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Abstract: Fluorescence can be enhanced or quenched depending on the distance between the surface
of a metal nanoparticle and the fluorophore molecule. Fluorescence enhancement by nearby metal
particles is called metal-enhanced fluorescence (MEF). MEF shows promising potential in the field of
fluorescence-based biological sensing. MEF-based biosensor systems generally fall into two platform
categories: (1) a two/three-dimensional scaffold, or (2) a colloidal suspension. This review briefly
summarizes the application studies using wavelength-dependent carbon dots (UV-VIS), noble metals
(VIS), and upconversion nanoparticles (NIR to VIS), representative nanomaterials that contribute
to the enhancement of fluorescence through the resonance energy transfer modulation and then
presents a perspective on this topic.
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1. Introduction

Fluorescence is one of the dominant detection/sensing methodologies for the biologi-
cal and chemical sciences [1]. Fluorescence can act as an excellent sensing probe because
fluorescent materials can change emission intensity or wavelengths as they interact with
ligands or other chemical agents. In fluorescence-based optical biosensors, fluorescence
probes act as effective converters for transmitting fluorescence signals in biometric events
collected using various detectors [2]. Despite the attractive features of fluorescence de-
tection, fluorescence signals may not be sufficiently intense when analyte concentrations
are low. Thus, new strategies are needed to improve signal collection and to achieve high
sensitivity in appropriate dynamic ranges [3].

In 1948, Förster resonance energy transfer (FRET, IUPAC nomenclature) was theoreti-
cally established by Theodore Förster [4]. Förster discovered that energy transfer through
dipole coupling between molecules depends primarily on two factors: spectral overlap
and intermolecular distance, and discovered the R−6 distance dependence law for the
rate of resonance energy transfer (RET) over short distances [5]. Until now, RET technol-
ogy has been widely applied to study various intermolecular interactions (fluorescence
RET [6], bioluminescence RET [7], chemiluminescence RET [8], nanometal surface energy
transfer [9], and plasmon RET [10]). In 2007, Lee’s group showed that the plasmon reso-
nance energy of NPs could be transferred to nearby cytochrome-c. This interaction was
called plasmonic resonance energy transfer (PRET) [10]. Gao et al. introduced nanometal
surface energy transfer and PRET techniques using plasmonic nanoparticles (NPs) [11].
The physical mechanisms, efficiency measures, and principles of RET have already been
summarized in many papers [11–14]. Metal NPs are associated with luminescence enhance-
ment and quenching phenomena, which are energy transfer pathways. Typically, the signal
is quenched when the fluorophores-to-metal separation distance is within about 5 nm and
enhanced within the optimal distances typically between 5 and 90 nm [2]. We called the
latter metal-enhanced fluorescence (MEF).
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With the rapid development of nanotechnology, the combination of fluorescent probes
and nanometallic materials has presented an opportunity to further upgrade the reli-
ability and sensitivity of biosensor systems. As a representative example, MEF-based
biosensors have the potential to improve current fluorescence-based techniques, such as
single-molecule sensing, bioimaging, DNA sequencing, or disease identification [15–17].
MEF refers to a system in which the electromagnetic field in the area adjacent to metal NPs
enhances the optical signal of nanomolecules or NPs close to the metal surface. This inter-
esting phenomenon effectively combines metal nanostructures with fluorophore molecules
used for targeted molecular detection, leading to higher sensitivity and lower detection
limits compared to conventional optical biosensors [2,18,19]. Such MEF-based methods to
enhance fluorescence detection sensitivity for detecting molecules at ultra-low concentra-
tions are already being applied to biosensor systems [12].

In order to achieve the best enhancement factor, great efforts have been made to design
various plasmonic nanomaterial structures that would maximize the radiative emission of
the fluorophores and control the distance between the nanomaterial and the fluorophore
molecule [12,20–22]. Previously, Jeong et al. reviewed MEF’s general approaches and recent
developments for biosensors. They reported that the MEF phenomenon can occur in all
fluorescent nanomaterials as well as organic fluorophores [2]. In recent years, there has been
significant research interest in the development and application of metal nanomaterials
for fluorescence enhancement. Among them, wavelength-dependent carbon nanodots
(CNDs), noble metals, and upconversion NPs (UCNPs) have been extensively studied due
to their ability to modulate RET depending on the spectral range. The optical properties of
these metal nanomaterials can be controlled by adjusting their size, surface chemistry, and
excitation wavelength, making them highly tunable for specific applications. For instance,
wavelength-dependent CNDs can enhance fluorescence in the UV-VIS range, while noble
metals such as gold and silver can enhance fluorescence in the VIS range through surface
plasmon resonance. UCNPs can convert NIR into VIS light, which is ideal for deep-tissue
imaging. These metal nanomaterials have great potential for bioimaging, sensing, and
other fields.

This mini-review briefly summarizes application studies using wavelength-dependent
CNDs (UV-VIS), noble metals (VIS), and UCNPs (NIR to VIS) that contribute to fluores-
cence enhancement through RET modulation among numerous metal nanomaterials by
classifying a wide spectrum into three ranges. Furthermore, we focused on examples
of various technologies designed to control plasmonic nanostructures (nanoarchitecture)
that can be used to develop various sensor platforms and control the distance between
fluorophores and metal NPs to realize the full potential of MEF technology.

2. Carbon Nanodots in the Ultraviolet-Visible Region

Carbon nanodots (CNDs), used as a “nanolight”, are emerging as an attractive fluo-
rescent carbon material due to their strength, adjustability, photoluminescence and good
optoelectronic properties [23–25]. Several chemical sensors have been developed to detect
biomolecules [26] and metal ions [27,28] based on the quenching and recovery of CND
fluorescence. In particular, the emission enhancement of CNDs is of great interest to the
development of nanophotonics [29]. However, while plasmon-enhanced fluorescence phe-
nomena for quantum dots (QDs) and fluorophore molecules have been well investigated,
low quantum yield (<5%) for CNDs limit their application in biological studies [30–35].
Therefore, the important of research on CND-based MEF chemical sensors and light emis-
sion improvement is required for biological applications.

Xu et al. constructed a dual amplification fluorescence sensor based on an immuno-
hybridization chain reaction (immuno-HCR) and MEF of CNDs for the detection of α-
fetoprotein (AFP) (Figure 1A). A capture antibody-coated Au film slide captured the
target molecule, AFP, and a detection antibody-conjugated oligonucleotide initiator was
introduced to bind the AFP target. The introduction of a CND-tagged DNA hairpin allowed
the DNA hairpin and oligonucleotide initiators to trigger complementary HCRs. Using this
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gold film and CNDs, the radiative decay rate was greatly improved, increasing the quantum
yield and enhancing the fluorescence emission of the CNDs. They achieved a detection
limit of 1.35 fM (94.3 fg/mL), as well as a 0.992 coefficient of correlation in the concentration
range from 7.14 fM to 71.43 pM (0.0005 to 5 ng/mL). Fluorescence emission of plasmon
slides was improved up to nearly seven-fold over non-plasmon slides by the effect of MEF
at the same concentrations of AFP [36]. This result is more sensitive than that reported by
Wu et al. in 2015, who measured the detection of human AFP using CNDs bound to labeled
anti-AFP by cross-linking with glutaraldehyde through a high-throughput well plate-
based immunosorbent assay [25]. Bagra et al. designed plasmonic nanoslits to immobilize
CNDs and observe the fluorescence enhancement of CNDs. Maximum fluorescence and
surface-reflected light intensity enhancement were obtained with a 100 nm nanoslit width,
suggesting that plasmon light trapping was responsible for an increased electromagnetic
field and plasmon-induced RET (Figure 1B) [29].

Fluorescence enhancements have been demonstrated in the blue-green range by bind-
ing CNDs to silver nanoparticles (AgNPs) [37–39]. Figure 1C illustrates an electron tran-
sition and energy transfer process between a CND and AgNP or AgNPs coated with a
SiO2 layer (Ag@SiO2 NP) using a fluorescence quenching or enhancement mechanism,
respectively [39]. Plasmonic enhancement was more pronounced when CNDs were nano-
hybridized to silver rather than gold due to low intrinsic loss and superposition between
the absorption spectra of metallic silver and CNDs [38]. CNDs can be operated like nanoan-
tenna through two-way energy exchange with nearby chromophores. Recently, Sciortino
et al. exploited the overlap between the surface plasmon resonance of gold and the elec-
tronic transitions of carbon dots to increase the fluorescence by a factor of 5 in the normally
very weak orange region [40]. In their study, they elucidated that the underlying mecha-
nism of enhancement was through coherent RET occurring in less than 70 fs from metal
nanoantennas to CNDs.
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Figure 1. (A) Schematic illustration for the detection of AFP with Immuno-HCR and MEF of
CNDs [36]. (B) Illustration of self-assembled monolayer formation and CND immobilization on
a gold nanoslit surface [29]. (C) Electron transition process between CNDs and Ag or Ag@SiO2

NP for quenching (left) and enhancement (right) of fluorescence [39]. Reprinted with permission
from [29,36,39].

Deng et al. synthesized visible-ultraviolet upconversion CNDs to enhance the pho-
tocatalytic activity of titanium dioxide [41]. CNDs were synthesized by a hydrothermal
method using L-glutamic acid (L-Glu) and m-phenylenediamine (MPD), and they were
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combined with commercial nano-TiO2 to prepare a CNDs/TiO2 complex, proving that
CNDs can convert about 600 nm visible light to 350 nm ultraviolet light. Their successful
work has provided an opportunity to further expand the application range of upconversion
materials and the utilization efficiency of light sources.

CNDs have indeed been extensively studied due to their unique optical properties,
biocompatibility, and potential for various applications including bioimaging, sensing, and
drug delivery. In addition, the synthesis of biomass-derived CNDs is an excellent example
of the efforts to make CNDs more environmentally friendly [42]. However, the excitation
wavelengths of CNDs are limited to their absorption bands, which may be limited in some
applications. Furthermore, with regard to its use as a detection probe, several strategies
have been proposed to reduce background fluorescence, such as surface immobilization
or surface functionalization, but it still can lead to false-positive results due to the high
signal-to-noise ratio by autofluorescence in CND.

3. Noble Metals in the Visible Region

Noble metal nanostructures possess unique optical properties as well as good biocom-
patibility, satisfactory stability, and multiplex functionality. These unique advantages make
noble metal nanostructures an ideal medium for developing biosensing and bioimaging
methods when used as colloidal suspensions or 2D/3D substrates for MEF studies. Typ-
ically, MEF occurs when the fluorophore is positioned at an optimal distance (5–20 nm)
from the noble metal [43–45], leading to improved quantum yield, reduced fluorescence
lifetimes, and increased photostability.

Various techniques have been devised as fluorescent aptasensors by controlling the
distance between the fluorophores and the noble NPs according to the MEF principle.
Zhou et al. evaluated the fluorophore-metal distance effect and the AgNPs size effect
on fluorescence enhancement. Fluorescently labeled molecular beacons were attached
to AgNPs using recognition moieties. In addition to reducing the reagent blank signal,
AgNPs provided an electric field superimposed on the incident light to increase the fluo-
rescence intensity when the closed hairpin was opened (Figure 2A) [46]. When a 12 nm
thick silica spacer shell was introduced between the gold nanoparticles (AuNPs) and gold
nanoclusters (AuNCs), the fluorescence enhancement from AuNCs by Au@SiO2NPs was
enhanced 3.72 times [47]. Jiang et al. hybridized polyAn-based special nucleic acid aptamers
modified on the surface of AuNP with fluorescein amidite (FAM)-labeled single-strand
oligonucleotides to enhance fluorescence signals by up to 2.7 times and detect adenosine
triphosphate (ATP) with a detection limit of 0.2 nM (Figure 2B) [48]. By placing QDs in
the vicinity of metal NPs, the intrinsic excitation and relaxation processes of QDs were
significantly modified, resulting in enhanced fluorescence intensity. Recently, Kim et al.
used heavy metal-free InP@ZnS core-shell QDs instead of toxic Cd-based QDs and chose
Au@Ag@SiO2 core-shell NPs for the localized surface plasmon resonance (LSPR) effect.
Systematic control over the thickness of the SiO2 shell enabled enhancements in QD fluo-
rescence in poly(lauryl methacrylate) (PLMA) composite films, up to 12.9 times its original
intensity [49]. Lotfi et al. applied the optimized fabricated silver dendritic nanostructure as
a platform for the development of a MEF-based aptasensor for thrombin detection. After
immobilizing a thiolated 29-mer thrombin-binding aptamer (TBA29(12T)–SH) as a capture
aptamer on the surface of the silver dendritic nanostructure, thrombin was sandwiched
between the capture aptamer and the Cy5-labeled 15-mer thrombin aptamer (TBA15-Cy5).
The aptasensor they developed could detect thrombin at a level of 32 pM [50]. Trotsiuk
et al. performed a systematic experimental study of QD fluorescence enhancement near the
surface of electrostatically deposited gold nanorods (GNRs) of polyelectrolytes. They found
that the tendency of the experimental fluorescence intensity enhancement factor decreased
with QD concentration, obeying the a + b/x dependence law. The maximum enhancement
factor (up to 11 times) was observed in a complex with a two polyelectrolyte layer spacer
between a GNR and QDs, and a QD/GNR ratio = 2.5 [51]. Recently, Shi et al. developed a
highly sensitive DNA sensor for detecting HIV DNA fragments based on the signal ampli-
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fication of plasma resonance fluorescence enhancements using a catalytic hairpin assembly
(CHA) and an N-methyl mesoporphyrin IX (NMM)/G-quadruplexes system (Figure 2C).
The sensor included a 5′ terminal connected to a triangular gold nanoplate, a 3′ terminal
rich in guanine hairpin probes (HP1) and a hairpin probe (HP2) complementary to the
partial subsequence of HP1. The plasmon resonance absorption peak of the triangular gold
nanoplates overlaps the emission spectrum of the NMM fluorophore, and the fluorescence
coupling between the fluorophore and the NP was strong, thus producing a fluorescence
enhancement effect. The single-molecule counting method combined with the multiplex
signal amplification strategy sufficiently amplified the signal to detect the HIV DNA frag-
ment [52]. Choi et al. developed a CRISPR-Cas12a-based nucleic acid amplification-free
fluorescent biosensor to detect cell-free DNA by MEF using DNA-functionalized 20 nm
AuNPs. They confirmed the MEF effect according to the DNA length of dsDNA between
AuNP and FITC (Figure 2D). The fluorescence signal intensity of the AuNP-dsDNA-FITC
complex was maximally enhanced at the optimal distance of 7 nm, and the breast cancer
biomarker (BRCA-1) was measured to a femtomolar limit of detection [53]. These structures
successfully provided rigid separation distances between metal NPs and fluorophores,
thereby converting fluorescence quenching into fluorescence enhancements.
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Figure 2. (A) Schematic illustration of the distance-dependent MEF sensing platform based on a
molecular beacon [46]. (B) Schematic illustration of the preparation of MEF-based AuNPs@polyAn-
aptamer@FAM-DNA nanostructure and target detection [48]. (C) Schematic illustration of target
DNA fluorescence detection based on the CHA and plasma resonance fluorescence (PEF) effect [52].
(D) Schematic diagram of the MEF effect dependent on the DNA length of dsDNA between 20-AuNPs
and FITC [53]. Reprinted with permission from [46,48,52,53].

Chakkarapani et al. reported a simple, reliable, and highly sensitive endogenous
fluorescence enhancement technique based on a single AuNP that can be used to detect
endogenous fluorescent materials. They detected trace capsaicinoid (CAP) at 18 zM via
self-endogenous fluorescence enhancement with plasmonic single NPs. Here, the inelastic
scattering of plasmons was used as an electromagnetic field enhancer for the highly sensi-
tive detection of ultra-trace amounts of endogenous phosphor. They named the method
single nanoparticle plasmon-amplified endogenous fluorescence nanospectroscopic sens-
ing (Figure 3A) [54]. In their recent work, they obtained cross-correlation quantification
of CAP based on endogenous single-molecule fluorescence enhancement and quenching
interfaces via correlated fluorescence fluctuation optical spectroscopy on plasmonic ar-
rays of gold nanoislands (GNI). The endogenous fluorescence of CAP was dependent on
the fluorophore–GNI distance and varied in enhancement, quenching, and equilibrium
lifetimes (Figure 3B) [55].
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Plasmonic nanostructures have been used to develop various sensor platforms, and
analytes can be immobilized on the surface of nanostructures. Signal enhancement depends
on the size and shape of the nanostructures (nanoholes, nanoarrays, nano-stripes, etc.) [2].
These MEF-active substrates have been applied to develop biosensors with trace detection
limits. In 2013, Gartia et al. [56] demonstrated a metal-coated nano-well array for ultra-
sensitive refractive index sensing fabricated by an inexpensive large-area nanoreplication
technique. Mei and Tang [57] vertically aligned GNRs on a glass surface as a plasmonic
substrate to detect a molecular beacon (Figure 4A). This dramatically enhanced the LSPR
between adjacent GNRs compared to an ensemble of random GNRs. Inserting an inter-
mediate spacer of appropriate thickness between the fluorophore and the surface of the
GNR array resulted in plasmonic coupling enhancement of the fluorescence signal up to
30 nm away. Zhang et al. mass-fabricated Au nanohole arrays by nanoimprinting using
a 4-inch nickel mold [58]. These Au nanohole arrays showed high fluorescence enhance-
ment through simultaneous excitation of localized surface plasmon (LSP) and propagating
surface plasmon (PSP) modes. Simultaneous excitation of LSP and PSP modes resulted
in a detection limit of 140 fM for a prostate-specific antigen (PSA) biomarker. Dual mode
detection offered a seven-fold better than when only LSP was resonantly excited on the
same substrate. Miranda et al. developed a randomly arranged MEF-based immunosensor
of AuNPs that was fabricated through a three-step process to regulate the optical properties
of size, interparticle distance, and optimal gold nanostructures (Figure 4B). These AuNPs
enhanced the fluorescence emission of three fluorescent dyes (Alexa Fluor 488, Alexa Fluor
546, and PE Cy7) approximately 150-fold on a randomly arranged MEF immunosensor
to achieve a detection limit of 28.67 pM (4.3 ng/mL) for immunoglobulin detection [59].
Kang’s group arranged 300 nm gold nanodisks using electron-beam lithography and used
them as sensors for the high-sensitivity detection of biomolecules [60]. They designed the
analyte to be sandwiched between a capture antibody immobilized on a gold nanodisk and
a detection antibody conjugated with QDs. Using this, biogenic amines (histamine (His),
tyramine (Tyr), and putrescine (Put)) and thyroid hormone markers (thyroid-stimulating
hormone (TSH), triiodothyronine (T3), and thyroxine (T4)) were quantified by multiple si-
multaneous analysis, showing aM and yM detection limits, respectively (Figure 4C) [61,62].
More recently, Lee et al. proposed a turn-on sensing format based on enhancement of the
emission signal of a fluorophore molecule close to plasmonic gold nanodisks rather than
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the generally used turn-off format, based on competitive reactions, for small-molecule
quantification [63].
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Most fluorescent nanomaterials or fluorophores close to noble metals such as gold or
silver can detect small amounts of target molecules through fluorescence enhancement.
However, MEFs rely on surface plasmon resonance (SPR) of noble metals, which can be
sensitive to environmental factors such as temperature, pH and salt concentration. This
may limit the reproducibility of MEF experiments. In addition, as mentioned above, not
only fluorescence enhancement but also fluorescence quenching may occur, so care must
be taken when designing experiments.

4. Upconversion Nanoparticles from Near-Infrared to Visible Region

Upconversion nanoparticles (UCNPs), a newly established fluorescent probe type, are
excited by near-infrared light and emit visible light [64–66]. Compared to organic fluo-
rophores and QDs, it has the property of greatly reducing background autofluorescence,
photobleaching, photodamage, and the phototoxicity of biological specimens [67–69]. How-
ever, quantum yields using UCNPs are relatively low (~1%) due to their small absorption
cross sections (ability to absorb photons of a specific wavelength and polarization) [70,71].
Compared to their bulk counterparts, the concentration of dopant ions on the surface of
UCNPs is relatively high and can be quenched by surface quenchers, reducing the fluo-
rescence intensity [72,73]. For this reason, research to enhance the upconversion emission
of UCNPs is needed. Methods for enhancing the upconversion emission can be divided
into two categories: (1) Controlling the absorption cross-section and radiative emission rate
by changing the synthesis conditions of UCNPs. (2) Increasing the local photon density
of states. In particular, the local field can be improved more than 102 times using a plas-
monic nanostructure [74]. In upconversion nanocrystals (UCNCs) that are able to convert
lower energy photons (typically NIR) into higher energy photons (usually visible), the
excitation and emission wavelengths can be substantially different and usually do not have
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significant overlap [75,76]. Therefore, it is significant to investigate the interplay between
the excitation- and emission-plasmonic resonance coupling, as well as the possibility to
distinguish their effects on plasmonic enhancement [77]. In this section, among the various
methods to enhance the fluorescence sensitivity of UCNPs, a method using a plasmonic
fluorescence enhancement strategy is presented.

Dispersible plasmonic structures for biological applications can be deployed in bioimag-
ing and therapeutic techniques, such as photodynamic therapy and drug delivery.
Zhang et al. [78] easily fabricated a metal core-enhanced Er material based on a core/spacer/
shell approach (Figure 5A). They switched the upconversion fluorescence enhancement
and quenching phenomena by controlling the silica dielectric spacer thickness and metal
core size. The results of this paper showed an optimal PL sensitivity when the space thick-
ness was 30 nm, which was observed to be four times higher than that of the reference
Y2O3:Er shell. In contrast, the use of thin SiO2 spacers resulted in PL quenching due to the
proximity of the shell and Ag spheres and resulted in efficient nonradiative energy transfer
from the luminescent system to the metal surface. Zhang et al. [77] reported a five-fold
overall enhancement of upconversion emission in NaYF4:Yb/Er nanocrystals when coupled
with gold island films. In contrast to isolated AuNPs [79–82], continuous gold films are
characterized by a plasmonic resonance wavelength in the NIR region where the excitation
wavelength (980 nm) for UCNPs is located [83–85]. Confocal fluorescence images showed
that the upconversion emission increased more than five-fold when combined with the gold
film. Kang et al. demonstrated that the excitation and release process of UCNPs can be
simultaneously improved using these plasmonic double resonance nanostructures, thereby
significantly increasing the UC luminescence (UCL) strength of UCNPs (Figure 5B) [86].
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UCNP-based biosensors were used to detect proteins, nucleic acids, small molecules,
and amino acids. In 2017, Du et al. demonstrated the usefulness of UCNPs as a bifunctional
NP for in vitro cell imaging and latent fingerprint detection by synthesizing Ho3+-activated
NaYbF4 UCNPs [87]. In 2019, Wu et al. [88] used an upconversion FRET sensor to detect
arginine. They designed positively charged UCNPs as energy donors and negatively
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charged AgNP as energy acceptors. This method showed a good linear relationship
between the fluorescence intensity and the concentration of arginine in 14.42–115.04 µM
with a LOD of 2.9 µM. Kumar et al. [89] developed a UCNPs nanoplatform with mesoporous
silica functionality to detect dopamine in real-time, wherein the LOD is as low as 0.63 nM.
In 2020, Wang et al. [90] designed a new NIR probe based on FRET between UCNPs and
Au nanocages for the detection of circulating tumor DNA (ctDNA). They determined
excitation and emission at 980 nm and 800 nm, showing a linear range of 5–100 pM and
a detection limit of 6.30 pM in serum. In 2021, Hu et al. [91] fabricated a new bilayer of
poly(methylmethacrylate) opal photonic crystal (PMMA OPC) with a double photonic stop
band, matching the excitation and emission fields of UCNP simultaneously to significantly
enhance the upconversion fluorescence intensity. With 980 nm and 808 nm laser excitation,
the PSA sensor showed a good linear relationship within the range of 2.94–294.12 pM
(0.1–10 ng/mL) and LOD of 29.41 pM (0.01 ng/mL). For the detection of the cancer antigen
125 (CA125) biomarker, Zhang et al. [92] combined UCNPs modified with CA125 aptamer
with CNDs as an energy acceptor through π–π stacking interaction. This CA125 sensor
showed a linear range of 0.01–100 pM (0.01–100 U/mL) and a detection limit of 9 fM
(9 × 10−3 U/mL). Recently, Liu et al. [93] reported a quantitative analysis of TSH by RET
luminescence mechanism between the UCNPs donor and tetramethylrhodamine receptor.
The resulting detection dynamic range and the limit of detection were 0.66–33.26 pM
(0.1–5.0 mIU/L) and 0.43 pM (0.065 mIU/L).

Applications of the non-dispersive plasmonic structures of UCNPs include multi-
color flexible displays, fingerprints, solar energy harvesting, temperature sensing, and
photocatalysis. The UCL enhancement of NaYF4:Yb3+/Er3+ co-doped nanocrystals was
investigated using a disk-coupled dots-on-pillar antenna array (D2PA) with a 3D plasmonic
nanoantenna architecture by Zhang et al. [94]. The D2PA structure was fabricated as a 3D
nanocavity array, which consisted of Au nanodisks on the top of periodic dielectric pillars,
an Au backplane at the feet of the pillars, and dense Au nanodots on the sidewalls (Fig-
ure 6A). Tuning the pillar height (h = 75 nm) could optimize the D2PA structure, resulting
in a 310-fold uniform enhancement of UCL over a large area and an eight-fold reduction in
luminescence decay time. Yamamoto et al. enhanced UCNP green emission by a factor of
23 and red emission by a factor of 43 through upconversion of 30 individual NPs composed
of metal (Ag) nanocaps and rare-earth-doped UCNPs (Er- and Yb-doped Y2O3 NPs) [95].
UCNPs with silver nanocaps were formed by depositing a silver layer 10–50 nm thick on a
quartz substrate spin-coated with UCNPs, and separating the substrate and UCNP using
a polydimethylsiloxane (PDMS) stamp (Figure 6B). The intensity ratio of green and red
luminescence was demonstrated to be dependent on the thickness of the Ag nanocaps, and
the main cause of the upconversion enhancement is due to the enhancement of the radiative
decay rates. Gao et al. placed an emitter layer in a diffractive array of Al nanocylinders
to increase the absorption by rare earth ions. The array was designed to confine NIR
in the emitter layer through the excitation of plasmon-photon hybrid modes, which are
collective resonances of localized surface plasmons in nanocylinders through diffractive
coupling, thus increasing the strength of the UCPL by up to seven times (Figure 6C) [96].
Plasmon nanostructures are known to efficiently enhance the fluorescence of surrounding
fluorophores by acting as nanoantennae to focus the electric field into nano-spaces. Feng
et al. reported a distance-dependent plasmon-enhanced fluorescence system by tuning
the spacers between UCNPs and GNRs chosen as plasmon nanoantennae. A maximum
upconversion enhancement up to 22.6-fold was achieved when the thickness of spacer
polyelectrolyte multilayers was 8 nm and the LSPR absorption wavelength of GNRs overlap
(~980 nm) with UCNPs excitation (Figure 6D) [97]. Eriksen et al. applied a rate equation
model via a simulation-based approach to study the interaction between near-field en-
hancement and luminescence quenching over a range of geometries [98]. They used an
excitation wavelength of 1523 nm for the simulation rather than the excitation wavelength
of 980 nm considered in typical studies for plasmonic enhancement. Because of this, the
enhancement factor values predicted by the simulations were lower than those reported in
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the literature. This suggests that the choice of excitation wavelength has a greater effect on
increasing the efficiency of UC than the dependence on various plasmonic geometries.
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Most recently, Meng et al. [99] realized single nanocrystal upconversion in a single
plasmonic nanocavity mode by in situ controllable coupling and doping. An experimental
platform was built to tune the nanocavity field and control the doping concentration of
UCNCs. A single UCNC was placed between two GNR nanocavities so that all the activa-
tors of UCNC showed the same emission pattern and radiation efficiency. The outermost
shell, as a protective layer, suppressed the energy transfer to surface defects, while the
spacer layer mitigated the plasmonic quenching by coupling the UCL predominantly to
the fundamental dipole mode. A nearly continuous evolution of the Purcell [100,101]
enhancement for the same single nanocrystal was realized, which showed the general
existence of UCL plasmonic enhancement saturation phenomena, as well as the doping-
and coupling-dependent UCL enhancement factors up to 2.3 × 105 [99].

UCNPs are actively pursued as anti-stock emitters for various applications, such
as bioimaging, solar energy harvesting, catalysis, displays, anti-counterfeiting, sensing,
and lasers [99]. To enhance UCL, researchers improved the internal material properties
(composition, doping, and surface structure) of nanocrystals while simultaneously using
plasmonic coupling to improve engineered external optical responses. However, despite
impressive progress, upconversion brightness still fell short of the level required for com-
mercial applications, and a systematic understanding of plasmon-enhanced upconversion
remains a challenge.

5. Conclusions and Perspectives

In this review, we briefly reviewed recently reported papers on MEF-based biosensors
designed to address the fundamental limitations of fluorescence-based detection, such
as low quantum efficiency, photobleaching, and autofluorescence. Representative excita-
tion wavelength-dependent nanomaterials (i.e., carbon dots, noble metals, upconversion
nanoparticles) were introduced and verified to demonstrate great potential in terms of
signal enhancement.
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Despite these advantages, a selective nanomaterial molecular recognition element
that can replace fluorophore molecules is still unavailable. The design and fabrication of
nanostructures can potentially enhance fluorescence strength by three orders of magnitude
compared to metal colloidal suspension, but it is expensive and time-consuming to man-
ufacture rigid, uniform, and reproducible metal substrates. Thus, efficient nanostructure
fabrication remains a task for current scientists in the manufacturing of smart nanomaterials
and nanostructured surfaces.

In addition, despite many efforts to devise practical MEF biosensors, there are still
limitations to deployment in biological microenvironments (clinical environments). MEF-
based fluorescence detection technology with high sensitivity and selectivity will be an
important key to advancing the development of portable high-sensitivity field tests that are
expected to facilitate early disease diagnosis.
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