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1. Half-Space/Guiding Layer 

A piezoelectric ZnO layer of thickness hgl overlays a glass isotropic half-space, as shown in 
Figure S1. The space above the layer is occupied by air or vacuum which is assumed to have no 
mechanical contact with the layer. 

 
Figure S1: The half-space/guiding layer system. 

The ZnO layer has its c-axis 30° tilted with respect to the surface normal. The ZnO stiffness 
constants cαβ , piezoelectric constants eαβ, and dielectric constants εαβ were rotated by applying the 
Bond matrix method described in [1]. The coordinate system used through the paper is the 
following: the x2 axis is parallel to the surface normal, the x3 as axis is parallel to the wave 
polarization vector, and the x1 axis is parallel to the wave propagation direction. In the quasi-static 
approximation, the matrix notation for the piezoelectric constitutive equations of the c-axis 30° tilted 
ZnO is the following: 

=
0 0 0 − −0 0 0 − −0 0 0 − −0 0 0 − −0 0 0 0 − 0 00 0 0 0 − 0 00 0 0 0 0 00 0 00 0 0

·  (S1) 

 
The wave under consideration is assumed to travel in the x1-direction along a surface whose 

normal is in the x2 direction, and to be polarized parallel to the x3 direction. The only non null 
particle displacement component is U3, and both U3 and the electric potential Φ are independent of 
the x3 coordinate: since travelling wave solutions are in the form U3 = U3(x1, x2, t) and Φ = Φ(x1, x2, t), 
then the Equation (S1) can be rewritten as  
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=
0 0 0 − −0 0 0 − −0 0 0 − −0 0 0 − −0 0 0 0 − 0 00 0 0 0 − 0 00 0 0 0 0 00 0 00 0 0

·

0000
0

 (S2) 

The equations of motion for the piezoelectric finite thickness layer and for the isotropic 
half-space are: == 0 , 0 < x2 < –h (S3) 

= ++ = 0 , x2 > 0 (S4) 

+ ′ = 0,  < 0 (S5) 

The assumed solutions to the propagation equations in the substrate (sub), guiding layer (gl) 
and in the region above the free surface of the guiding layer are the following: = [ ] · ( )= ( )  (S6) 

= [ ·  + ·  ] · ( )= [ ·  +  ] · ( )  (S7)

= ( = 0) ( )  (S8) 

where C1, C2, C3, C4, A and B are arbitrary constants, k=ω/v is the wave-number (it is real since the 
ZnO and glass are lossless materials), v is the Love mode velocity (whose value is in between the 
shear horizontal bulk acoustic wave velocity in the layer and in the substrate, 	 and , ω = 2πf, 
f = v/λ, q and β account the variation in depth of the wave amplitude. By substituting Equations (S6–S8) 
into Equations (S3–S5), two system of equations for the displacement and the potential are 
obtained, that involve the layer and substrate material parameters. An algebraic equation in β and 
one in q are obtained by solving the secular equations for the layer and for the substrate. From the 
two algebraic equations, only q and β values are retained that correspond to a wave displacement 
that decay to zero with depth below the x2 = 0 plane, and that varies sinusoidally into the layer. By 
substituting the Equations (S6–S8) into the boundary and continuity conditions, a set of 
homogeneous equations for the C1, C2, C3, C4, A and B coefficients are obtained with v as the 
unknown. By setting the determinant of the coefficients equal to zero, real values of v are found for 
fixed layer thickness and wavelength λ. An optimized numerical procedure was used to find a real 
velocity value that drives the size of the determinant of the coefficients as close to zero as possible.  

2. Half-Space/Guiding Layer/Liquid 

The guiding layer, as well as the half-space, is assumed to be isotropic with the constant c44 
numerically equal to the stiffened value calculated in the previous paragraph. A viscous non 
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conductive liquid half-space contacts the upper surface of the layer, as shown in Figure S2: ρl and η 
are the liquid mass density and viscosity. 

 

Figure S2. The half-space/guiding layer/viscous liquid system. 

The equations of motion for the three media are the following: 

= + , x2 > 0 (S9) 

= + , 0 < x2 < –hgl (S10) 

=  + , x2 < –hgl (S11) 

The assumed solutions to the Equations (S9–S11) are the following: = [ · ] · ( ) (S12)= [ · ( ) + cos( )] · ( ) (S13)= [ · ] · ( ) (S14)

where = + ·  , = − , = − ,  = , = , =
, =  and = − ( ⁄ ). The particle displacement and the traction 

components of the stress must be continuous across the x2 = 0 and x2 = –hgl interfaces. When the 

Equations (S12–S14) are substituted into the boundary conditions, a set of four homogeneous 
algebraic equations are obtained in the four coefficients  ,  ,  , and  : a non trivial 

solution of this equations system exists if the determinant of the coefficients vanishes. The 

determinant is: 
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0 −  · sin( ℎ )  · cos( ℎ )0  · − · cos	( ℎ ) − · sin	( ℎ )1 0 0 −1− · 0 − · 0 	= 0 (S15) 

From Equation (S15) the wave dispersion equation is obtained: the system of two equations, the real 

and imaginary parts of the dispersion equation, were numerically solved by using the 

Levenberg-Marquardt-Fletcher method implemented within a Matlab routine, and the real and 

imaginary parts of the Love wave velocity were then calculated,  and .  

3. Half-Space/Guiding Layer/Mass Layer/Liquid 

An added mass layer (am) of thickness ham is supposed to cover the guiding layer surface as 
shown in Figure S3. The guiding layer, the mass layer and the half-space are assumed to be isotropic. 

 
Figure S3. The half-space/guiding layer/mass layer/viscous liquid system. 

The equations of motion for the four media are the following: 

= + , x2 > 0 (S16) 

= + , 0 < x2 < –hgl (S17) 

= + , –hgl <x2 < –ham (S18) 

=  + , for x2 < –H (S19) 

The assumed solutions to the Equations (S16–S19) are the following: = [ · ] · ( ) (S20)
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= [ · ( ) + · sin( )] · ( ) (S21) 

= [ · ( ) + · sin( )] · ( ) (S22) = [ · ] · ( ) (S23) 

The particle displacement and the traction components of stress must be continuous across the 
substrate/guiding layer, guiding layer/mass layer, and mass layer/liquid interfaces. When the 
Equation (S20–S23) are substituted into the boundary and continuity conditions, a set of six 
homogeneous algebraic equations are obtained in the six coefficients , , , , , and 

: a non trivial solution of this equations system exists if the determinant of the coefficients 
vanishes. The determinant is: 1 −1 0 0 0 0− 0 − 0 0 00 cos	( ℎ ) −sin	( ℎ ) −cos	( ℎ ) sin	( ℎ ) 00 ( ℎ ) ( ℎ ) − ( ℎ ) − ( ℎ ) 00 0 0 − cos	( ) sin	( ) −0 0 0 ( ) ( ) −

= 0 (S24) 

where = − , = − ,  = − ,		 = − ( ⁄ ),	 = , and 

H = hgl + ham. From Equation (S24) the wave dispersion equation is obtained: the system of two 
equations, the real and imaginary parts of the dispersion equation, were numerically solved by 
using the Levenberg-Marquardt-Fletcher method implemented within a Matlab routine, and the real 
and imaginary parts of the Love wave velocity were then calculated,  and .  
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