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Abstract: We describe a machine learning (ML) approach to processing the signals collected from a
COVID-19 optical-based detector. Multilayer perceptron (MLP) and support vector machine (SVM)
were used to process both the raw data and the feature engineering data, and high performance
for the qualitative detection of the SARS-CoV-2 virus with concentration down to 1 TCID50/mL
was achieved. Valid detection experiments contained 486 negative and 108 positive samples, and
control experiments, in which biosensors without antibody functionalization were used to detect
SARS-CoV-2, contained 36 negative samples and 732 positive samples. The data distribution patterns
of the valid and control detection dataset, based on T-distributed stochastic neighbor embedding
(t-SNE), were used to study the distinguishability between positive and negative samples and explain
the ML prediction performance. This work demonstrates that ML can be a generalized effective
approach to process the signals and the datasets of biosensors dependent on resonant modes as
biosensing mechanism.

Keywords: machine learning; support vector machine; multilayer perceptron; photonic biosensor;
signal processing; Tamm plasmon polariton; localized surface plasmon resonance

1. Introduction

The global COVID-19 pandemic has had a huge impact on the world’s health and
economy [1]. The fast-spreading virus SARS-CoV-2 virus is the main culprit of this phe-
nomenon, and detection of the virus in human populations is crucial for curbing the
pandemic [2]. Traditional detection approaches include the nucleic acid amplification test
(NAAT) [3] and antigen detection [4] techniques. Currently, the mainstream is quantitative
polymerase chain reaction (qPCR) [5], which is a kind of NAAT that has high sensitivity
and specificity, but requires a clean environment, bulky and expensive equipment, and
trained personnel. Therefore, qPCR is not suitable for onsite, fast turnaround detection or
for population-scale screening, which are often required in pandemic control scenarios [6].
To complement qPCR tests, antigen detection based on lateral flow [7] has also been em-
ployed in both home use and self-testing. However, antigen detection is limited in detection
sensitivity and specificity, hindering its efficacy in fighting a pandemic [8]. There is still a
lack of rapid, accurate, and low-cost detection techniques that can be deployed onsite for
population-scale epidemic screening and/or surveillance [9], especially for regions with
limited resources [10].

Biosensors have been proposed for the detection of SARS-CoV-2 [11]. Biosensor
technologies have high sensitivity, good specificity, fast turnaround, ease of operation, low
cost, and onsite deployment capability [12,13]. We have previously proposed a photonic
biosensor with high sensitivity and specificity for the fast, on-site detection of SARS-
CoV-2 [14,15]. The biosensor is based on a nanoporous silicon material fabricated via
a CMOS-compatible silicon process and nanophotonic working principles of localized
surface plasmon resonance (LSPR) [16] and Tamm plasmon polariton (TPP) [17,18]. The
measurement of the biosensor is based on reflection spectroscopy [14].
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We also developed handheld and high-throughput detection systems [19] that can
collect the reflection spectrum of biosensors and process the spectral data to determine
the detection results efficiently. The high-throughput detection system is suitable for a
population-scale screening of infection, and the handheld detection system is for home use
or self-tests. The spectral data processing algorithm works by recognizing the characteristic
resonant valleys in the reflection spectrum of the biosensor and determines the detection
results by judging if there is spectral red shift in the characteristic resonant valleys. This
is the often-used and so-called “find peaks” technique, with its name originating from
the MATLAB function findpeaks(). This technique can also be implemented on field pro-
grammable gate arrays (FPGAs) for fast and efficient processing of signals from an array
of biosensors [20]. In addition, researchers have proposed the interferogram average over
wavelength (IAW) technique to process the signals of optical biosensors that depend on a
spectral shift in the characteristic resonant features, which can achieve sensitivity enhance-
ment compared with spectral shift detection [21]. Detection of changes in reflection intensity
due to a shift in spectral features in the spectrum has also been used to detect biomolecules
in real time [22]. However, both IAW and light-intensity measurement techniques are
subject to spectral amplitude fluctuations and thus require highly stable spectroscopy
systems, such as a stable light source and high signal-to-noise ratio spectrometers.

In this work, we demonstrate that it is advantageous to utilize artificial intelligence
technology, more specifically machine learning (ML) algorithms, to process the spectral
data of the biosensor [23]. Instead of depending on programming, its algorithm is learnt from
a big volume of data [24]. Machine learning has been used for computer vision [25], face recog-
nition [26], autonomous driving [27,28], auxiliary decision making [29,30], brain–machine
interface [31], cancer diagnosis and assessment [32], and chess game [33]. It includes super-
vised learning, unsupervised learning, and reinforcement learning [34]. Supervised learning
(SL) is an algorithm that learns from massive, labeled datasets and generates prediction
models that can work to generate labels for new datasets. SL includes support vector machine
(SVM) [35], multilayer perceptron (MLP) [36], linear regression [37,38], linear discriminant
analysis [39,40], K-nearest neighbor [41,42], decision tree [43,44], and naïve Bayes [45,46].
In this work, we demonstrate that SVM and MLP can be used for processing of the pho-
tonic biosensor signal and dataset. Compared with previously proposed techniques, the
ML technique has the following advantages: (1) there is no need to find the appropriate
parameters of the algorithm, e.g., the findpeaks() function, in a trial-and-error way to
guarantee accurate recognition of spectral features; (2) there is no need to discriminate
between redshift or blueshift, which can be an extra issue in algorithm design; (3) it is not
sensitive to spectral amplitude fluctuations, so the requirements for stable and expensive
hardware are relaxed; (4) it is generalizable to all kinds of sensors with salient features
in the response signal, which serve as the basis for discriminating between positive and
negative responses.

Data visualization approaches can help us to understand the distribution of the dataset
and discover the distinguishability of the dataset. T-distributed stochastic neighbor embed-
ding (t-SNE) is a prevalent approach to map high-dimensional data to low-dimensional
embedding [47]. In this contribution, we also implemented the t-SNE approach on a
SARS-CoV-2 detection dataset to clarify the distinguishability of the biosensor dataset so
that a better understanding of the data processing and ML prediction performances could
be obtained.

2. Materials and Methods
2.1. Biosensor Working Principal and Measurement Setup

As shown in Figure 1a, the biosensor is basically a porous silicon microcavity consisting
of two Bragg reflectors and one resonant cavity [14,48].
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Figure 1. Photonic biosensor: (a) structure and its reflection spectroscopy measurement; (b) typical
example of redshift showing resonant valleys in reflection spectra; (c) blueshift of resonant valleys in
reflection spectra.

One Bragg reflector is six periods of alternating low porosity (LP) and high porosity
(HP) porous silicon (PSi) thin films of thickness equal to a quarter resonant wavelength.
Noble metal thin film is deposited on top of the porous silicon. Because of the nanoporous
structure of the porous silicon material, the conformally deposited noble metal thin film
is also porous. When light is incident on the surface of the biosensor, some of its energy
is coupled into localized surface plasmon resonance (LSPR) [48] supported by the nanos-
tructures of the noble metal thin film. In addition, some of its energy also couples into the
Tamm plasmon polariton (TPP) supported by the interface between the top Bragg reflector
and the noble metal thin film [49]. Therefore, the LSPR and TPP are simultaneously excited
by the incident light and couple with each other, forming a strong field confinement around
the noble metal thin film. If specific antibodies are immobilized beforehand on the surface
of the noble metal, they can capture the SARS-CoV-2 virus specifically. Such binding events
cause an addition of biomaterials around the noble metal thin film, and the added biomate-
rial interacts strongly with the coupled LSPR and TPP field. This is the working mechanism
of the biosensor for the sensitive detection of the virus. As shown in Figure 1a, in order to
measure the signals of the biosensor, reflection spectroscopy is used. A white light source
provides the incident light, which passes through the Y-shape fiber and shines vertically
onto the biosensor surface. The light reflected from the biosensor surface is collected by
the Y-shape fiber and passes into the spectrometer for data analysis. The Y-shape fiber
consists of six circumferential fibers guiding incident light, and one central fiber guiding
reflected light.

Figure 1b,c show the representative reflection spectra of the biosensor. They have
characteristic resonant valleys that are in the spectral range of 600–800 nm in wavelength.
If there are viruses binding with antibodies on the biosensor surface, the binding events
cause a shift in the spectral features to a longer wavelength, which is called “redshift”. For
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example, Figure 1b shows such a case where the virus binds with antibodies, redshift occurs,
and the detection result is determined to be positive. On the other hand, if there is no virus
binding with antibodies on the biosensor surface, there is no shift in the spectral features,
i.e., almost overlapping spectra for both before and after binding reaction. In the third case,
there could also appear a shift in the resonant features to a shorter wavelength, which is
also called “blueshift”. In such cases, the detection result is determined to be negative.
Figure 1c shows an example of blueshift. In summary, the principle of the biosensor is
based on interactions between biomaterials and photonic energy, and the detection result is
determined based on a shift in the spectral features in the optical spectrum collected from
the reflection spectroscopy measurement.

2.2. Data Preprocessing

This dataset was obtained from detection experiments of inactivated SARS-CoV-2 in
clinical swab specimens, with virus concentrations as low as 1 TCID50/mL [14]. Figure 1
shows example spectra of the biosensor for positive and negative detection results. For the
positive result, there is spectral redshift; and for the negative result, there is either no spec-
tral shift or there is spectral blueshift. The experimental data were collected via reflection
spectroscopy with the corresponding spectra for before and after applying specimens on
the biosensor surface. Each spectral data contained 2048 data points representing reflection
intensities, with a data-to-data spacing of 0.48 nm in the wavelength range of 200–1200 nm.
We usually needed to carry out preprocessing of the spectral data before the data analysis,
which included normalization and artifacts removal. Furthermore, normalization was
implemented on each of the data samples for the purpose of training convenience. Spectral
data of both before and after adding specimens were combined as a single sample, so that
the size of the reformed sample was 2 × 2048, or 4096. Each detection experiment was
regarded as a sample for either training or testing purposes. After several outliers were
removed to clean the dataset, there were 486 negative samples and 108 positive samples
left in total for the classification model training and prediction test.

2.3. Feature Engineering

As shown in Figure 2, the input to the model was 4096 data. This required 4096 input
neuron nodes, which could be a computational burden. In addition to this raw data
approach, the input could also contain features extracted from the data. We propose feature
engineering methods comprising three different approaches—wavelet transform, Fourier
transform, and spectral difference. For the wavelet domain, we used the wavelet transform
with scales of 30 and took the average of each scale, which generated 30 features for each
spectral curve. Two curves (before and after virus) generated 60 wavelet-based features.
In terms of the Fourier domain, we found that most information appeared in the low-
frequency range (<50 Hz), so that we took the average of each 5 Hz in order from 0 to 50 Hz,
so that 10 features for each spectral curve and 20 features for spectra pairs were obtained
in the Fourier domain. For the spectral difference, we utilized the difference between the
spectral data before and after the binding reaction on the biosensor, instead of two separate
spectra. There were three features selected from the spectral difference: mean, variance,
and sign change rate.

Eventually, for each training sample containing spectral data of before and after
the reaction, the wavelet transform and Fourier transform domain features needed the
spectra of both before and after the reaction, and spectral difference features only needed
the difference between the spectra before and after the reaction. Therefore, there were
83 (60 wavelet domain + 20 Fourier domain + 3 spectral difference) features selected for the
classification experiments.
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ing methods were used in the experiments.

2.4. Classification Models

All the samples were randomly shuffled and separated as 70% for training and 30% for
testing. This allocation ratio is a practical standard for benchmark performance. Multilayer
perceptron (MLP) and support vector machine (SVM) models were used since they are
usually considered as efficient ML models capable of achieving baseline performance. As
shown in Figure 3, in terms of the MLP model, two hidden layers with 100 and 50 neu-
ron nodes with a sigmoid activation function were implemented, with the optimizer as
a stochastic gradient decent solver, and the learning rate and epoch set as 0.1 and 30,
respectively. The number of layers and the number of neurons in each layer were optimized
through N ablation study, in which different numbers of layers and different pairs of
the number of neurons were tested. Finally, we found that the two layers with 100 and
50 neurons were expected to be the best in final performance and learnable parameters.
Decreasing the number of neurons decreased the prediction accuracy slightly. As for the
SVM model, we set the gamma parameter of the radial basis kernel function as 1.
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2.5. Control Experiments

For the control experiments, we detected SARS-CoV-2 specimens with photonic biosen-
sors, which did not have specific antibodies immobilized on the biosensor surface before-
hand. There were a total of 732 data samples for detecting SARS-CoV-2 virus specimens
of various concentrations, and 36 data samples for detecting specimens containing no
SARS-CoV-2 viruses. This new dataset was processed using the already trained SVM and
MLP models, as shown in Figure 3.

2.6. Dataset Distinguishability Analysis

Nowadays, data visualization approaches can help us understand the distribution of a
dataset and intuitively investigate whether a dataset is distinguishable or not. T-distributed
stochastic neighbor embedding (t-SNE) is a tool to visualize high-dimensional data. It
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converts similarities between data points to joint probabilities and tries to minimize the
Kullback–Leibler divergence [50] between the joint probabilities of the low-dimensional
embedding and the high-dimensional data.

We implemented the t-SNE tool on the specimen detection datasets to interpret the
distinguishability of the datasets. The data distribution patterns could help interpret the
performance of the models on the dataset. Both the raw dataset and the features extracted
from the raw data were considered in terms of their distinguishability. We also investigated
whether the extracted features had distributions different from those of the raw data.

3. Results and Discussion

In terms of the experiments, we used SVM and MLP models to test the raw data
processing and feature engineering method. Two performance metrics were considered in
the experiments, sensitivity (SEN) and specificity (SPE), which are defined as

SEN =
TP

TP + FN
(1)

SPE =
TN

TN + FP
(2)

where TP, FN, TN, and FP stand for true positive, false negative, true negative, and false
positive, respectively.

Table 1 shows the performance of the ML model predictions. We can see from the
last two rows that perfect performance was achieved for both the raw data and the feature
engineering methods, combined with either the SVM or MLP model. The fourth and fifth
rows in Table 1 show the performance of the models in processing the control experiment
dataset. The performance was very poor, and this was due to the fact that the biosensors
had not been functionalized with specific antibodies and, thus, could not detect the SARS-
CoV-2 virus effectively. The low p-values for both the control detection and valid detection
datasets demonstrate the reliability of the classification of the two types of sample datasets.

Table 1. Performance of raw data and feature engineering processing methods with two machine
learning models.

Method Raw Data Feature Engineering

Model SVM MLP SVM MLP

Parameter SEN SPE AUC SEN SPE AUC SEN SPE AUC SEN SPE AUC

Performance on
Control Detection Data 100% 46% 60.1% 86% 46% 63.4% 29% 33% 38.8% 27% 32% 38.1%

p-Value for Control
Detection Data <0.05

Performance on Valid
Detection Data 100%

p-Value for Valid
Detection Data <0.05

SVM: support vector machine; MLP: multilayer perceptron; SEN: sensitivity; SPE: specificity; AUC: area under
ROC curve; ROC: receiver operating characteristic.

Figure 4a shows the data distribution of the raw datasets in 2D space with the t-SNE
data visualization approach. We can see that the positive and negative samples from the
dataset of the valid detection experiments are clustered without any overlapping. Thus,
the valid experimental dataset is distinguishable. Figure 4b shows the data distribution of
the features extracted from the dataset in Figure 4a. The extracted features changed the
data distribution while maintaining distinguishability because the samples were separated
into different clusters. Figure 4c shows the data distribution of the datasets obtained from
the control experiments wherein biosensors were not functionalized with specific antibod-
ies. Negative samples overlap the positive samples, and the dataset is indistinguishable
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according to the visualization results. Figure 4d shows the data distribution of the features
extracted from the dataset in Figure 4c. The distribution of the features’ dataset is still
mixed up, so that feature engineering cannot help the dataset to be classified effectively.
These dataset distribution results can serve to interpret the performance comparisons
demonstrated in Table 1.
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Table 2 demonstrates the advantages of the ML data processing technique compared
with other techniques. The general advantages of ML are valid, in addition to the eased
hardware requirement.

Table 2. Comparison of machine learning techniques with other signal processing techniques.

Technique
Factor Need Data Filtering

and Denoising
Need to Take Care
of Shift Direction

Need Stable Light Source and Low
Noise Spectroscopy System

Needed Researcher
Work

Find peaks and calculate
spectral shift Yes Yes No Algorithm design

and test

Interferogram average over
wavelength Yes No Yes Algorithm design

and test

Intensity interrogation Yes No Yes Algorithm design
and test

Machine learning Yes No No Model training
from data

To verify the efficacy of the ML data processing technique for biosensors, detection
experiments of inactivated SARS-CoV-2 at the vaccination sites of the Hangzhou Center
for Disease Control and Prevention (CDC) were carried out, and the detection results
were compared with the gold standard: reverse-transcription qPCR technique. The envi-
ronmental specimens were collected from various locations at different vaccination sites,
delivered to Hangzhou CDC within 4 h, and were simultaneously analyzed using both
techniques. Table 3 shows that the biosensors, together with the ML data processing,
generated detection results that were consistent with the qPCR results. Note that qPCR
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provides semiquantitative results dependent on the Ct value [5], while the ML processing
of biosensor data only provides qualitative results. This comparative study demonstrates
that the ML technique is an effective tool for biosensor signal and data processing,

Table 3. Comparison of detection results of inactivated SARS-CoV-2 at vaccination sites of Hangzhou
CDC using both qPCR technique and biosensor with ML technique.

Specimen Collection Location qPCR Result Biosensor with ML Result

Vaccination Site 1 Operation Desktop Weak positive Positive

Vaccination Site 1 Vaccination Station Strong positive Positive

Vaccination Site 2 Operation Desktop Weak positive Positive

Vaccination Site 2 Vaccination Station Weak positive Positive

Vaccination Site 2 Ventilation Plate Strong positive Positive

Vaccination Site 2 Inoculation Table Handle Weak positive Positive

Vaccination Site 4 Keyboard and Mouse Negative Negative

Vaccination Site 5 Pen and White Board Strong positive Positive

Vaccination Site 55 Inoculation Table Handle Negative Negative

No. 4 and No. 5 Inoculation Desk Room Door Handle and Switch Negative Negative

Other Hemostatic Swab Weak positive Positive

Other Cleaner’s Hand Negative Negative

4. Conclusions

In this work, machine learning techniques were used to process the signals and
datasets of photonic biosensors. Both SVM and MLP were used to process raw data and
future engineering data, and perfect results were obtained that distinguished between
negative and positive detections. Control experiments were also carried out, wherein
biosensors not functionalized with specific antibodies were used to detect SARS-CoV-2
virus. Both the SVM and MLP models trained with valid experimental data could not
distinguish between the negative and positive detections in the control experiments. To
demonstrate the distinguishability of the raw data and the future engineering data for both
valid experiments and control experiments, we implemented a t-SNE data visualization
approach. The results showed that the valid experimental dataset was distinguishable,
and the control experimental dataset was indistinguishable according to both the raw data
and the feature engineering methods. The results were consistent with the data processing
performance of machine learning techniques achieved for the valid experimental dataset
and the control experimental dataset. Future research will focus on ML techniques for the
determination of quantitative detection results so that the quantity of target biospecies
in specimens can be obtained. ML can be a powerful tool in processing the signals and
datasets of biosensors for which there are salient features in the response signals of such
biosensors. This includes optical, electrochemical, thermal, and mechanical biosensors.
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