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Abstract: Infections caused by multidrug-resistant Gram-negative bacteria increase hospitalizations
and mortality rates; antibiotic pressure increases resistance rates. We evaluated the impact of the
antibiotics stewardship program (ASP) on Escherichia coli resistance rates, evaluating all antibiotic
use and patients with positive cultures hospitalized between 2011 and 2018. Data on antibiotics
were collected quarterly as the defined daily dose (DDD)/100 days hospitalization. In 2014, an
intervention was introduced, targeting the reduction of overall antibiotic use as well as specifically
targeting quinolones and other broad-spectrum antibiotics. Using interrupted time series analysis
(ITS), we compared the rates and trends of antibiotic use and resistant E. coli. We included 6001
patients, 3182 pre-ASP and 2819 post-ASP. We observed significant changes in absolute numbers
as well as in trends for use of DDD/100 days of all antibiotics by 31% from 76 to 52, and by 52%
from 10.4 to 4.9 for quinolones. ITS demonstrated that before the ASP intervention, there was a
slope pattern for increased E. coli resistance to antibiotics. This slope was reversed following the
intervention for quinolones −1.52, aminoglycosides −2.04, and amoxicillin clavulanate (amox/clav)
−1.76; the effect of the intervention was observed as early as three months after the intervention
and continued to decrease over time until the end of the study, at 48 months. We conclude that the
ASP can positively impact the resistance rate of Gram-negative infections over time, regardless of the
targeted combination of antibiotics, if the overall use is reduced.

Keywords: antibiotics selection pressure; antibiotics stewardship program; antibiotic use; Escherichia coli
resistant strains; Gram-negative pathogens

1. Introduction

In recent years, bacterial resistance to antibiotics has increased globally. Multidrug-
resistant (MDR) Gram-negative bacteria have become one of the greatest risks to public
health [1,2], causing prolonged hospitalizations and higher death rates, especially when
extended spectrum beta lactamase (ESBL) bacteria are involved. These pathogens almost
double the risk of mortality compared to non-ESBL bacteria [3,4].

One of the major contributors to the increasing resistance rates is the unnecessary
use of antibiotics, particularly broad-spectrum antibiotics, with reports of over 50% of
antibiotics provided to patients without good cause [5,6]. Use of antibiotics causes selective
pressure by killing susceptible bacteria, allowing antibiotic-resistant bacteria to survive and
multiply. Broad-spectrum antibiotics are mostly used in hospitals, especially where patients
with MDR infections are treated and are considered as having high antibiotic selection
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pressure. Unfortunately, despite repeated calls for action, the research and development
of novel antimicrobial agents is not able to keep up with the development of bacterial
resistance [7]. This has brought to the forefront the need to create Antibiotic Stewardship
Programs (ASPs) for the improvement and utilization of existing antibiotics in hospitals
and large healthcare systems [5,8–12].

The main goals of ASPs are to reduce the incidence of resistant infections [12,13] and
to lower treatment costs while maintaining the quality of treatment [5,9]. To that end,
ASPs focus mostly on reducing antibiotic selection pressure by restricting the overall use of
antibiotics, treating for shorter periods, and choosing narrow-spectrum antibiotics as much
as possible. In recent years, the Joint Commission International for hospital accreditation
and regulatory bodies in various countries has required hospitals to set up an ASP as part
of the accreditation process [14].

Although successful ASPs have reduced costs and improved resource utilization, there
are limited data on their success in reducing the rate of resistant pathogens [15,16]. A meta-
analysis published in 2017 reported a reduction in ESBL and MDR prevalence following
implementation of an ASP, but did not find a significant reduction in the prevalence of
quinolone resistance or aminoglycoside resistance in Gram-negative bacteria [13]. Penalva
et al. noted a reduction in ESBL-producing E. coli in urine cultures following an educational
community-based ASP intervention [17], and Peragine et al. reported a 9% reduction
(incidence rate ratio of 0.91–0.99, p = 0.03) in hospital-acquired antibiotic-resistant organisms
and a 13% (incidence rate ratio 0.87 0.73–1.04, p = 0.13) reduction in hospital-acquired MDR
organisms [16].

Soroka University Medical Center (SUMC) is a 1100-bed tertiary/referral hospital,
which serves as the only major medical provider for a population of approximately
900,000 people in the southern district of Israel. In recent years, we have observed a
steady increase in Gram-negative-resistant infections in the southern district; in particular,
we have seen a high prevalence of ESBL (~25% of urine pathogens) and MDR infections,
which prompted an ASP intervention [18]. In this study, we aimed to evaluate the effect
of an ASP intervention targeting the reduction of antibiotic selection pressure, specifically
quinolones, on the resistance patterns of E. coli bacteria grown in urine and blood cultures.

2. Results

We collected medical records of 6001 cases: 3182 from the pre-ASP and 2819 from
the post-ASP period. A total of 9387 positive E. coli bacterial cultures were identified:
5488 urine cultures and 505 blood cultures. Duplicates (n = 3394) were excluded. Baseline
characteristics between the pre-ASP and post-ASP periods are compared in Table 1. Women
provided 81% (4487/5488) and 56% (283/505) of urine and blood cultures, respectively
(p < 0.001). The highest percentage of cultures was drawn in the emergency department
(44.2% and 50.8% during the pre-ASP and post-ASP periods, respectively) and in the
internal medicine department (30.7% and 27.5% during the pre-ASP and post-ASP periods,
respectively). A significantly shorter length of hospital stay, from 4 to 3 days, was also
noted between the pre-ASP and post-ASP periods (p < 0.001).
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Table 1. Description of the patients included in study. Each patient was included only once per admission.

Variable All Cultures Urine Cultures Blood Cultures

Pre-ASP
n = 3182

Post-ASP
n = 2819 p-value Pre-ASP

n = 2897
Post-ASP
n = 2591 p-value Pre-ASP

n = 284
Post-ASP

n = 221 p-value

Gender, n (%)

Male 689 (21.7) 533 (19)
0.009

562 (19.4) 438 (16.9)
0.017

127 (44.7) 95 (43)
0.697

Female 2491
(78.3) 2279 (81) 2334

(80.6)
2153
(83.1) 157 (55.3) 126 (57)

Age, years,
median

(IQR 25, 75)
70 (40, 83) 63 (30, 81) <0.001 69 (39, 82) 61 (29, 81) <0.001 73.5

(56, 84) 71 (57, 85) 0.82

Internal
medicine 976 (30.7) 773 (27.5)

<0.001

910 (31.4) 727 (28.1)

<0.001

66 (23.2) 46 (20.8)

0.1

Surgery 319 (10) 225 (8) 296 (10.2) 208 (8) 23 (8.1) 17 (7.7)

Gynecology 254 (8) 214 (7.6) 243 (8.4) 212 (8.2) 11 (3.9) 2 (0.9)

Emergency
department

1407
(44.2)

1429
(50.8)

1249
(43.1)

1285
(49.6) 158 (55.6) 144 (65.2)

Intensive care
unit 143 (4.5) 99 (3.5) 121 (4.2) 90 (3.5) 22 (7.7) 9 (4.1)

Other 82 (2.6) 72 (2.6) 78 (2.7) 69 (2.7) 4 (1.4) 3 (1.4)

Length of hos-
pitalization,

Days, median
(IQR 25, 85)

4 (2, 8) 3 (1, 7) <0.001 4 (1, 8) 3 (0, 6) <0.001 7 (3, 14) 6 (3, 11) 0.265

2.1. Change in Antibiotics Use during the Study

Following implementation of the ASP, overall use of antibiotics in the hospital signifi-
cantly decreased by 31% from 76 defined daily doses (DDD)/100 bed days in the pre-ASP
period to 51 DDD/100 bed days in the post-ASP period. Quinolone use decreased by 52%
(from 10.4 to 4.9 DDD/bed 100 days), aminoglycoside use decreased by 32% (from 2.2 to
1.5 DDD/100 bed days), and amoxicillin clavulanate (amox/clav) use decreased by 58%
(from 18.7 to 7.8 DDD/100 bed days). Antibiotic consumption by quarter is shown in
Table S1.

ITS analysis of antibiotic use showed that the ASP’s intervention significantly reduced
the overall antibiotic use at SUMC from a slight negative slope of −0.26 to a strong negative
slope of −1.87 (p = 0.003; Figure 1).

Aminoglycoside use decreased prior to the ASP intervention (a slope of −0.036) and
maintained a negative slope throughout the study period, without any significant changes.
A decreasing slope for use of amox/clav was noted before the intervention, with a negative
slope of −1.67. This pattern continued, albeit mostly at a non-significantly slower rate.

2.2. Change in E. coli Resistance Rates to Antibiotics during the Study

As shown in Figure 2 and Table 2, cefuroxime and amox/clav resistance signifi-
cantly increased in urine cultures between the pre-ASP and post-ASP periods (26.3% to
32.8%, p < 0.001; 29.6% to 32.6%, p = 0.015, respectively). In contrast, gentamicin and
ciprofloxacin resistance significantly decreased in urine cultures between the pre-ASP
and post-ASP periods (18.7% to 15.4%, p < 0.001; 33.6% to 30.1%, p < 0.005, respectively).
A non-statistically significant decrease in resistance was also noted for ampicillin and
trimethoprim/sulfamethoxazole in urine cultures.
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Figure 1. Interrupted time series analysis for quarterly defined daily doses (DDD)/100 bed days. (a) All antibiotics,
(b) aminoglycosides, (c) beta lactam beta lactamase inhibitors, (d) quinolones. Shaded areas present pre-antibiotics
stewardship intervention period. (e) LE—Level effect, PreASP—Pre-antibiotic stewardship intervention, Amox/clav—
Amoxicillin clavulanate.
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Figure 2. Interrupted time series analysis for antibiotic-resistant E. coli rates in blood and urine cultures. Aminoglycoside
resistance in urine cultures (a) and blood cultures (b). Beta lactam/beta lactamase inhibitor (BLBLI) resistance in urine
cultures (c) and blood cultures (d). Quinolone resistance in urine cultures (e) and blood cultures (f). Shaded areas present
pre-antibiotics stewardship intervention period. (g) LE—Level effect, PreASP—Pre-antibiotic stewardship intervention,
Amox/clav—Amoxicillin clavulanate.
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Table 2. Antibiotic resistance of E. coli in urine and blood cultures before and after ASP intervention.

Antibiotic All Cultures
Resistant/Tested (%)

Urine Cultures
Resistant/Tested (%)

Blood Cultures
Resistant/Tested (%)

Pre-ASP
n = 3182

Post-ASP
n = 2819 p value Pre-ASP

n = 2897
Post-ASP
n = 2591 p value Pre-ASP

n = 284
Post-ASP

n = 221 p value

Ampicillin 2256/3174
(71.1)

1923/2796
(68.8) 0.053 2059/2896

(71.1)
1775/2577

(68.9) 0.074 197/277
(71.1)

143/212
(67.4) 0.383

Cefuroxime 842/3174
(26.5)

943/2788
(33.8) <0.001 762/2896

(26.3)
845/2570

(32.8) <0.001 80/277
(28.8)

66/211
(31.2) 0.566

Gentamycin 603/3175
(19)

430/2796
(15.4) <0.001 543/2897

(18.7)
398/2577

(15.4) 0.001 60/277
(21.6)

32/212
(15.1) 0.066

Amox/clav 943/3175
(29.7)

910/2788
(32.6) 0.014 857/2897

(29.6)
839/2570

(32.6) 0.015 86/277
(31)

68/211
(32.2) 0.781

Ciprofloxacin 1074/3175
(33.8)

833/2787
(29.9) 0.001 975/2897

(33.6)
773/2569

(30.1) 0.005 99/277
(35.7)

58/211
(27.5) 0.053

Tmp/Smx 1199/3175
(37.8)

993/2787
(35.6) 0.075 1093/2897

(37.7)
911/2576

(35.4) 0.07 106/277
(38.3)

81/211
(38.4) 0.978

ASP—Antibiotic Stewardship Program; amox/clav—amoxicillin clavulanate, Tmp/Smx—trimethoprim sulfamethoxazole.

In blood cultures, no statistically significant differences in antibiotic resistance were
noted between the pre-ASP and post-ASP periods, probably due to the relatively small
sample size. However, ITS analysis demonstrated a significant change in both slopes of
resistance to aminoglycosides and quinolones from a positive increasing rate of resistance
pre-ASP to a negative slope or decreasing rate of resistance post-ASP, a change in slope of
−4.04 (p = 0.012) for aminoglycosides and −4.41 (p = 0.01) for quinolones (Figure 2).

3. Discussion

Our analysis showed that the ASP succeeded in both reducing the use of quinolones
and reducing the overall use of antibiotics without increasing the use of nontargeted
antibiotics. This reduction in antibiotic use lowered the rate of bacterial resistance to
these drugs. Our results are similar to those reported by Boel [19] and Livermore [20],
both of whom targeted cephalosporins and quinolones. However, Livermore reported
increased use of beta-lactam/beta-lactamase inhibitors (a “squeezing the balloon effect”).
In contrast, our study results show that targeting quinolone use without increasing the
use of other antibiotics had the same effect on the reduction of resistance. This provides
further evidence that ASP can positively impact the resistance rate of pathogens over time,
regardless of the targeted combination of antibiotics, if overall use is reduced.

Our results support the concept that reduced exposure to antibiotics, particularly
quinolones, has a positive long-term effect on resistance patterns. Quinolone use has been
extremely high in recent years due to its excellent oral bioavailability, pharmacokinetic
properties, and its activity spectrum against Gram-negative pathogens. However, in recent
years, the use of quinolones has been targeted for reduction as a drug of interest for ASPs
due to debilitating side effects as well as alarmingly increasing rates of resistance [21].

The overall use of amox/clav decreased by 50% during the study period. The observed
decrease began early, even prior to the initiation of the ASP intervention. Although the
reduction rate slowed over time, it continued to have a negative slope. Despite this
decreased use rate, amox/clav resistance rates did not change. Since ESBL comprises
several mechanisms that confer resistance to beta-lactams [22], reducing resistance may
require longer periods of decreased antibiotic use until a change can be observed. It is
also possible that reducing antibiotic use alone cannot impact resistance, requiring other
multidisciplinary interventions, including infection control interventions and lowering of
antibiotic selection pressure [23,24].
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We chose E. coli resistance as the subject of intervention since it is one of the most
common pathogens that causes clinically relevant infections. Furthermore, E. coli resis-
tance is typically plasmid-mediated and, thus, can change rapidly. As such, it would
be a marker for the early impact of antibiotic pressure changes resulting in a change in
resistance patterns.

Although ASP intervention was analyzed by yearly quarters, it is a process, as seen in
the long-lasting effects on the use of antibiotics. Our results are similar to those published
by Penalva et al. [17], who showed that restriction of antibiotic dosage and dose reductions
in the community setting were associated with a decreased prevalence of antibiotic-resistant
bacteria. They also demonstrated a decreasing trend that began shortly (3–6 months) after
the intervention was initiated and became stronger over time [17]. Our study confirms and
strengthens other recent reports, such as that of Peragine et al. [16], who reported that ASPs
have a crucial role in the fight to reduce MDR infections and have demonstrated long-term
effects. Further resources need to be invested in ASP.

Our study has several limitations. First, this was a single-center study; however,
SUMC’s remote location strengthens the proof that the reduction of antibiotic selection
pressure has a positive effect on the rate of bacterial resistance. Second, data were collected
only on antibiotic selection pressure at the hospital, while antibiotics are also prescribed
in the community. Due to changing prescribing patterns and the fact that quinolones
were designated as a second-line drug by the US Food and Drug Administration (FDA),
a black box warning was added in 2016 [25], which may have influenced the use of
antibiotics in the community and, therefore, the antibiotic resistance pattern. However,
this change was observed in the period prior to the publication of the black box warning,
so it probably had an additive effect. Last, most of our cohort comprised women, due to
the higher prevalence of urinary infections in women compared to men. Although this
gender difference disappeared when blood cultures were analyzed, the ASP may have had
a greater impact on women than on men.

4. Materials and Methods
4.1. Intervention

In the fourth quarter of 2014, we formed an ASP team comprising an infectious
disease physician and two clinical pharmacists, and a hospital-wide intervention was
implemented in 2015. The intervention included educational lectures on the ASP to medical
staff, including nurses, residents, and attending physicians in each ward. In addition, a
computerized authorization form for restricted antibiotics, which had to be renewed every
three days (automatic stop order), was introduced. Restricted antibiotics included all
antibiotics except for penicillin, metronidazole, 1st and 2nd generation cephalosporins,
and 3rd generation ceftriaxone. All restricted antibiotics prescribed were authorized by
an infectious disease specialist and then reviewed by a dedicated clinical pharmacist for
adjustment to renal function, interactions with other medications, and appropriate dosing
for the intended use. Each department head in the hospital received daily feedback by
electronic notification of all patients under their care that had been treated with antibiotics
for more than 5 days. All department heads were required to include, in their yearly
reports to management, the rates of antimicrobial consumption using defined daily doses
(DDD)/100 bed days compared to that of previous years. The program did not change
any existing treatment protocols or practices of restricting antibiotics; however, it aimed
at overall reduction of antibiotics use, particularly targeting a reduction in the use of
quinolones and amoxicillin/clavulanate (amox/clav).

4.2. Study Design and Patients

The study was approved by SUMC’s ethics committee, with ID Sor-19-008. The
requirement for a patient’s informed consent was waived. The study was designed and
reported utilizing STROBE-AMS methodology [26]. Clinical records of all adult patients
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that were admitted to SUMC between January 2011 and December 2018 and included data
on E. coli cultures in blood or urine were included in the analysis.

4.3. Data Sources and Collection

Patient data were collected retrospectively from SUMC’s electronic medical records.
All urine and blood cultures were performed by SUMC’s Microbiology Laboratory Ser-

vice according to standard techniques. Antimicrobial susceptibility tests were performed
using the Kirby–Bauer disk diffusion method [27] or the VITEK® 2 microbial identifica-
tion system and antibiotic susceptibility testing (bioMerieux SA, Marcy l’Etoile, France).
Interpretation of test results was performed according to the guidelines proposed by the
Clinical Laboratory Standards Institute (CLSI), which are updated yearly [28].

For the purpose of analysis, culture results that included a sensitivity panel and were
defined as intermediate or resistant according to CLSI standards were classified as resistant.
Since the SUMC lab only began to electronically mark cultures as ESBL-positive in 2016, we
were unable to collect this information for the whole study period. To prevent duplication,
the first positive culture was chosen for each admission.

Data on antibiotic use were collected from SUMC’s bioinformatics systems, which
collects information from patients’ electronic medical records as well as from logistic and
supply sources. Data on antibiotic consumption are presented per annual quarter as DDD
per 100 days of admission.

4.4. Outcome Measures

The percentage of resistant strains in urine and blood cultures was compared for each
antibiotic between the pre-ASP—from the beginning of Q1 2013 (January 2013) to the end
of Q4 2014 (December 2014)—and post-ASP—from the beginning of Q1 2015 (January 2015)
to the end of Q4 2018 (December 2018)—periods. All quarterly antibiotic use per DDD/100
bed days beginning in the first quarter of 2013 (data were not available prior this date) and
up to the fourth quarter of 2018 was analyzed.

4.5. Statistical Analysis

Categorical variables were summarized as frequencies and percentages, and contin-
uous variables were summarized as mean and standard deviation (SD) or median with
interquartile range as appropriate. Chi-squared test or Fisher’s exact test were employed
for comparing categorical nominal variables. Continuous values were compared using
the unpaired Student t test for normally distributed data, or the Mann–Whitney U test
for data without a normal distribution. The prevalence of resistant E. coli was examined
for each antibiotic, by the percentage of total positive E. coli found in the same period.
To examine the effect of the intervention on DDD and antibiotic resistance over time, in-
terrupted time series analysis (ITS) was performed. ITS analysis is a quasi-experimental
design, which uses Autoregressive Integrated Moving Average models. This statistical
method investigates time trends before and after an intervention. The ITS analysis was
based on the quarterly DDD value for each antibiotic that was consumed in SUMC, in
addition to the quarterly percentage of antibiotic resistance, calculated for each antibiotic.
We examined the trend of the slope before and after the intervention; furthermore, we
examined the level effect—specifically, the change in level for every period comprised with
the preintervention predicted value. Statistical calculations were performed using IBM
SPSS Statistics for Windows, Version 25.0 (IBM Corp., Armonk, NY, USA). A p-value less
than 0.05 was considered statistically significant.

5. Conclusions

In conclusion, an ASP that targets antibiotic selection pressure is an effective way
to impact the resistance patterns of Gram-negative infections, specifically E. coli. This is
an important affirmation that investing in ASP will have a clinical impact in decreasing
antibiotic-resistant bacteria.
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