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Abstract: This study presents an ear-mounted photoplethysmography (PPG) system that is designed
to detect mental stress. Mental stress is a prevalent condition that can negatively impact an individ-
ual’s health and well-being. Early detection and treatment of mental stress are crucial for preventing
related illnesses and maintaining overall wellness. The study used data from 14 participants that
were collected in a controlled environment. The participants were subjected to stress-inducing tasks
such as the Stroop color–word test and mathematical calculations. The raw PPG signal was then
preprocessed and transformed into scalograms using continuous wavelet transform (CWT). A con-
volutional neural network classifier was then used to classify the transformed signals as stressed or
non-stressed. The results of the study show that the PPG system achieved high levels of accuracy
(92.04%) and F1-score (90.8%). Furthermore, by adding white Gaussian noise to the raw PPG signals,
the results were improved even more, with an accuracy of 96.02% and an F1-score of 95.24%. The
proposed ear-mounted device shows great promise as a reliable tool for the early detection and
treatment of mental stress, potentially revolutionizing the field of mental health and well-being.

Keywords: mental stress; scalograms; continuous wavelet transform (CWT); photoplethysmography
(PPG); convolutional neural network (CNN)

1. Introduction

Stress is a common and increasing issue in modern society that can have negative
impacts on physical and mental health [1,2]. In particular, mental stress is a major public
health issue, with increasing evidence linking it to cardiovascular disease, anxiety, and
depression [3]. There is a significant amount of research focused on identifying stress due
to the growing evidence linking stress-related health issues to the fast-paced and stressful
nature of modern living [4]. Modern stress is in large part the result of pressures at work.
Workplace stress can lead to both long-term health problems such as heart disease [5] and
sudden, catastrophic outcomes such as accidents, injuries, and even fatalities [6,7]. Due to
the potentially life-threatening nature of their jobs, firefighters and smoke divers frequently
experience significant levels of stress. Thus, it is important to monitor their mental stress to
prevent accidents or injuries [8].

Questionnaires and professional consultations are the most common approaches to
diagnosing mental health, but these are expensive, time-consuming, and subjective [9,10]
The other approach is using biomarkers such as salivary alpha-amylase and cortisol [11,12].
Although the biomarker method is an objective approach for measuring stress, it has
drawbacks, such as the inconvenience of measurement and the inability to continuously
monitor stress. As a result, researchers have been working to develop compact, portable,
and accurate technology for detecting and monitoring mental stress.

The use of wearable sensors has increased significantly in recent years, allowing
researchers to develop a system that can monitor mental health and stress, which can help
in quickly detecting and managing these conditions. Research on stress measurement
mostly leverages signals from a wearable sensor such as an electrocardiogram [13–15],
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galvanic skin response [16,17], motion sensor [18], and electroencephalography [19,20],
and even a combination of these [21]. Our present design employs photoplethysmography,
a technology that is widely accepted and recognized for its ergonomic benefits. PPG is
commonly integrated into smart rings or wristbands to monitor stress levels [22]. As
a wearable technology, PPG is both affordable and non-invasive, making it easy to use.
Furthermore, various studies have reported that PPG is not harmful and can be safely
used in various clinical settings [23–25]. These findings suggest that PPG technology
can be effectively used to detect and manage stress levels without causing any harm to
the subjects.

Previous studies have used PPG sensors to monitor stress signals with these sensors
primarily located at the ear [26–28] and wrist [29–34]. In those studies, heart rate variability
(HRV) was the most used health parameter for stress assessment because it is sensitive to
variations in psychological and physical well-being and can distinguish between healthy
and unhealthy individuals. However, it can be affected by motion artifacts, which refer to
any interference in the PPG signal caused by movement or other external factors. Motion
artifacts can distort the PPG signal, making it difficult to accurately measure heart rate
variability. Thus, it is important to use a wearable device that is properly secured to the
body and to minimize unnecessary movement during the measurement period. This study
presents an in-ear wearable biosensor with an IoT-connected platform for stress detection,
which is convenient for wearing and reduces motion artifacts compared to other body
locations [28]. The authors investigated the use of a device to assess mental stress under
controlled laboratory conditions. The stress detection method chosen was based on the
continuous wavelet transform (CWT), which is known for its ability to provide more specific
information about the frequency patterns of heart rate variability. By utilizing this method,
it becomes possible to identify patterns that may indicate stress or other physiological
states. To classify the transformed PPG signals into stressed or non-stressed categories, a
convolutional neural network (CNN) with a fixed architecture was designed. In comparison
to methods that rely on many manually proposed features, the proposed approach using a
simple CNN structure may be an efficient way to detect stress in various settings, including
workplaces, schools, and sports. However, it is worth noting that traditional classifiers for
binary classification, such as decision trees [35,36], random forests [37], and support vector
machines (SVMs) [38,39], have also been widely used for binary class classification. These
classifiers often require a feature engineering step where relevant features are selected or
extracted from the data, which can be time-consuming and may require domain expertise.
In summary, this paper makes significant contributions to the field of stress detection
through the development of a novel in-ear wearable biosensor and the implementation
of an efficient stress detection approach using an effective CNN architecture. The main
contributions of this paper are as follows.

1. The design and development of an ear-mounted wearable biosensor for the detection
of mental stress.

2. Development of a motion artifact reduction method that employs an adaptive recur-
sive least squares (RLS) filter in conjunction with a dynamic reference signal.

3. Transformation of the 1D PPG signals into 2D time–frequency images (scalograms)
using CWT and evaluation of the performance of the transformed signals at different
signal segments.

4. The design and implementation of an efficient and accurate CNN model for stress
detection using the 2D scalogram images of PPG signals obtained from 14 volunteers.

The paper is organized as follows: Section 2 presents the proposed hardware architec-
ture and stress detection data analysis method. In Section 3, the experimental results are
demonstrated. Discussion and conclusion are presented in the final section.
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2. Materials and Methods

This section discusses the design of a smart in-ear wearable biosensor for monitoring
mental stress. Next, the experimental setup for data collection is discussed, followed by a
detailed description of the proposed system for mental stress detection.

2.1. Proposed Hardware Architecture

Figure 1 presents an overview of the proposed system and components used in our
design. The system consists of two main modules: (1) a motherboard consisting of a
microcontroller unit, power supply, and communication systems; and (2) an earbud board
that houses two sensors, a PPG, and an inertial measurement unit sensor for measuring
signals from a subject. The following subsections discuss the details of each component
that is used in the design of the system.
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a. Motherboard

The motherboard serves as the central hub of the system, integrating all necessary
components such as the microcontroller, communication module, and power supply units.
The headband is designed to fit comfortably on the user’s head and securely hold all
the necessary components in place. The components housed within the motherboard,
including the microcontroller, communication module, and power supply units, will be
discussed in further detail in the subsequent sections.

Microcontroller unit: We used the Seeeduino XIAO microcontroller unit (MCU) for our
design since it is a small and powerful microcontroller with a wide range of applications.
It is manufactured by Seeed Studio (Shenzhen, China), a Chinese company, and is based
on the ARM Cortex M4 architecture, known for its high processing power and low power
consumption. The microcontroller has 1 MB of flash memory and 128 kB of SRAM, sufficient
for many applications. It also has a wide range of peripherals and interfaces, making it
easy to connect to other devices and sensors. This microcontroller is packaged in a small
10 × 10 mm2 quad flat package, making it easy to integrate into compact systems.

Power supply: Our system was powered by a rechargeable Lithium Polymer (LiPo)
battery with a 3.7 V, 500 mAh output, which is known for its high energy density, long cycle
life, and stable voltage, making it suitable for portable devices and projects. The Sparkfun
Lipo Battery Charger was used to charge this battery; it was designed specifically for
LiPo batteries and has several safety features such as power regulation, built-in protection
IC, and monitoring charging status and temperature, The charger charges the battery via
micro-USB connection to an external power supply, and it also has an on-off button.

Connectivity: The nRF24l01 transceiver module was used for wireless data transmission.
It is a wireless communication module manufactured by Nordic Semiconductor, which is a
company based in Trondheim, Norway that can be used to transmit data from the device to a
central processing system for analysis. It uses the 2.4 GHz industrial, scientific, and medical
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band and can transmit data over short distances (up to a few hundred meters, depending on
the environment). The nRF24l01 module is low-cost and low-power, making it well-suited
for use in portable devices such as the stress monitoring system. By integrating the nRF24l01
module into the system, it is possible to transmit data wirelessly from the device to the central
processing system for analysis without the need for a physical connection. For this study, the
sampling rate for both PPG and IMU signals was set to 100 Hz.

b. Earbud board

The earbud board consists of two sensors: a photoplethysmography (PPG) sensor
and an accelerometer sensor, which allows for measuring vital signs and body movement.
These sensors were positioned in the earbud such that they were facing the tragus, a small
protuberance on the outer ear. Positioning the sensors toward the tragus can help stabilize
the PPG sensor and secure it while it is being worn.

Pulse Oximeter: In our study, we used the MAX30102 reflective pulse oximeter to
collect photoplethysmography signals. It is manufactured by Maxim Integrated; a semi-
conductor company based in San Jose, CA, USA. This sensor is intended for non-invasive
measurements of the human body’s oxygen saturation and heart rate, small and low power,
making it well-suited for portable and wearable applications. It shines red and infrared
LED lights on the tissue and measures the reflected light. The module has features such as
optical elements and low-noise electronics to minimize interference from ambient light and
improve measurement accuracy. The module can operate with a single power supply of
1.8 V for the digital electronics and another power supply ranging from 3 to 5.25 V for the
LEDs. It has an I2C-compatible serial interface and a compact size of 5.6 × 3.3 × 1.55 mm3,
making it easy to incorporate into small devices.

IMU sensor: A BNO055 module, provided by Bosch Inc., Stuttgart, Germany, is a
9-DOF sensor was used in the study. This module combines a triaxial 14-bit accelerometer,
a 16-bit gyroscope, and a triaxial geomagnetic sensor in a single package. In our study, we
used only the accelerometer part of the BNO055 module to remove motion artifact from
photoplethysmography (PPG) signals. The module’s rapid response time, low noise, and
small size made it well-suited for this purpose. By utilizing the triaxial accelerometer, we
were able to measure the acceleration of the body part where PPG was being measured, and
use this data to remove the motion artifact from PPG signals. Although the full capabilities
of the BNO055 module were not used in our study, its advanced design and integration of
multiple sensors make it a versatile and powerful sensing device for various applications
in robotics, drones, virtual reality, and other motion-sensing devices.

In Figure 2, the connections between the components of the system are depicted
using wires. Table 1 provides a summary of the components of the sensing module along
with their specifications. The motherboard enclosure was designed using 3D modeling
software for the purpose of being worn on a headband during data collection (Figure 3).
The commercial earbud was modified to include both a PPG and IMU sensor.

Table 1. Specifications for the components of the system.

Components Specification

MAX30101 sensor
Operating Voltage: 1.8 V
Operating Temp. (◦C): −40 to +85
Size: 5.6 mm × 3.3 mm × 1.55 mm

BNO055 sensor Acceleration Ranges: ±2 g/±4 g/±8 g/±16 g
Operating Voltage: 3–5 V

Seeeduino XIAO MCU

Operating Voltage: 3.3 V/5 V
CPU: 40 MHz ARM Cortex-M0+
Flash Memory: 256 Kb
RAM: 32 KB
Size: 20 mm × 7.5 mm × 3.5 mm
I2C: 1 pair
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Table 1. Cont.

Components Specification

nRF24l01module

Operating Voltage: 1.9–3.6 V
Modulation: GFSK
Data Rate: 250 kbps, 1 Mbps, and 2 Mbps
Size: 2.9 cm × 5 cm × 1.2 cm

LiPo battery Operating Voltage: 3.7 V
Capacity: 500 mAh

LiPo battery charger Capacity: 5 V, 1 A output
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Figure 3. In-ear PPG setup, showing simultaneous recordings of PPG and tri-axis acceleration signals,
with accompanying data acquisition software.

2.2. Experimental Methodology

The experiments in this study were conducted on a workstation computer that had a
64-bit Windows 10 Pro operating system, an AMD Ryzen 5 5600G processor with Radeon
Graphics, 16 GB of RAM, and MATLAB version of 2022b. This workstation was chosen
because it was powerful and fast enough to handle the demands of the experiments and the
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proposed stress detection method. The stress detection system consists of four pipelines that
work together to detect and measure mental stress in individuals (Figure 4): data acquisition,
preprocessing, continuous wavelet transform, and convolutional neural network.
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2.2.1. Data Acquisition and Protocol

Data for this experiment were collected using the in-ear biosensor in a laboratory at
Pukyong National University from 14 healthy volunteers (8 males and 6 females, aged
22–35 years, with BMIs of 17.6–33.8 kg/m2). Before the trial, each participant completed
a questionnaire about their cardiovascular and mental health and any medications that
could potentially affect the results. Participants with hypertension, cardiac arrhythmias, or
cognitive impairments were not included in the study. Throughout the trial, the volunteers
were subjected to a variety of mental stressors and relaxation activities, including the
Stroop color–word test and mental arithmetic tasks. Examples of the collected signals for
the stressed and non-stressed conditions are seen in Figure 5. The figure illustrates that a
stressed PPG signal may have a lower amplitude and a shorter distance between the two
peaks compared to a non-stressed PPG signal. This is because stress can cause changes
in the autonomic nervous system, leading to changes in blood flow and vasoconstriction,
which can affect the PPG signal.

This study was reviewed and approved by the Pukyong National University’s Institu-
tional Review Board (IRB number: 1041386-202003-HR-13-01). The review process of the
IRB included a comprehensive examination of the study protocol and informed consent
procedure, as well as an evaluation of potential risks and benefits to participants. Informed
consent was obtained from all participants prior to the start of the study. Any deviations
from the original study protocol were approved by the IRB.
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2.2.2. PPG Signal Preprocessing

The preprocessing of the raw PPG signal is illustrated in Figure 6. The pipeline
includes the input data of PPG and tri-axis accelerometer signals, removal of DC signals,
bandpass filtering, and adaptive cancellation of motion artifacts. The following sections
provide an explanation of each stage.
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a. DC Remover

The AC component of the PPG signal is of particular interest in stress detection because
it contains the pulsatile information of blood flow that is sensitive to changes induced by
stress. Therefore, this study focused solely on the AC component of the PPG signal for
stress analysis. To obtain the AC component, we applied the DC remover method, which
is an IIR filter design commonly used to remove the low-frequency voltage offset in PPG
signals [40]. The following equations explain how the DC remover works.

m(t) = x(t) + a ∗m(t− 1) (1)

y(t) = m(t)−m(t− 1) (2)

Y(Z)
X(Z)

=
1− Z−1

1− a ∗ Z−1 (3)

where x(t) represents the PPG signal’s sampling point input at each time, which is the
raw signal obtained from the PPG sensor; m(t) represents the calculated value of the
operation process, which records the DC drift of the PPG signal; a is the operation parameter
that controls the filter cutoff band range and response speed; and y(t) represents the AC
component of the PPG signal, which is obtained by subtracting the previous value of m(t)
from the current value of m(t). At a = 1, the filter effect is no longer present, but as it
approaches 1, the slope of the filter response grows steeper, and only the frequencies that
perturb the signal are damped. Equation (3) represents the transfer function of the DC
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remover filter design, where X(Z) and Y(Z) represent the z-transforms of the input and
output signals, respectively.

b. Bandpass filtering

There are several forms of noise that might affect the photoplethysmography sig-
nal obtained from a photoelectric pulse sensor, such as motion artifacts caused by head
movement and random noise during the recording process. Removing these sources of
noise will allow for more precise measurements, which can be achieved through bandpass
filtering, which may be used to silence noises that are beyond the range of the human pulse
(0.5–3.5 Hz). In this study, a 4th-order Chebyshev-II filter was utilized with a bandpass
frequency of 0.5–3.5 Hz. Similarly, all three acceleration signals are bandpass filtered to
guarantee uniformity. Aside from not utilizing them independently, PPG signals obtained
from the infrared and red LED of the Max30102 sensor are normalized and averaged to
create a composite PPG signal. As a result, the influence of noise on the signal is reduced,
thus making the measurement more precise.

c. Motion Artifact Cancellation using Adaptive Filtering

Motion artifacts are a persistent challenge for accurate wearable photoplethysmogra-
phy monitoring, caused by the constant movement of the human body. These can corrupt
the waveform of the PPG, leading to improper signal interpretation, and thus these should
be minimized. Signal preprocessing techniques must be applied to eliminate any motion
artifacts (MAs) present in the recorded signal [41,42].

Many methods have been proposed to reduce the MA of the corrupted PPG signal.
These include independent component analysis [43], empirical mode decomposition [44–46],
Kalman filtering [47], and adaptive noise cancellation (ANC) [48–51]. Among these tech-
niques, ANC is a well-known and efficient method for reducing MA in a noisy PPG signal.
One of the benefits of the ANC is its fast response time, allowing it to quickly adapt to
changing conditions. Additionally, ANC can continuously process a signal in real time,
even in situations where the noise is rapidly changing. The three most widely used al-
gorithms in adaptive filtering are least mean squares (LMS), normalized LMS (NLMS),
and RLS. We adopted an adaptive motion artifact reduction approach based on an RLS
adaptive filter since it provides a faster convergence speed and stable filtering. Utilizing
the acceleration signal as the reference signal for RLS adaptive filtering to minimize MA is
a popular practice nowadays. Nevertheless, the MA removal performance of the adaptive
filtering method will be influenced by the selection of a suitable reference signal. Figure 7
illustrates the block diagram of the proposed adaptive RLS filter algorithm.
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The effect of motion during data collection may be the combined effect of single or
multiple axes. In this method, the tri-axis acceleration components (i.e., X, Y, and Z) were
used as the reference input signal of the improved RLS adaptive filter. The accelerometer
output is initially preprocessed using the same signal processing methods as a PPG signal
by applying the DC remover and bandpass filtering. A stronger correlation between the
reference signal and the MAs results in improved motion artifact reduction. The Pearson
correlation coefficient (r) [52] was used to find a suitable reference signal among the three
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axes of the accelerometer signal. A higher absolute correlation value indicates greater
similarity between the PPG and reference signal. The absolute correlation coefficient (|r|)
between the PPG and acceleration signal (reference signal) is computed using Equation (4).
In this study, the maximum absolute correlation coefficient (|r|max) among the three
computed values was used to check if there is a high or low correlation between PPG
and acceleration signals. The acceleration signal with the maximum absolute correlation
coefficient was used as a reference signal. In our case, we empirically set the threshold at
|r|max > 0.3 to indicate a strong correlation between the PPG and acceleration signals.

|r| =

∣∣∣∣∣∣ ∑(PPGi − PPG)
(

Acci − Acc
)√

∑ (PPGi − PPG)
2

∑ (PPGi − PPG)
2

∣∣∣∣∣∣ (4)

where PPGi represents the primary signal, Acci represents the reference acceleration
signal, PPG and Acc are the arithmetical mean values of the primary and reference
signals, respectively.

In the RLS algorithm, there are two primary inputs: X(n) and N(n). X(n) represents
the PPG signal, which includes MAs, whereas N(n) is one of the tri-axis accelerometer
signals. As shown in Figure 7, the output signal, X’(n), can be obtained by using the
following equation:

X′(n) = d(n)− N′(n) (5)

N′(n) = ωT(n)N(n) (6)

From Equations (5) and (6), we can see that the optimal weight vector ω (n) should be
iterated to obtain the output of the signal. The cost function of the RLS adaptive filtering
J(n) is provided as in the following equation, where λ is the forgetting factor.

J(n) = ∑k
n=1 λ

k−n∣∣X′(n)∣∣2 = ∑k
n=1 λ

k−n
∣∣∣d(n)−ωT(n)N(n)

∣∣∣2 (7)

Taking the derivative of the weight vector ω (n) yields the minimum value of the
cost function J(n). This can be written as:

ωopt(n) = R−1(n) ∗ r(n) (8)

where R(n) = ∑k
n=0 λ

k−nu(n)uT(n) and r(n) = ∑k
n=0 λ

k−nu(n)d(n) . Using the above
equations, we can compute the output signal, X′(n).

The forgetting factor, λ, is an adjustable parameter in the RLS algorithm that de-
termines how much prior data the algorithm accounts for. It has a decaying value that
decreases over time, which in turn reduces the influence past data points have on the
model’s coefficients. When set to 1, the algorithm utilizes all available data for estimat-
ing the model’s parameters, not disregarding any information. However, if the data are
non-stationary and the trends are changing, using a value of λ less than 1 can enable the
RLS algorithm to adapt more swiftly to these changes. The forgetting factor determines
the balance between the model’s ability to adapt to new trends and its stability. A higher
value leads to more stability but slower adaptation, whereas a lower value results in faster
adaptation but may also introduce noise and instability in the model’s parameter estimates.
In this study, we used a forgetting factor of λ = 0.999.

Figure 8 illustrates a sample of a raw PPG signal that has undergone various prepro-
cessing steps to prepare them for further analysis. One of these steps is DC signal removal,
which is depicted in Figure 8b. This process eliminates the constant offset in the signal that
can cause problems with further processing. Another step is bandpass filtering, shown in
Figure 8c; this step removes unwanted high-frequency and low-frequency noise from the
signal. The last step is motion artifact reduction using an adaptive RLS filter, also shown
in Figure 8c; the filter uses an RLS algorithm to adaptively estimate the parameters of the
filter and reduce MAs.
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d. PPG Signal Segmentation

This experiment aims to classify signals based on their length, specifically comparing
the performance of segments lasting 3 and 5 s. Signals that were 3 min long were obtained
for each class per subject, and then divided into 2 non-overlapping segments for classifi-
cation (Table 2). The experiment used 11 subjects for training and 3 subjects for testing.
By comparing the performance of the different segment lengths, the experiment aims to
determine which segment length is most effective for signal classification.

Table 2. Number of training and testing data by type of length of signal.

Length of Signal Number of Training Data Number of Testing Data

3 s 1320 360

5 s 792 216

2.2.3. PPG Signal Transformation

The PPG signal comprises many frequency components that correlate to various
physiological functions that are helpful in detecting stress. Different signal processing
methods, such as the continuous wavelet transform (CWT), may be used to extract and
evaluate these frequency components. The CWT is a popular tool for analyzing signals in
the time–frequency domain. It works by using a set of wavelet functions to decompose
a signal, allowing for the identification of specific frequencies and their corresponding
amplitudes at different points in time. This technique has been widely used in a variety of
applications, particularly in signal processing and image analysis. The CWT was utilized
in this experiment to convert the PPG signal into a time–frequency representation, known
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as a scalogram, which was then fed into a convolutional neural network (CNN) to identify
mental stress. Formally, given a signal x(t), the CWT is defined as:

Cx(a, b) =
1√
a

∫ ∞

∞
x(t).ω

(
t− b

a

)
dt (9)

where a is the scale parameter, b is the translation parameter, and ω(t) is the wavelet func-
tion. The CWT employs scale parameters to give high-time and low-frequency resolution
for identifying high-frequency events in the PPG signal, as well as low-time and high-
frequency resolution for detecting low-frequency events [53]. Equation (10) demonstrates
the frequency-domain representation of the scale parameter.

F =
Fc ∗ fs

a
(10)

where Fc is the center frequency of the mother wavelet, and fs is the sampling frequency of
signal x(t) [54]. A CWT filter bank is used to create the scalogram images for the stressed and
non-stressed conditions. Different wavelet functions, or ‘mother wavelets’, can be used in the
CWT to decompose a specific signal into the time–frequency domain. The selection of the
wavelet function should be carefully chosen to optimize the decomposition of the signal. In
this study, the generalized Morse wavelet was used as the mother wavelet, defined as:

ϕβ,γ(t) =
1

2π

∫ ∞

0
aβ,γωβe−ωγeiωtdω (11)

where aβ,γ is the normalizing constant, γ characterizes the Morse wavelet’s symmetry, and
β is the compactness parameter. The PPG signals were segmented into two sets (3 and
5 s sets) and transformed into 224× 224 pixel scalograms for use as input to the proposed
CNN. Figure 9 illustrates two scalogram images generated for two different classes of PPG
signals using a filter bank.
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2.2.4. Proposed CNN for Mental Stress Detection

CNNs are a type of deep learning algorithm that uses convolutional operations to
replace general multiplications in traditional neural networks. These are particularly useful
for classification tasks, particularly in image recognition, due to their ability to automatically
extract discriminatory features through the training process. In recent years, CNNs have
been adopted in a variety of applications [55]. In this research, we designed a simple yet
effective CNN, which has many typical structures: a convolutional layer, a pooling layer, a
fully connected layer, and a dropout layer.

The proposed architecture is shown in Figure 10. The network is composed of three
main parts: an input layer for accepting input data, convolutional blocks for extracting
deep features from the input tensor, and a fully connected layer for combining all the
features extracted by the convolutional blocks and producing the final classification result.
The configurations of each layer of the network are listed in Table 3. Input layer: the input
to the proposed CNN comprises 3-channel scalogram images 224 × 224 pixels in size.
Convolution block: the network consists of four convolutional blocks, each of which includes
two convolution layers, a pooling layer, and a dropout layer. The convolution layers use
64 kernels measuring 3× 3 pixels with a step size of 2 and the ReLU activation function.
Following the processing of the input tensor by the 2 convolutional layers, a maximum
pooling of 2× 2 pixels is carried out to minimize the number of features. The dropout
layer has a rate of 0.25 and is used to prevent overfitting and improve training speed by
randomly dropping out some neurons during each training iteration [56]. Fully connected
layer: the input matrix undergoes four convolutional blocks to extract deep features with
multiple channels. These features are then combined and flattened into a single dimension
and passed through a fully connected layer with 128 cells and a ReLU activation function. A
dropout layer with a dropout rate of 0.5 was added after this layer. The final fully connected
layer outputs the classification result, which is a single class (stressed/non-stressed) with a
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sigmoid activation function representing the probability that the input matrix belongs to a
particular category.
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Table 3. A summary of the setups of each layer of the network in the proposed CNN model.

Layer Output Number Kernel Size/Pool Size Stride Activation Function Padding Dropout Rate

Input layer 1 - - - - -
Conv1-1 64 3 × 3 2 × 2 ReLU same -
Conv1-2 64 3 × 3 2 × 2 ReLU same -
Maxpool 64 3 × 3 2 × 2 ReLU valid -

Droupout1 64 - - - - 0.25
Flatten - - - - - -

FC1 128 - - ReLU - -
Droupout2 128 - - - - 0.5

FC2 1 - - Sigmoid - -

The proposed CNN model was optimized by adjusting its hyperparameters, such as
using a batch size of 32, a learning rate of 0.0001, and utilizing 3 different optimizers (Adam,
RMSprop, and SGDM), as listed in Table 4. Through this fine-tuning process, the model
was able to achieve the best results in terms of accuracy and other performance metrics.
During the training phase, the binary cross-entropy loss function was employed to measure
dissimilarity between the predicted probability distribution and the true distribution. This
loss function is commonly used in binary classification problems.

Table 4. Hyperparameters setting.

Parameter Tuning for CNN

Optimizer Adam, RMSprop, SGDM

Learning Rate 1 × 10−4

Max. Epochs 50

Validation Patience 10

2.2.5. Performance Evaluation

We evaluated the effectiveness of our proposed approach in predicting mental stress
using four commonly used metrics: accuracy, precision, recall, and F1-score [57]. Each
metric is defined as follows in Table 5, where TP stands for true positive, TN for true
negative, FP for false positive, and FN for false negative. These metrics can be used to
evaluate the performance of the model in terms of how well it is able to correctly classify
mental stress (positive cases) and no stress (negative cases).
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Table 5. Evaluation metrics.

Accuracy = TP+TN
TP+FP+FN+TN

Precision = TP
(TP+FP)

Recall = TP
(TP+FN)

F1 score = TP
TP+ 1

2 (FP+FN)

3. Experimental Results

We evaluated our proposed method using two different signal segments (3 s and 5 s
segments), with results detailed in Tables 6 and 7. The results show that our proposed
method achieved high accuracy, precision, recall, and F1-scores for both the 3 s and 5 s
signal segments. The Adam optimizer provided the best results for the 3 s segment, while
the RMSprop optimizer performed best for the 5 s segment. These findings suggest that
the performance of our proposed method is influenced by the signal segment length and
the choice of optimizer. Overall, our results demonstrate the potential of our proposed
method for accurately classifying signal segments. However, it is important to interpret
these results with caution, as further investigation is needed to identify the underlying
factors behind the performance differences between the optimizers and to address any
potential sources of bias or error.

Table 6. Classification results of the proposed method using 3 s segments.

Optimizers LR Accuracy (%) Precision (%) Recall (%) F1-Score (%) Elapsed Time

Adam 0.0001 86.01 84.39 87.95 86.14 21 min 11 s

RMSprop 0.0001 88.1 85.8 90.96 88.3 23 min 36 s

SGDM 0.0001 86.61 86.67 86.14 86.4 52 min 52 s

Table 7. Classification results of the proposed method using 5 s segments.

Optimizers LR Accuracy (%) Precision (%) Recall (%) F1-Score (%) Elapsed Time

Adam 0.0001 91.54 87.91 90.91 89.39 9 min 49 s

RMSprop 0.0001 92.04 91.86 89.77 90.8 14 min 38 s

SGDM 0.0001 90.05 94.74 81.82 87.8 28 min 55 s

Figure 11 illustrates the receiver operating characteristic (ROC) curves of the proposed
method for different signal lengths. The classifier was trained using different optimizers
and segments of data, and ROC curves were generated to evaluate the performance. The
best performance was seen with the SGDM (AUC = 0.954) and Adam (AUC = 0.975)
optimizers, for the 3 and 5 s segments, respectively. This suggests that the classifier trained
with the Adam optimizer had the greatest accuracy in distinguishing between positive
and negative classes. Overall, the Morse wavelet with a 5 s segment and Adam optimizer
demonstrated the highest diagnostic accuracy among the various configurations evaluated.

To improve performance, we decided to increase the size of the training dataset by
adding white Gaussian noise with a mean value equal to 30% of the original scalogram.
This noise contamination was included to make the model more robust [58], and the size of
the train dataset doubled from 792 to 1584 as a result. The data augmentation significantly
increased the accuracy of the experiment from 92.04% to 96.02% (Table 8, Figure 12). This
indicates that the model was able to learn more effectively when presented with a larger
and more diverse dataset, which contained a greater variety of signal samples. Additionally,
the researchers conducted a ROC analysis to evaluate the diagnostic accuracy of the model,



Biosensors 2023, 13, 397 15 of 20

which revealed that data augmentation had resulted in an increase in the model’s AUC-
ROC value from 0.973 to 1.0 (Figure 13). This suggests that the data augmentation improved
the ability of the model to correctly classify positive and negative samples. In short, data
augmentation improved the performance of the experiment, resulting in a more robust and
accurate model for signal classification.
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It has been challenging to compare the results of this study with those of other methods
due to the unique nature of the dataset used. We compared our results with those of
other state-of-the-art CNN transfer learning methods, including GoogleNet [59], ResNet-
50, ResNet-101 [60], and DenseNet-201 (Table 9) [61]. To ensure a fair comparison, all
experimental settings were the same as those used in our proposed CNN model. In short,
the proposed CNN method was more effective for mental stress detection compared to
the CNN-based transfer learning methods. Additionally, our network resulted in shorter
training time.

Table 9. Comparative analysis with existing CNN models.

Models LR Optimizer Accuracy Precision Recall F1-Score Elapsed Time

GoogleNet 0.0001 RMSprop 90.1 93.54 86.13 89.69 21 min 11 s

ResNet101 0.0001 RMSprop 90.59 89.22 89.11 90.58 32 min 56 s

ResNet-50 0.0001 RMSprop 90.59 92.71 88.12 90.56 35 min 43 s

DenseNet-201 0.0001 RMSprop 88.61 86.79 91.09 88.89 33 min 46 s

Proposed CNN 0.0001 RMSprop 92.04 91.86 89.77 90.8 14 min 38 s

4. Discussion and Conclusions

In this research, we proposed a method for detecting mental stress by utilizing an
ear-mounted biosensor. The ear-mounted PPG sensor was chosen for its non-invasiveness
and convenience, as well as its ability to minimize MAs. Through signal processing and
transformation, we were able to classify stressed and non-stressed states using a robust
CNN with high accuracy. Our method demonstrated a high classification accuracy of
92.04% in identifying mental stress, as well as a high precision of 93.90%, meaning a high
proportion of its positive predictions were accurate. The recall was 87.55%, demonstrating
the method’s ability to identify a high proportion of actual positive instances. The F1-score
of 90.06% further shows that precision and recall are balanced and high. These results
demonstrate the effectiveness of our proposed method in detecting mental stress and its
potential for use in monitoring mental stress in various settings, such as occupational health
and wellness programs.
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This research also examined the impact of signal length on the accuracy of mental
stress detection using CWT and CNNs. Using a signal length of 5 s, rather than 3 s, achieved
better accuracy in detecting mental stress, likely because longer segments of signals contain
more data, which can provide more information for the analysis. However, longer segments
may also have more noise and lower frequency resolution. On the other hand, shorter
segments may contain less data, but they may have higher frequency resolution. These
trade-offs should be considered when selecting the length of the signal for mental stress
detection; it is important to strike a balance between having enough data for analysis and
having high-frequency resolution to obtain more insights. Additionally, the results of this
specific research may not be generalizable to all mental stress detection scenarios, and it
would be important to test the results on different data sets and real-life applications.

Moreover, this study demonstrates that the performance of a CNN can be greatly
affected by the choice of optimizer. There are several commonly used optimizers, such
as SGD, Adam, and RMSprop, each with their own unique characteristics that may make
them better suited for certain tasks. It can be useful to experiment with a few different
optimizers and compare their performance on a particular task to determine the best one to
use. Properly tuning the hyperparameters of the optimizer, such as the learning rate, can
also contribute to improved performance.

Our study has some limitations that should be acknowledged. One limitation is the
relatively small sample size, which means that our results may not be generalizable to a
larger population. This could limit the ability to draw broad conclusions from our findings.
Another limitation is that the subjects in our study were only exposed to a limited range
of stressors. This may not fully represent the complexity of mental stress in real-world
situations, and therefore, our results may not be fully applicable to other types of stressors.
Future research could address these limitations by increasing the sample size and recruiting
participants from a more diverse population. Additionally, future studies could expose
participants to a wider variety of stressors, to better understand how mental stress is
affected by different types of stressors.

In conclusion, the proposed method of utilizing ear-mounted PPG in our study is a
promising approach for mental stress detection. The system was able to accurately detect
mental stress in real time with a high level of accuracy. The use of PPG sensors, which are
non-invasive and easy to wear, makes this approach a convenient and practical solution for
mental stress detection. However, further research is needed to confirm these results and
explore the full potential of this method. One important aspect of further research would
be investigating the potential of the method for continuous monitoring of mental stress
in a variety of different situations. This may include exploring the use of this method in
different populations, such as in different age groups, genders, or cultural backgrounds.
Additionally, it could be useful to test the method in different settings, such as in the
workplace, home, or educational environments where mental stress is a concern. Another
important aspect of further research is to examine the limitations of the method more
closely, in order to identify areas where improvements could be made. For example, the
study could look at factors that affect the accuracy of the method, such as the impact of
different types of noise, or the effect of MAs on the measurements. Furthermore, the study
could also try to identify potential biases in the dataset or potential confounding variables
that might have influenced the results. By addressing these limitations, the method could
become more effective and widely applicable for detecting mental stress.
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