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Supplementary Note 1. Calculation of encapsulated cell 
per droplet by Poisson statistics 

According to following statistical analysis, the single-cell en-
capsulation rate mainly depends on four factors: the uniformity 
of droplet generation, the number of generated microdroplets, 
the number of detected microdroplets, and the number of posi-
tive droplets containing cells.  

Considering the results of cell detection in the droplet[1], the 
proportion of positive droplets (droplets containing cells) is  ெ೏ே೏ =  1 −  𝜌(0)                      Equation (S.1)  

where Nd and Md are the number of detected microdroplets and 
positive microdroplets, respectively. According to Equation (S.1), 
the posteriori value λ of cell per droplet (CPD, cell density di-
vided by droplet volume) can be calculated: 𝜆 = −𝑙𝑛（1 − ெ೏ே೏ ）                    Equation (S.2) 

where N represents the total number of formed microdroplets, 
then, the number of cells is denoted as K=N*λ. After substituting 
into equation (S.2), it is rewritten as: 𝐾 = −𝑁𝑙𝑛（1 − ெ೏ே೏ ）                    Equation (S.3) 

Therefore, the quantitative cell counting depends on four el-
ements: uniformity of the formation process of microdroplets 
(which ensures that the cell number in a microdroplet meets Pois-
son distribution), the number of generated microdroplets N, de-
tected microdroplets Nd and its positive microdroplets Md. The 
first two elements are related to the formation process of micro-
droplets and the last two elements are related to the detection 
process of microdroplets. 

When λ=1, the single-encapsulated rate reached the largest 
36.8%, at this time, the multi-encapsulated rate and the single-cell 
rate is about 26% and 58%, respectively. If λ=0.1, the single-cell, 
single-encapsulated, and multi-encapsulated rates are 95%, 9%, 
and 0.5%, respectively. When λ is between 0.26 and 0.27, the sin-
gle-encapsulated rate is more than 20% and the multi-encapsu-
lated rate is less than 3%, as shown in Fig. S2. Consequently, this 
passive dilution approach is simple but wasteful, as it generates 
a lot of empty droplets since the single-encapsulated probability 
is low. If there is a need to encapsulate two distinct cell types in 
the same droplet, or a cell and a bead, for example, the probabil-
ity of having one droplet with only one of each entity falls to 
13.5% and generates even more waste due to the higher dilution. 



Supplementary Note 2. Illustration for adaptive scale template 
matching (ASTM) 

Since the static droplets sustain certain circularity despite 
the mutual adhesion in images, it is reasonable to use bounding 
circles instead of a sophisticated mask to describe a droplet. Spe-
cifically, the bounding circle of the ith droplet is denoted by 𝐶௜ =ሾ𝑥௜, 𝑦௜, 𝑟௜ሿ, where ሾ𝑥௜, 𝑦௜ሿrepresents the center coordinates of Ci in 
the image and Ri suggests its radius. As a result, for the highly 
adherent droplet images, we must locate the centers of all droplet 
proposals and quantify their radiuses.  

Firstly, the Otsu threshold segmentation algorithm is em-
ployed to subtract the irrelevant background and extract the 
droplet foreground, which is almost fully connected as shown in 
Fig. 2b. To process the binary foreground, the ASTM algorithm is 
proposed to generate droplet proposals. Specifically, assuming 
the binary template is noted by 𝒯 and its initial size is 𝑟 × 𝑟, the 
matching response of each pixel in the foreground can be com-
puted by: 

     Equation (S.4) 
Where ℱ  denotes the binary foreground image, the bounding 
circle of the ith droplet is denoted by 𝐶௜ = ሾ𝑥௜, 𝑦௜, 𝑟௜ሿ and ሾ𝑥௜, 𝑦௜ሿ 
represents the center of ith droplet and ri suggests its radius. 

Intuitively, the matching response D(x,y) of a droplet center 
in the foreground will be a local maximum when the scale of the 
template equals the droplet diameter. Therefore, droplet pro-
posals can be located by the greedy search of all local maxima. 
Nevertheless, the diameter of droplets varies due to unpredicted 
fusion. A small template can locate small droplets, but it yields 
multiple inaccurate response maxima for large droplets and vice 
versa. It is necessary to elaborate an adaptive scale circular tem-
plate to find all droplets with various diameters.   

Supposing that the radius of the current circular template is 𝑟௖௨௥, after matching the template with the binary foreground im-
age, the response of each pixel indicates the probability to be a 
droplet proposal. Accordingly, the pixel whose matching re-
sponse is higher than a predefined threshold σ will be marked 
as the center of a droplet proposal and the current template scale 
suggests the diameter of the droplet proposal. In contrast, if all 
the matching responses are less than σ, suggesting that all the 
droplets in the image are smaller than a circle with a radius 𝑟௖௨௥, 
the scale of the current template must shrink adaptively.   

It can be implied from Equation 1 that the matching re-
sponse D(x,y), varying from 0 to 1, is essentially the ratio of the 
foreground area inside the template to the full template area. 
Consequently, the maximum of matching responses 𝒟୫ୟ୶ corre-
sponds to the largest foreground area covered by the template, 
which can be computed by 𝜋𝑟𝑐𝑢𝑟2 𝒟୫ୟ୶. Intuitively, the shrinking 
template radius for the next time matching can be provided by:  

                           Equation (S.5) 



In the implementation, we simply need to set the upper and 
lower bound of the template radius to perform a limited number 
of searches. Since overlapping bounding circles might occur in 
one true droplet, non-maximum suppression (NMS)[2] is em-
ployed to remove redundant bounding circles, as shown in Fig. 
S3.  



Supplementary Note 3. Details for weakly supervised count-
ing network (WSCNet) 

The second stage is the recognition of N-cells droplet encap-
sulation from the droplet proposals provided in the last section. 
Most studies train deep convolutional neural networks to sim-
plify this issue by classifying the droplet proposals into four cat-
egories: false positive, empty droplet, single-cell, and multicell 
encapsulations. Classification-based algorithms, including 
AlexNet[3], VGG16, Inception V3[4], ResNet18[5] and ResNet34[5], 
were applied as benchmarks to simplify this task by classifying 
the proposals into four categories: background, empty, single-
cell, and multicell encapsulations. Unfortunately, their training 
time and resource consumption will greatly increase as the net-
work deepens. Moreover, lacking interpretability, the classifica-
tion task can neither count the specific number of cells inside each 
droplet proposal nor predict the location of each cell.    

As a result, counting the cell population provides an ex-
plainable solution for the recognition of N-cells droplet encapsu-
lation. To avoid tedious manual cell-level annotation, only three 
droplet-level labels, including empty, single-cell, and multicell 
capsulation, are adopted in this work. We develop a WSCNet to 
estimate the number of cells inside each droplet proposal and 
predict the location of each cell.  

The WSCNet consists of two branches: classification and 
counting, as shown in Fig. 2. The classification branch serves as a 
filter to remove false positives in droplet proposals, and the 
counting branch counts and locates cells inside each droplet. The 
output of the counting branch is a single channel density map of 
cells. The integral and the local maxima of the density map indi-
cate the number and the location of cells, respectively.   

Adopting the conventional cross entropy as the loss func-
tion, the classification branch aims to provide a predicted label 
(droplet or false positive) for each droplet proposal. The counting 
branch, however, employs the mean square error between the 
true counting label and the counting prediction as its loss func-
tion: 

                  Equation (S.6) 
Where, 𝒴 suggests the supervision, i.e. the true counting label, 𝒟 and 𝑓(𝒟) denote the output density map and its counting 
prediction, respectively. Generally, the counting prediction 𝑓(𝒟) 
can be obtained by the global sum pooling of the density map. 
Nevertheless, the weak supervision for the network provides 
only two precise counting labels (0 for empty, 1 for single-cell) 
and one imprecise label (>1 for multicell). Reasonably, we assume 
that the multicell droplet encapsulation contains at least 2 cells, 
and then quantify its label as 2 meanwhile truncating its counting 
prediction to 2. Considering that the truncation function will de-
generate to a constant resulting in a vanishing gradient issue, it 
is necessary to add a small gradient for the truncation function, 
which can thus be formulated by: 



           Equation (S.7) 
Where, 𝒟𝑠𝑢𝑚 indicates the integral of the density map, which can 
be obtained by global sum pooling: 

                Equation (S.8) 
γ represents a small constant, which provides a small gradient 
that avoids the vanishing gradient issue. 

It is a reasonable assumption that the density value of each 
pixel is less than 1 since the density map has the same resolution 
as the input image. Accordingly, a regularization performed on 
each density value is added to the loss function that can avoid the 
overestimation of counting prediction caused by the truncation. 
Noticing that the limitation of each value in the density 
map is equivalent to the restriction of the max density 
value, the regularization can be given: 

              Equation (S.9) 
Where, 𝒟୫ୟ୶  represents the max value in the density map, 
which can be obtained by global max pooling. 

So far, the loss function of the counting branch can be given 
by: 

              Equation (S.10) 
Where, 𝑓(𝒟) and 𝜓(𝒟) are shown in Eq. (6) and Eq. (7), respec-
tively. The loss function of the whole network containing the 
classification and the counting branches is given with a weight of 
λ: 

 L = λLcount + (1 - λ) Lclass                    Equation (S.11) 

Where, Lclass denotes the loss function of cross entropy for the 
classification branch. 

 In the forward reasoning stage, the classification branch 
provides a predicted label and the counting branch outputs a 
density map with the same resolution as the input image. The 
density map is valid only when the predicted label is “droplet”. 
Moreover, the integral of the density map 𝒟𝑠𝑢𝑚suggests the cell 
population, and the first ⌊𝒟𝑠𝑢𝑚 + 0.5⌋ maximums in the density 
map indicate the locations of all cells. To compare with other clas-
sification-based approaches, the droplets can be reclassified into 
three categories (empty, single-cell, and multicell encapsulations) 
according to their cell numbers: 

              Equation (S.12) 
 

 
  



Supplementary Note 4. Illustration for nonlinear fitting ap-
plied in this study 

Assume the average number of cells in each microdroplet 
CPD is λ which follows Poisson distribution 𝜌(λ); then, the prob-
ability of k cells in one microdroplet can be calculated according 
to: 𝜌(𝑘) = ఒೖ௞！ 𝑒𝑥𝑝(−𝜆)                      Equation (S.13) 

The number of cells encapsulated per droplet in passive 
methods is randomly restricted by Poisson statistics. Therefore, 
multiple statistical results were first fitted to the Poisson’s theo-
retical distributions (as shown in Figure S3) with error analysis 
conducted by the Residual Sum of Squares (RSS) test. Their cor-
responding RSS and probability distribution of single-cell (N=1), 
multi-cell (N＞1) encapsulation rate, empty droplet rate (N=0), 
and single-cell rate (N=1 / N≥1, the proportion of droplets con-
taining exactly one cell to that containing cells) is plotted in Fig-
ure 6. 

However, in the experimental tests, there may be a bias in 
the estimation of droplet diameter and initial cell concentration, 
which leads to a bias in the calculation of CPD λ. In addition, dif-
ferent nonlinear fitting curves were applied for the approximated 
fitting of the theoretical distributions on encapsulation rates and 
the single-cell rate, which can be written as follows:  𝜌(1) = 𝐴 ∗ 𝜆 ∗ 𝑒𝑥𝑝(−𝜆 ∗ 𝐵) + 𝐶         Equation (S.14) 𝜌(> 1) = 1 − 𝐴 ∗ 𝜆 ∗ 𝑒𝑥𝑝(−𝐵 ∗ 𝜆) − 𝐶 ∗ 𝑒𝑥𝑝(−𝜆) + 𝐷         Equation (S.15) 𝜌(0) = 𝐴 ∗ 𝑒𝑥𝑝(−𝜆 ∗ 𝐵)  +  𝐶         Equation (S.16) ఘ(ଵ)ఘ(ஹଵ) = ஺∗ఒ∗௘௫௣(ି஻∗ఒ)(ଵି஼∗௘௫௣(ିఒ)) + 𝐷         Equation (S.17) 

where A, B, C, and D, are parameters to be fitted with a fixed 
initialization. The Equation (S.14)~(S.17) is used for the nonlinear 
fitting of single-cell (N=1), multi-cell (N＞1) encapsulation rate, 
empty droplet rate (N=0), and single-cell rate (N=1 / N≥1), respec-
tively. Levenberg Marquardt (integrated in OriginPro 2021) is 
used as an iteration algorithm with 400 max iterations and 1E-9 
tolerance. Fitted curves with the corresponding 95% confidence 
bands and predication bands are plotted. 

 

  



Supplementary Figure 

 
Figure S1. Optical micrographs of different flow regimes during drop-
let generation. (A) the tubing regime, (B, D-G) the jetting regime, and 
(C) the dripping regime. The flow rate of the dispersed phase Q1 was 
fixed to 0.2mL/h, while the flow rates of the continuous phase Q2 are set 
to 0.2, 0.25, 0.35, 0.6, 0.65, 0.7, 0.8 mL/h, respectively, from top to bottom. 
When the generated droplets were located within two channel widths 
away from the cross-section, a dripping mode is considered. Similarly, a 
jetting mode or a tubing mode is considered if droplets appeared stably 
within 2-10 times of channel width or more than 10 times of channel 
width, respectively. Transition means flow oscillates periodically be-
tween the tubing and the jetting modes. These micrographs were col-
lected by a high-speed camera which is not adopted in the subsequent 
experiments. 

 



 
Figure S2. The encapsulated probability restricted by the Poison’s dis-
tribution. The number of cells encapsulated per droplet in passive meth-
ods is randomly restricted by Poisson statistics. The probability distribu-
tion of single-encapsulated (N =1), multi-encapsulated (N ＞1),  encap-
sulated (N ≥1), and single-cell rate (N=1 / N≥1, the proportion of droplets 
containing exactly one cell to that containing cells) is plotted with differ-
ent colors. Supposing the number of cells encapsulated per droplet is X, 
X follows Poisson distribution X ~ P (λ). 

 
 
 
 

 
Figure S3. Schematic diagram for removing redundant bounding cir-
cles. (A) Overlapping bounding circles. (B) Non-maximum suppression 
(NMS) is adopted to remove overlapping droplet proposals with lower 
matching responses. (C) Final prediction of droplet proposals. 

 
 



 

 
Figure S4. The interaction over union (IoU) of bounding circles. The 
ground truth and prediction of droplet is marked as Cgt and Cpre, re-
spectively. IoU, also known as the Jaccard index, is the most popular 
evaluation metric for tasks such as segmentation and object detection. 
IoU is then computed as the ratio of intersection area (purple) to the un-
ion area (both red and blue). 

 

 



 
Figure S5. Representative images of original droplets and the droplet 
proposals. (A) Different droplets in various diameters. (B) Highly ad-
herent and crowded droplets. (C-D) Predicted droplet proposals with 
red bounding circles in multi-scale and highly adherent droplet images. 
This paper uses static microscopic images to recognize droplets with di-
verse cell numbers inside while facing the challenges of different droplet 
scales and high adhesiveness. 



 
Figure S6. The quantitative performance of cell localization predicted 
by WSCNet. (A) Examples of predicted micrographs of droplets encap-
sulated cells. The ground truth of each cell in the test dataset of multicell 
encapsulation is marked as green points, which is not applied in the 
training procedure, and the predicted location of each cell is marked as 
red points. A circular mask with an x-pixel radius centered at each an-
notated cell centroid is regarded as a valid area. (B) Cell location perfor-
mance under different cell radii. The recall and precision curves are eval-
uated at different cell radii ranging from 4 to 10 pixels. 



 
Figure S7. Representative result of cell amount distribution encapsu-
lated in microfluidic droplets with CPD λ = 0.16. The cell encapsulated 
in droplets were counted and localized by our proposed method while 
the encapsulated cell amount is obtained (marked in prediction) and 
compared with the manual annotation (marked in ground truth). 

 
 
 
 



Supplementary Table  

Table S1. Comparative performance of recognition rate of cell encapsulated droplets on different methods. 

Recall 
Method 

Background Empty Single Multiple Model size (MB) Training time (min) 

AlexNet 0.998 0.984 0.961 0.897 217.0 231 

VGG16 0.999 0.996 0.972 0.916 512.3 1574 

InceptionV3 0.999 0.993 0.972 0.925 84.6 1546 

Resnet18 0.999 0.987 0.961 0.895 42.7 153 

Resnet34 0.999 0.984 0.966 0.921 81.3 250 

Ours 0.999 0.987 0.973 0.938 11.7 168 
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