(VI) on the Au NCs was pH
dependent. At pH 6.5, since Cr(VI) did not have the ability to etch the Au NCs, Cr(III)
could be directly detected. At pH 3.5 and 5.0, there was almost no difference in the etching
ability of Cr(III), Cr(VI) could be detected according to the change of relative luminescence
intensity, and the possible interference caused by other metal ions was eliminated by
adding Ethylenediaminetetraacetic acid (EDTA) during the etching process. Guo et al. [32]
designed a luminescence method to detect Cr(VI) and introduced the etching mechanism.
Namely, selective etching of BSA-Au NCs using the strong oxidative power of Cr(VI) in
the presence of Br−, which quenched the luminescence of BSA-Au NCs themselves, and
to achieve the purpose of detecting Cr(VI). First, the BSA-Au NCs would emit red light at
615 nm when excited at 480 nm. Normally, Cr(VI)/Cr(III) had a lower electron potential
than Au(I)/Au(0), so Cr(VI) could not etch gold [126,129,130]. After Br− was added, Br−

would form AuBr2
− compounds with gold to reduce the electronic potential of Au(I)/Au(0),

so that Cr(VI) could etch the gold in BSA-Au NCs, resulting in the change of the structure
of the gold cluster and the luminescence quenching (Figure 12). The content of Cr(VI) in the
sample could be calculated from the change in the luminescence intensity of BSA-Au NCs.
Specificity was also tested in this work, as shown in Figure 13. At present, this method can
be applied to monitor Cr(VI) in river water, and its feasibility has been confirmed.
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Figure 12. Mechanism of Cr(VI) selectively etching BSA-Au NCs and quenching their luminescence.
Reprinted with permission from Ref. [32], Copyright © 2016 The Royal Society of Chemistry.

Biosensors constructed by etching metal NCs are not always signaled by the appear-
ance or quenching of luminescence after etching of metal NCs. Wang et al. [149] pointed
out that certain thiols could enhance the photoluminescence (PL) of Au NCs synthesized
with cytidine as a ligand, such as GSH. We generally believe that the PL enhancement
is due to the aggregation-induced luminescence of the NCs, that is, the high content of
metal(I)–thiolates complexes or complex aggregates on the surface of the NCs [150,151].
Through a series of experiments, Wang et al. [152] confirmed that this finding was not
true, but that the etching of the Au NCs by GSH resulted in the formation of smaller and
more luminescence Au species. Because of this, the content of GSH could be determined
according to the maximum luminescence increase rate, and it could also be extended to
identify the activity of glutathione reductase, which has bright application prospects in
clinical and other medical fields. A comparison of luminescence sensors based on the
etching of coinage metal nanoclusters and other detection methods is shown in Table 1.
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Figure 13. Specific determination of Cr(VI)-etched BSA-Au NCs. (A) Luminescence emission spectra
of BSA-Au NCs after adding different ions. (B) The degree of luminescence change of BSA-Au NCs
after adding different ions (the inset is the imaging under UV light). Reprinted with permission from
Ref. [32]. Copyright © 2016 The Royal Society of Chemistry.
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Table 1. Comparison of luminescence sensors based on the etching of coinage metal nanoclusters
and other detection methods.

Target Probe/Instrument Strategy LOD(nM) Linear Range
(µM) Advantages Disadvantages Reference

GSH

AuCyt NCs

Fluorescence (GSH
etched AuCyt NCs to

generate highly
fluorescent Au species)

2 0.02–3

Highly sensitive
detection, could be
extended to detect

the glutathione
reductase activity

Unable to
detect on-site [149]

CPR

FRET 1 (GSH broke the
link between

fluorophores, inhibiting
FRET)

30 None Sensitive and
selective detection

Probe
preparation

was complex
[153]

Lyso-O-NBD

Fluorescence (GSH
reacted with

Lyso-O-NBD to produce
blue fluorescence)

39 0–5 Sensitive and
selective detection

Probe
preparation

was complex
[154]

CN−

DE-Au NCs

Ratiometric fluorescence
(CN-drove etching

DE-Au NCs based on
surface valence state)

10 0.02–1

Highly sensitive and
selective detection,
could be used for

river water and urine
sample analysis

Unable to
detect on-site [40]

Molecular Au
(I) cluster

Fluorescence (In situ
formation of

phosphorescent
molecular gold(I) cluster)

80 0.16–50 Sensitive detection Unable to
detect on-site [155]

β-CD-Au
NPs 2

Colorimetric (Cyanide
etchedβ-CD-Au NPs) 93 4.5–99 Could quickly detect

water samples on-site

In contrast, it
was not
sensitive
enough

[156]

PS 20-Au
NP-FITC 3

Dual fluorescence–
colorimetric assay

(cyanide etched PS 20-Au
NP-FITC)

100 0–7 Selective detection,
cost-effective

Not sensitive
enough [157]

Cr6+

BSA-Au NCs Fluorescence (Cr6+

etched BSA-Au NCs)
0.6 0.001–2.5

Highly sensitive
detection, simple,

short detection time

The quantum
yield of

BSA-Au NCs
was not high

[32]

X-ray fluores-
cencespectra

Kβ emission spectra for
Cr6+ compounds None None Could detect Cr6+

compounds
high cost [147]

SRBH 4

Fluorescence (Reaction
between potassium

dichromate and
non-fluorescent SRBH to

produce highly
fluorescent Rhodamine B)

1.5 0.01–0.3 Sensitive detection Only used to
detect CrO4

2− [158]

CdTe@SiO2
and RhB 5

FRET (Cr6+ and RhB
electrostatically attract)

6.2 0.02–0.3 Sensitive detection Unable to
detect on-site [159]

AA-capped Ag
NPs

Colorimetry
(Crosslinking of Cr6+

reduction products with
AA caused AA-capped
Ag NPs to aggregate)

50 0.08–1.84 Sensitive detection,
simple

In contrast, it
was not
sensitive
enough

[160]

1 fluorescence resonance energy transfer. 2 β-Cyclodextrin-protected gold nanoparticle. 3 AuNPs decorated with
Fluorescein isothiocyanate and polysorbate 20. 4 Salicylaldehyde rhodamine B hydrazone. 5 Rhodamine B.

3.2. Indirect Sensing Method Using Etchant

Using the properties of the etchant, sensors can be constructed to detect the etchant,
which has been described in detail before, but is by no means limited to this. For example,
Pradeep et al. [66] pointed out that Au23 NCs generated by etching Au25 NCs with thiols
could be used to construct biosensors for sensing Cu2+ ions. This is because the Au23 NCs
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produced after etching had luminescent properties and were soluble in water, and the
addition of Cu2+ could quench their luminescence, as shown in Figure 14. Thus, the con-
structed biosensor could specifically recognize Cu2+ and could be extended to the detection
of water samples. Tseng et al. [91] constructed a biosensor for thimerosal detection based
on thiosalicylic acid (TSA)-etched Lys VI-protected Au8 NCs. Thimerosal contains TSA and
the ethylmercuric (EtHg) ion, which can be used as antibacterial preservatives and are often
used in vaccines [161], but vaccines containing thimerosal can affect neurodevelopment.
The biosensor constructed by Tseng et al. could sensitively and rapidly analyze the content
of thimerosal in the drug by using the luminescence change of the clusters as the signal.
Lin et al. [71] proposed that the etching-based process could also be used to fabricate a
novel biosensor for the detection of biomolecules, such as alkaline phosphatase (ALP) and
pyrophosphate (PPi), and introduced Cu2+ in the process. Firstly, Au NCs with a blue-green
emission were prepared through the nuclear etching process induced by cysteine, and then
the luminescence of Au NCs quenched by Cu2+ was recovered due to the coordination and
binding of PPi to Cu2+, thus realizing the detection of PPi. ALP could hydrolyze PPi and
release the previously bound Cu2+, which re-quenched the luminescence and could identify
the activity of ALP. Konishi et al. [114] also prepared a luminescent sensor for sensitive
detection of mercury ions using Au8 NCs generated by a diphosphine ligand etching.
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Figure 14. Changes in the luminescence intensity of Au23 NCs after introducing different cations
(the inset is the picture under UV light). Reproduced with permission from [66]. Copyright © 2009
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

In the process of I2 etching of metal NCs, it is usually necessary to use catalysts to
catalyze various iodides to generate I2 or to use redox reactions to generate I2, so biosensors
that detect non-etchants can be constructed. For example, Shao et al. [119] constructed a
luminescent biosensor capable of sensitively detecting AA. This was because AA could
react with IO3

− to generate I2, which could etch Lys-Ag NCs and make it quench the
luminescence to achieve the purpose of detecting AA. Yan et al. [124] developed a biosensor
that used BSA-Au NCs as luminescent probes to sense Cu2+. Cu2+ was used here to catalyze
the reaction between potassium persulfate and potassium iodide to generate I2. Previous
reports confirmed the strong and effective catalytic activity of Cu2+ on persulfate [162].
The degree of luminescence quenching of BSA-Au NCs by the generated I2 had a linear
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relationship with the content of Cu2+, so the detection of Cu2+ could be realized. Yan et al.
also pointed out in later work that BSA-Au NCs could also be used as luminescent probes
to construct biosensors for the detection of nitrite [117] and Mo [118], in which nitrite
quenched the luminescence by catalyzing the reaction of potassium iodide and potassium
bromate to generate I2, and Mo quenched the luminescence by catalyzing the reaction of
H2O2 and potassium iodide to generate I2.

3.3. Etching Product-Based Sensors

Taking thiol etching of Au NCs as an example, we already know that non-luminescent
Au(I)–thiol complexes will be formed after etching, which has been mentioned in many
reports [59–61,163,164]. However, we often focus on the changes of the clusters during
the etching process, ignoring the Au(I)–thiol complexes released during this process, but
they are not without application. The study found that although the Au(I)–thiol complex
did not emit light, it could aggregate and emit light after adding a weak polar solvent or
divalent cation (such as Cd2+) to its aqueous solution; that is, it could produce aggregation-
induced emission (AIE) effect. In the early, Xie et al. [150] pointed out that weakly polar
solvents (such as ethanol) could induce aggregation of Au–GSH complexes, as shown
in Figure 15a, when the volume fraction of ethanol was 75%, the Au–thiolate complexes
began to aggregate and emit weak light. When the volume fraction of ethanol continued to
increase to 95%, the aggregation became denser and there was strong emission. The two
rows of Figure 15b reveal the state of the complex solution under visible light (upper row)
and UV light (lower row) with increasing ethanol volume fraction, respectively. When the
volume fraction of ethanol was 75% due to the formation of aggregates, the solution was
turbid and initially luminescent, and when the volume fraction of ethanol increased to 95%,
the solution became clear again and had strong luminescence, so it could be adjusted by
adjusting the weak polar solvent in water volume fraction to control the intensity of AIE.
Later, we [60] used the property of Cd2+ to enable aggregation-induced luminescence of
Au(I)–thiolate complexes to prepare a novel colorimetric sensor for the detection of Cu2+.
First, non-luminescent Au(I)–thiolate complexes were obtained by etching BSA-Au NCs
with cysteamine, and then Cd2+ was added to aggregate these complexes to produce intra-
aggregates with good water solubility and phosphoresce. The phosphorescence emission
of intra-aggregates was affected by pH and Cu2+, which could be quenched by Cu2+.
Since there was a linear relationship between the concentration of Cu2+ and the degree
of phosphorescence quenching, the sensitive detection of Cu2+ was realized. Our team
also pointed out that Cd2+ could also aggregate the Au(I) complexes generated after the
etching of BSA-Au NCs by TCEP, stimulating their AIE properties [61]. Effective utilization
of the AIE properties of Au(I) complexes generated after etching can not only develop new
sensors, but also be used to prepare other luminescent materials.
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4. Conclusions and Outlook

In this paper, the composition and properties of coinage metal NCs are briefly intro-
duced. The properties of metal NCs largely depend on their structure and size. Studying
the crystal structure of metal NCs is undoubtedly beneficial to explain the relationship
between their structure and properties. However, it is challenging to obtain the crystal
structure of metal NCs with the current technology. In addition, how to obtain metal NCs
with ideal properties has also become a critical problem that has to be considered. The
present research results show that the structure and size of metal NCs can be controlled by
adjusting the reaction process and conditions, so as to obtain ideal metal NCs. Secondly,
the etching phenomenon of coinage metal NCs is described in detail. Etching techniques
can be used both to generate atomically precise sub-NCs and to nuclear etching coinage
metal NCs, destroying the structure of the metal NCs themselves, thereby affecting their
properties. As explained in the second part of this paper, thiol etchants have the above two
functions, while other etchants such as cyanide are mainly used to nuclear etching coinage
metal NCs. However, etching mechanisms, especially thiol-induced etching of emissive or
atomically precise metal NCs, are far from clear.

Finally, the sensor based on the etching of coinage metal NCs is introduced, and
the research progress of the sensor based on the etching of coinage metal NCs and its
application is reviewed. Metal NCs have luminescence properties due to size effect. The
etching of coinage metal NCs by etchants such as thiols will destroy the structure of the
clusters and quench the luminescence of clusters themselves. Additionally, after etching,
smaller sub-NCs are formed and the luminescence is enhanced. The decrease or increase of
luminescence signal can be used to construct sensors to detect etching agents and other
molecules. The sensors constructed thus not only have great application prospects in
chemical detection, bioactive molecule detection, food safety detection, clinical diagnosis,
etc., but also provide new ideas for the potential application of metal NCs in biosensing.
This is enough to arouse the enthusiasm of researchers.

At present, the sensing technology based on etching luminescent metal NCs has grad-
ually converged into a characteristic research topic. From the point view of coordination
chemistry, the etching processes essentially involve the coordinating interaction between
etchants and metals. Thus, the expanding of metal NC library is expected to enrich the
etching chemistry that can be used for sensor fabrication. The mainstream of future de-
velopment of sensors is intelligent, which should be accomplished via multidisciplinary
cooperation. The introduction of computing science, physics, and electronic engineering
will favor the development of instrumented, interconnected, and intelligent sensors based
the etching chemistry of metal NCs.
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