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Abstract: This research is focused on a synthesis of copper-cellulose phosphates antimicrobial com-
plexes. Vapor-phase phosphorylations of cellulose were achieved by exposing microcrystalline
cellulose to phosphorus trichloride (PClz) vapors. The cellulose-O-dichlorophosphines (Cell-O-
PCl,) formed were hydrolyzed to cellulose-O-hydrogenphosphate (P(III)) (Cell-O-P(O)(H)(OH)),
which, in turn, were converted into corresponding copper(Il) complexes (Cell-O-P(O)(H)(OH)-Cu?*).
The analysis of the complexes Cell-O-P(O)(H)(OH)-Cu?* covered: scanning electron microscopy
(SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), atomic ab-
sorption spectrometry with flame excitation (FAAS), and bioactivity tests against representative
Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). The
antimicrobial tests of synthesized Cell-O-P(O)(H)(OH)-Cu?* revealed their potential applications as
an antibacterial material.

Keywords: cellulose; phosphorylation; cellulose-O-hydrogenphosphates (III); cellulose-O-phosphates
(II); abbreviations system; copper complexes; antibacterial activity; polymer functionalization

1. Introduction

Cellulose is an important structural component of the primary cell wall of green plants
and it presents the most abundant organic polymer on Earth [1,2]. Many properties of
cellulose depend on its chain length, a topology, and a surface state of the fibre [2—4].

The hydroxyl groups of cellulose can be partially or fully reacted with various reagents,
including the coupling with acids and anhydrides, the grafting with siloxanes, isocyanates,
and the grafting via free-radical initiation or ring opening polymerization, etc., affording
various surface modified products [2,5-12].

Another possibility of chemical modification of cellulose presents a phosphoryla-
tion [13]. Cellulose phosphates, more precisely named cellulose-O-phosphates (III or V)
(synonyms: cellulose p; phosphocellulose, dihydrogen phosphate cellulose, cellulose, phos-
phate ester; phosphorylated cellulose), formed in the so-called cellulose phosphorylation
reaction, have been used for decades e.g., sodium cellulose phosphate, under trade name
calcibind in the treatment of calcium metabolism-related diseases, taking advantage of
their high ability to bind calcium ions (e.g., [14-16]). Figure 1 presents the structures of
various types of cellulose phosphoric (III/V) acids and corresponding phosphates (III/ V).

Their chemistry has regularly been reviewed since the early decades of the 20th
century, when they were first proposed as flame retardants [17,18]. Cellulose phospho-
rylation has also been applied in manufacture of cotton textiles (improvement of flame
resistance, moderation of hydrophility-hydrophobity, etc.), cellulose-based nano-materials,
ion adsorbents, and ion exchangers [19-21], etc.
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Figure 1. Major types of cellulose phosphates (III/V), derived from cellulose and phosphoric (III/V) acids (R = alkyl,
aryl; L* = cations). Position of phosphorylated HO group of cellulose is described using i-index at oxygen atom: as
Cell-O'-phosphate group at i-atom of carbon ring (I = 2, 3, 6) and in the case of 6-phosphate Cell-O°-.

As a matter of fact, phosphate cellulose [CAS Number: 9015-14-9] is manufactured
by Sigma—Aldrich and recommended in protein chromatography [22] and ion exchange
chromatography (e.g., [20,22,23]).

Chemical modification of cellulose by phosphorylation also enhances its bioactivity
(e.g., the treatment of calcium metabolism-related diseases) and it provides new derivatives
and biomaterials with specific end uses (e.g., [24-28]).

Therefore, the synthetic chemistry of this class of biomaterials has been developed for
decades, affording a variety of synthetic procedures leading to cellulose-phosphates, in
majority focused on cellulose-phosphates P(V) [13].

The synthesis methods of cellulose-O-phosphates (P(III)) and generally applied P(III)
reagents are presented in Figure 2 and characterized in Table 1 [29-34].

Table 1. Characteristics of phosphorylation procedures afforded cellulose-O-phosphates (III).

Reaction Conditions Phosphorylation
No. Reagents 2 Reagent Ratio Temp. [°C] Time [h] % DS Ref.
1 Cell-OH/ Ar-O-PCl, 1:3 90 6 023 [29]
Ce”'%H' Iiagg 20/ 1:11.6 and/or 100 1 0.78 0.04
5 Y, ) [30]
Ceu'POy I,{I,)}I:_%C_)EC,II:IZO/ 1:10 100 1 0.23 0.01
1:10:16.5 150 0.5-8.0
1:2.7:5.5 (OME) 150 0.5-8.0 0620 1
; Cell-OH/ ijPOS/ urea 1:10:17 150 25 12-13 0.96-1.0
Cell-OH/H3PO;/urea (DMF) 1:10:17 150 4 12.6 1.01 [32]
8.6* 0.62*
X:1:15 150 1-9 9.2-214 0.6-2.0 [33]
1:10:16 85 (MW) 6 0.6
4 Cell-OH/H3PO3 /urea/ MW 1016 105 OIW) ) o8 [34]

2 Reagents were calculated based on the anhydroglucose unit [AGU, M = 162]. Abbreviations: Py—pyridine; DMF—dimethyl formamide;
DS—substitution/(phosphorylation) degree. * After diafiltration. MW—microwave irradiation.
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Figure 2. Major types of cellulose phosphorylations by P(IIl) reagents, assuming the formation of 6-esters of cellulose
and phosphoric (III) acid—Cell-O°-P(O)(OH)-H (cellulose—O6—hydrogenphosphates 11, cellulose—OG—phosphates (111))
and/or esters of cellulose and aryloxy-phosphoric (III) acids (Ar-O-P(O)(OH)-H) - Cell-0°-P(0)(OAr)-H and C-phosphonic
acids (Ar-P(O)(OH)-H) - Cell-O°-P(O)(Ar)-H. (In the path 3 the mixtures of Cell-O2-P(O)(OH)-H, Cell-03-P(O)(OH)-H, and
Cell-O%-P(O)(OH)-H were documented [33,34]).

These procedures afforded cellulose phosphates/cellulose phosphoric acids with
differential phosphorus content, dependent on the applied conditions. Such phosphory-
lations occurred gradually step-by-step (-[AGU]x-)— (-[AGU-P(O)(OH)-H]-)— (-[AGU-
(P(O)(H)(OH)),-H]n)-—(I-AGU-(P(O)(OH)-H)3]n-) (Figure 3), without/or with subsequent
dissociation of molecular cellulose from cellulose microfibrils affording finally surface
cellulose modified phosphates of cellulose phosphate molecular chains.

OH OH

o X N
/p /P /P
/P\OH \OH \
H H
-[AGU],- -[AGU'(-0-P(0)(OH)-H},- JAGU (O-P(O)(OH)Hply- n
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Figure 3. Gradual phosphorylation of cellulose (AGU™ = AGU units deprived m(OH) (m = 1-3) functions; —-[AGU'(-O-
P(O)(OH)-H)]n-, DS = 1; -[AGU?*(-O-P(O)(OH)-H);]n—, DS = 2; - [AGU3-(O-P(O)(OH)-H)3]n—, DS = 3).

However, if the phosphorylation is carried out in mild conditions, only accessible
hydroxyl groups are esterified; in other words, the cellulose microfibrils are only phospho-
rylated on the surface, with typical regioselectivity (primary 6-HO groups). Such conditions
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are fulfilled during vapor phase reactions. In this paper, we reveal our results on vapor
phase phosphorylation of cellulose by means of PCl; (Cell-OH—Cell-O-P(O)(OH)-H).

As a part of our research program directed on biologically active functionalized
phosphonates [35,36] and their polymer hybrids [37,38], we present our results on PCl;
vapor phase phosphorylation of cellulose to cellulose-O-phosphates (III) (H-phosphonates)
and their conversion into corresponding copper complexes [(Cell-OH—Cell-O-P(O)(OH)-
H)—Cell-O-P(O)(O~)-H x Cu?* (Figure 4)].

uz*(Ron-l)4

\v//
//v\

OH

cell-0° -P(OH)-H Cell-0°- -P(0)(0)- -HxCu?*

Figure 4. Synthesis of complexes of cellulose—O6—phosphates and copper ions (Cell-0°-P(O)(O~)-H—Cell-0°-P(O)(O~)-H
x Cu?*) (ROH- water molecules or cellulose hydroxyls).

2. Results and Discussion

Physical chemistry of cellulose-phosphates (Il and V) has been well documented in
the literature [13], however in the majority concerning cellulose dihydrogen phosphates(V)
Cell-O-P(O)(OH),, and with much less dealing with cellulose hydrogen phosphates (III)
Cell-O-P(O)(OH)-H and derivatives [29-34].

Cellulose hydrogen phosphates (III) Cell-O-P(O)(OH)-H, obtained by vapor phos-
phorylation of cellulose by means of PCl; and subsequent work-up with water, further
called cellulose phosphates (III), were characterized using 3!P-NMR, scanning electron
microscopy (SEM), FTIR, and potentiometric titration. Cellulose phosphates, on the basis
of 31P-NMR-Cell-O%-P(O)(OH)-H, were also converted into copper complexes (Cell-O°-
P(O)(OH)-H—Cell-O-P(O)(O~)-H x Cu?*), which were characterized using the atomic
absorption spectrometry with flame excitation (FAAS) method for the determination of
copper content. The formed Cell-O°-P(O)(O~)-H x Cu?* samples were tested for their
bioactivity testes against representative Gram-negative bacteria (E. coli) and Gram-positive
bacteria (S. aureus).

2.1. Phosphorylation of Cellulose

The phosphorylation reactions of the cellulose in the exposure of phosphorus trichlo-
ride (PCl3) were carried out in the set consisting of two glass weighing bottles: the larger
one (D vs. H: 40 mm x 40 mm) and the inner vessel (D vs. H: 20 mm x 20 mm) (the figure
of the reaction vessel is given in the Supplementary part)). A 0.05 g portion of cellulose
was poured into the inner vessel. Raschig rings were placed in the larger bottle (h = 1 cm),
and then PCl; (1 mL) was added, followed by placing the inner vessel (with cellulose) into
the bottle with PCl3, followed by the hole closing with a lid. Figure 5 presents chemical
schemes of vapor phosphorylation of cellulose.

\//

p

gy by ey —

Cell-OH

Cell-0>-PC, Cell-0°-P(OH), Cell-0°-P(OH)-H

Figure 5. Chemical schemes of vapor phosphorylation of cellulose with PCl3.
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The reactions were carried out for up to 72 h, after which the inner liner was removed
from the reactor, the contents were flushed with nitrogen, and then placed in a beaker of
water (25 mL). After 15 min., cellulose phosphate (P(II) (9 h) suspension is filtered on
a Schott-Duran sintered disc filter funnel, washed on the filter with water (5 mL), and
then transferred into a beaker (100 mL) with methanol (5 mL). The suspension was stirred
by 5 min, again filtered on a Schott-Duran sintered disc filter funnel, and then dried in a
vacuum desiccator over solid KOH for 24 h.

2.2. Complexation Reactions of Phosphorylated Cellulose—Synthesis of Complexes

The samples of phosphorylated cellulose (Cell-O%-P(O)(OH)-H), obtained after 6, 24,
48, and 72 h cellulose phosphorylation by PCl3, (determined further in the text as Cell-O°-
P(O)(OH)-H(t), were t = 6, 24, 48 and 72 h) were mixed with a solution of copper(Il) nitrate
in HNOj (Table 2) and stirred for 2 h, then the solution was filtered off, rinsed with water,
dried to constant weight at 50 °C, and then transferred to a vacuum desiccator over KOH.

Table 2. Cellulose complexing reaction solution.

Reagent Reaction Time
Cu(NO3); in HNO; 0.1[mL]”/2
H,0 0.5 [mL]
Cell-0°-P(O)(OH)-H 50 [mg] 2 [h]

/a Copper(Il) nitrate [Cu(NO3); (1000 mg Cu/L; 15.7 mmol Cu/L) in 0.5 M HNQO3].

The 3'P-NMR spectra of the cellulose-O-phosphate(III) (Cell-O%-P(O)(OH)-H) samples
were recorded in the Bruker Avance III 600 spectrometer at frequency 242,9 MHz Elemen-
tal analyses (C and H) were recorded on an Elemental Analyzer Euro EA (Eurovector,
Pavia, Italy).

2.3. Solubility of Cell-O%-P(O)(OH)-H

The solubility of the prepared sample would be the useful attribute in further derivati-
zations or potent applications. Generally, the solubilities of cellulose phosphates present
scarcely explored field. Thus, Reid and Mozano [39] claimed that cellulose-O-phosphates
cannot withstand the rigorous treatment of 6 N sodium hydroxide, but in ca. 1 N NaOH
are solubilized during 1 h reflux temperature [39], but the cellulose triphosphates (DS = 2.9]
swell considerably in water, forming a consistent translucent gel according to Granja [40].

Cellulose phosphates, obtained by molten urea-phosphoric (III/V) acids methods,
are initially isolated by the dissolution of the reacted mixtures in 1 N aqueous sodium hy-
droxide and then precipitated with methanol (Cell-O-P(O)(OH)-H—Cell-O-P(O)(O~Na™)-
H [32]; Cell-O-P(O)(OH),—Cell-O-P(O)(O~Na™), [41]). In a procedure described by Su-
flet [32], this process was repeated three times, in order to re-move the residual reagents.

Cell-O-P(O)(OH)-H samples, obtained by Petreus [33], are white powders, insoluble
in water, aqueous NaOH conc. solution, acetone, and DMF [33]. However, the Cell-O-
P(O)(OH)-H sample (P = 13.4%; DS = 0.97) was dissolved in water, according to Petreus [33].

We assumed that ionic liquid based solvents that were applied for the dissolution of
cellulose [42-49] can also be applied for the dissolution of cellulose-O-phosphates.

Table 3 provides the results of our investigations on the solubility of Cell-O°-P(O)(OH)-H.
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Table 3. Solubility of Cell-0°-P(O)(OH)-H in aqueous and ionic liquids solutions.

Solution Components Tem Time
No.  Cell-O5-P(O)(OH)-H g Solub.
© € (OXOH) Solvent 1 mL Solvent 2 mL [°C] [h] o
1 25 mg H,0 2 - = 25 2 -
2 25 mg H,0 2 — - 50 2 —
3 25 mg 0.1 M KOH 2 - - 25 2 -
4 25 mg 0.1 M KOH 2 - - 50 2 -
5 25 mg TBAA 0.2 (g) DMSO 072 mL; 25 2 +/—
(0.8g)
6 25 mg TBAA 02 (g) DMSO Oigzgng‘)” 50 2 Ty

TBAA—tetrabutylamonium acetate; DMSO—dimethyl sulfoxide; Solubility (solub.): (—) not soluble; (+/—)—partially soluble; (++/—)—

soluble with tiny suspension.

2.4. 3'P-NMR of Cell-O-P(O)(OH)-H

Cellulose and cellulose based polymers are usually analyzed/characterized using
NMR solid state techniques [50-52] due to the insolubility of cellulose in a majority of
common solvents [2,4-6].

Cellulose-O-phosphates (phosphorylated celluloses), due to a presence of phospho-
rous atom in molecules, have been analyzed by 3!P-NMR in a majority in solid state
mode [27,28,34,47,53-61]. Thus, in Gospodinova paper [34], 3IP-NMR solid-state spec-
trum of Cell-O-P(O)(OH)-H (prepared by the phosphorylation of cellulose in molten
urea-phosphorous acid mixture (DS = 0.2)) contained the signals in the 2.5-7.5 ppm region,
corresponding to the three positions of substitution, namely a signal at 2.6 ppm assigned to
P-O-C6, and the doublets at 5.1-5.2 ppm (P-O-C2) and at 7.5-7.6 ppm (P-O-C3) (Table 4).

In the only paper of Petreus [33], the Cell-O-P(O)(OH)-H sample (prepared by phos-
phorylation of cellulose in molten urea-phosphorous acid mixture (P = 13.4%; DS = 0.97))
was dissolved in D,O and analyzed on a Avance III 400 spectrometer, operating at 161.97
MHz for 3P nuclei. 3'P-NMR spectrum of this sample showed a set of thirteen peaks,
with the main at 2.58 ppm and two doublets at 4.99-5.29 ppm and at 7.38 ppm, which
were assigned by authors to P-O-C6, P-O-C2 and P-O-C3, respectively. All of the signals
according to the Authors corresponded to monosubstituted phosphorous acid esters of cel-
lulose. Figure 6 presents structures of Cell-O'-P(OH)-H (i = 2, 3, and 6) and representative
dialkylphosphates (III) with primary and secondary alkoxyl, and corresponding 3'P-NMR
chemical shifts (5 [ppm]).

We used 3'P-NMR solid state analysis because our Cell-O-P(O)(OH)-H sample has
exhibited solubility neither in D,O nor in representative ionic liquids (e.g., TBAA).

We assumed that, during the phosphorylation in mild conditions (as we applied),
the formation of cellulose 6-phosphate(Ill) (Cell-O-P(O)(OH)-H) will be preferred due
to the highest reactivity of 6-hydroxyl group of cellulose [62]. In Figure 7, the 3'P-NMR
spectrum of cellulose-O-phosphate (III) (Cell-O-P(O)(OH)-H) only exhibits one signal with
chemical shift 6 = 5.067 ppm, which we assigned to 6-phosphate(Ill) of cellulose (Cell-O°-
P(O)(OH)-H), resulting from mild conditions of applied phosphorylation (see Table 1 for
comparison). This signal, in contrary to earlier reports [33,34], we attached to 6-phosphate
(III) structure, due to higher accessibility and reactivity of primary hydroxyl group in the
phosphorylation [43], and, because of that, branching at the carbinol carbon C-C*(OH)-
C of phosphate (C*-O-P(O)(OH)-H) usually affords upfield shifts of the phosphorous
nuclei (e.g., diethyl H-phosphonate 7. Ppm, whereas di-isopropyl H-phosphonate 6
3.5 ppm) [62] (Table 4). Figure 8 presents the structures of cellulose 6-phosphate (III)
(Cell-O%-P(O)(OH)-H).
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2.5. SEM—Scanning Electron Microscopy of Cellulose Phosphates

SEM was employed to evaluate the morphological structures of the cellulose phos-
phates studied. Table 4 characterizes the morphology of various types of cellulose and
their derivatives.

Figure 9 presents the SEM images ( x 1000 and %5000 magnifications) of cellulose sam-
ple, phosphorylated derivatives Cell-O°-P(O)(OH)-H, and Cu-complex Cell-O°-P(O)(OH)-
H x Cu?*.

The presented micrographs do not exhibit substantial morphological changes that are
caused by the successive derivatization of cellulose, namely Cell-OH (Figure 9a,b)—Cell-
0%-P(0)(OH)-H (Figure 9c—f)—Cell-O°-P(0)(O~)-H x Cu?* (Figure 9g,h), in spite of struc-
tural changes caused during the phosphorylation and subsequent complexation. This fact
can result from the following reasons:

(a) the phosphorylation occurs on the surface HO-C6 group of cellulose and, therefore,
does not disturb hydrogen bonds formed between adjacent cellulose chains in the
starting cellulose;

(b) the phosphorylation causes the substitution the polar HO group by even more polar
-P(O)(OH)-H group with two groups able to form hydrogen bonds; and,

(c) the phosphorylation takes place in ca. 2 AGU subunits in (AGU) 100 chains (DP = 0.018).

4
A
SEM MAG: 1.00 kx = View field: 217 pm VEGA3 TESCAN SEM MAG: 5.00 kx  View field: 43.3 ym VEGA3 TESCAN|

Det: SE Vac: HiVac 50 pm Det: SE Vac: HiVac 10 pm

() (b)

% : i L\
SEM MAG: 5.00 kx | View field: 43.3 pm VEGA3 TESCAN
Det: SE Vac: HiVac

SEM MAG: 1.00 kx View field: 217 pm VEGA3 TESCAN

Det: SE Vac: HiVac 50 pm

(0 (d)

Figure 9. Cont.
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Figure 9. Scanning electron microscopy (SEM) micrographs of different magnifications (1 k and 5
k) for: (a,b) unmodified cellulose microcrystalline; (¢,d) phosphorylated cellulose by PCls after 48
h reaction time and work-up (Cell-O%-P(O)(OH)-H(48 h)); (e,f) phosphorylated cellulose by PCl3
after 72 h reaction time and work-up (Cell-O°-P(O)(OH)-H(72 h)); and, (g,h) cellulosic Cu-complex
(Cell-0°-P(O)(O~)-H x Cu?* (48 h).

Similarly, the formation of copper complex (Cell-O°-P(O)(OH)-H(48 h)—Cell-O°-
P(O)(O~)-H(48 h) x Cu?*) does not accompany substantial changes of the morphology,
presumable for the reasons cited above.
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Table 4. Morphology of various cellulose types and their derivatives.

No. Fibre Characterization SEM. [.Ima.ge Ref
Magnification]
MCC (Avicel PH-101) Nonfibrous nature and the presence of pinholes at its surface. x1000; x5000 [63]
CNF& Ac-CNF Cellulose nanofibers and acetylated nanofibers x 15,000 [64]
1 BC Interwoven mesh of BC fibrils network; The average fibril
diameter 71 nm 5000 [57]
Interwoven mesh of BC fibrils network; The average fibril x
BCC5 .
diameter 107 nm
5 MCC Rough surface morphology 1000 [58]
MCC-P Sponge-like surface character and compact structure x
CNF
3 CNF-P Cellulose nano fibers: diameter 0.5-1.0 um % 20,000 [59]
CNE/HAp
BC
4 BC-P Cellulose nano fibers: diameter 2.25 um %x20,000 [60]
BC-P/TiO,
5 KF Cellulose fibers: diameter 20-25 um x1000; [61]
KF-P Cellulose fibers with holes; diameter 20-25 pum; %2000

Ac-CNF—Acylated Cellulose NanoFibers; BC—Bacterial Cellulose; BC-P—Bacterial Cellulose Phosphate; CNF—Cellulose NanoFibres;
CNF-P—Cellulose NanoFibres Phosphate; BCC5—Bacterial Cellulose-Chitosan (95:5); HAp—hydroxyapatite; KF—Kraft Fibres; KF-P—
Kraft Fibres Phosphates; MCC—MicroCristalline Cellulose; MCC-P—MicroCristalline Cellulose Phosphate.

A similar phenomenon was described by Keshk [65]. They observed that the mi-
crostructures of structurally different compounds, namely: starting cellulose 6-phosphate
(DP =1), cellulose-6-phosphate 2,3-dialdehyde, and corresponding cellulose-6-phosphate
2,3-diimines, analyzed by SEM, did not exhibit significant changes at (1 kx and 5
kx magnifications).

2.6. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy

Mid-infrared and Raman spectroscopy are versatile tools in the characterization of
structural modifications of biomolecules, being complementary techniques for their struc-
tural analysis [66] in these structural analysis of various cellulose-O-phosphates ([67] and
Tables 5 and 6).

The FT-IR spectroscopy was used in this work for the study of the chemical struc-
tures of the fibers after chemical modification. Figures 10 and 11 show ATR-FTIR spectra
of: unmodified cellulose; Cell-O°-P(O)(H)OH sample—obtained by 48 h exposition of
cellulose in PCl; vapors; cellulose-O-phosphate(V) Cell-O-P(O)(OH), (Sigma-Aldrich)
and D-Glucose 6-phosphate sodium salt. An ATR-FTIR spectrum of unmodified cellu-
lose, contains bands, which, according to Tasker et al. [68], can be assigned, as follows:
670 cm~! (OH wagging), 893 cm ! (C; group vibration), 1000 cm ! (C-C stretching modes),
1060 cm ™! (C-C-O stretching mode), 1120 cm ™! (C-O-C asymmetric stretch), 1370 cm ™!
(CH; bending mode), 1429 cm ! (in-plane OH bend), 2893 cm~ ! (C-H stretching mode),
and 3300 cm ™! (intermolecularly bonded OH stretching mode).
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Table 5. IR of cellulose-O-phosphates.
Cell-O-P(O)(H)(OH) Cell-0-P(0)(OH), o) Vibration
[28] [27] [68] [28] [24] [11] [28] Mode
3460 3400-3500 3400 3460 2990-3630 3402 3460 OH
ﬁgg" 2800-2900 2920 ﬁgg" 2891 2891 fég" CH, CH,
1160; 1120 2360 C-O0-C
2320 2370 1383 P-H
1650 1640-1660 1650 1625 1650 H-OH
1418; 1382; 1152; 1029 C-O
1250 1210 1250-1300 920-1000 1383 1370 P=0
920-1000 1395 1000-1400 P-OH
1000-1060 810 1 1040-1190 P-O-C
1075 1075 1075 C-OH
905-910 700-100 905-910 905-910 pyranose ring
520-600 P(O)-H
Table 6. Characterization of FTIR spectra of glucose, cellulose, glucose-phosphate, and cellulose-phosphates.
Compound/Frequency [cm 1.
Gluc-OH /2 Gluc-0°- Cell}ﬂose Cell-O°%- Cellulose-O- Type of Vibrations
P(O)(OH), (Avicell) P(O)(OH)-H P(O)(OH),
3410, 3333 3360 3300 3300 3300 imerm;ﬁi‘:ﬁgg :;Ié‘ied OH
2944, 2913 2930 2893 2893 2893 C-H stretching
2860 symmetric vibration of C-H
2320 P-H
1849 to 1634 Vibrations of C=O
1450 1470 bending vibration of CH
1362 to 1191 1380 1429 1429 1429 in-plane OH bend
1370 1370 1370 CH; bending mode
1250-1300 1250-1300 1250-1300 P=0
1120 1120 1120 C-O-C asymmetric stretch
1060 1060 1060 C-C-O stretching mode
1191 to 995 1000 1000 1000 C-C stretching modes
893 893 893 C; group vibration
670 670 670 OH wagging
520-600 P(O)-H

/a Assignment according to Ibrahim et al. [69]. a-D-Glucose—Gluc-OH; Gluc-06-P(O)(OH)Z—Glucose-Oé-phosphate. Vibrations derived
from phosphoric(Ill/ V) functions are marked in red.
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Figure 10. Comparison of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra of: (a) glucose and glu-
cose phosphate (V) (Sigma-Aldrich); (b) cellulose (Avicel) and cellulose-O-phosphate(V) Cell-O-P(O)(OH), (Sigma-Aldrich).
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Figure 11. ATR-FTIR spectra of unmodified cellulose and cellulose samples formed during 6 h, 24 h, 48 h, and 72 h of
vapour phosphorylation of cellulose by PClz (Cell-O°-P(O)(OH)(h)).

A comparison of the FTIR spectra revealed that, for Cell-O-P(O)(X)OH, the appearance
of a new band, at 2400 cm !, was absent in the matter cellulose. There is a rather intense
band at 1725 cm ! that is not present in the spectrum of the original cellulose.

2.7. Alkalimetric Titration

Because of shapes of the titration curves of Cell-0°-P(O)(OH)-H and Cell-O°-P(O)(OH),,
resulted from one- or two-proton dissociation in reaction with hydroxide anion (Figure 12),
such titration allows the identification, estimation, or semi-quantification of phosphoric
groups in cellulose phosphoric acids (Table 7).

p

1st. (-H)
EEE——
X=H
OH
o\\P .
RN

o Cell-0°-P(0)(0)-H
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OH o'
o \\P
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Cell-0°-P(0)(OH)-H (X=H); Cell-G-P(O)(OH), (X=OH) 1st (H) m aet (H) m

Cell-0°-P(0)(0)(OH)

Cell-0°-P(0)(0),

Figure 12. Schemes of alkalimetric titration of cellulose phosphoric acids.
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Table 7. Representative methods of potentiometric titration of cellulose-O-phosphoric acids.

Potentiometric Titrations

Cellulose- Phosphates Ref.
Mode of Titration Defl. Points
Cell-O-P(O)(OH)-H Direct titrations with KOH or LiOH 1 [31,32]
Direct titrations with LiOH, NaOH, KOH or Ba(OH), 2 [18,27,30] /2
Cell-O-P(O)(OH), Reverse titration using KOH/HCl 1 [41,70]

/2 Defl. points—number of deflection points of the titration curve.

We carried out the direct titration of the sample of Cell-0°-P(O)(OH)-H, synthesized,
in order to confirm the nature of phosphate function introduced into cellulose molecule by
phosphorylation. Figure 13 presents the figure of the titration curve.

14.00 -
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=== 0——""Y
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0.1
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0.02

dpH/dV
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V titr. [mL]

(b)

Figure 13. Titration curve of Cell-O%-P(O)(OH)-H(48 h) by 0.016 M KOH: (a) pH vs. V; (b) dpH/dV
vs. V.

One deflection point of the titration curve of Cell-O%-P(O)(H)(OH)-48 sample by KOH
confirms the presence of the phosphate(P(III)) function in the molecule of phosphorylated
cellulose and the absence of the corresponding phosphate(P(V)), excluding its oxidation
(Cell-O°-P(O)(OH)-H—Cell-O°-P(O)(OH),).
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Elemental analyses of prepared cellulose-O°-phosphate (IIT) (cellulose-O°-phosphoric
(III) acids) samples were accomplished while using combustion analysis (Elemental Analy-
sis) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Table 8 summarizes
the results.

Table 8. The results of elemental analysis of Cell-O°%-P(O)(OH)-H samples.

Element Analysis /?

Samples /2 EA ICP MS P DP ¢
C[%] H [%] mg/kg 8/100 g [%] mM/kg
Cellulose 44.35 + 0.04 6.22 £ 0.04 0 0 0 0
Cell-O°-P(O)(OH)-H (6 h) 41.25 + 0.04 6.20 + 0.02 1381 + 12 0.1381 445 0.007
Cell-O8-P(O)(OH)-H (24 h) 4121 + 0.04 6.23 + 0.03 2872 + 55 0.2872 92.6 0.015
Cell-05-P(O)(OH)-H (48 h) 41.18 + 0.06 6.15 = 0.03 3537 + 16 0.3537 114.1 0.019
Cell-0°-P(O)(OH)-H (72 h) 40.98 + 0.06 6.21 + 0.06 3416 + 20 0.3416 110.2 0.018

/a Cell-0°-P(O)(OH)-H(t[h]) concerns samples obtained by PCl; phosphorylation of cellulose, carried out in “t” (h) time and after
subsequent hydrolytic treatment (Cell-OH—Cell-O°-PCl, (t)—Cell-0°-P(O)(OH)-H(t)). /? Element Analysis data (average from duplicate)
based on: CEA—Combustion Elemental Analysis data (C & H); ICP-MS—Inductively-Coupled-Plasma Mass Spectrometry data (P).
/¢ DP—based on the ICP MS determinations, calculated according to Equation (1) [33].

The Degree of Phosphorylation/Substitution of cellulose values were calculated while
using the following Equation (1) [33]:

op _ _ 162.1-P(%)

~ 3100 — 64-P(%) @

where 162.1 is the molar mass of AGU (anhydro-glucose unit); %P is the percentage of
phosphorus content in cellulose phosphates.

Cellulose phosphorylation, which was carried out in heterogeneous conditions, should
lead to the anisotropic distribution of phosphoryl groups (P(I1I): -O-P(O)(H)(OH) between
surface and bulk, due to the uneven accessibility of the fiber wall. The obtained results
graphically illustrated in Figure 14, namely the nearly linear increase of phosphorus content
in reaction time 0-24 h and slow decrease in the range 2448 h with the plateau in the range
48-72 h, suggest that the vapor phosphorylation occurs mainly at the cellulose surface
(with DP up to 0.0185 = 0.0005). These results were confirmed by EDS determination of
phosphorous, showing a similar shape of the curve with the plateau in the range of 48-72 h.
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Figure 14. The course of phosphorylation of cellulose by PCl (Cell-OH—Cell-O°-PCl,—Cell-O°-

P(O)(OH)-H) obtained on the basis of phosphorus determination in phosphorylated samples Cell-0°-
P(O)(OH)-H(t[h]).
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The supplemental results on 3! P-NMR (Figure 6) and alkalimetric titration (Figure 13)
confirm the selective monophosphorylation of 6-hydroxyl group of cellulose.

2.8. Digestion of Samples Prior to Phosphorus and/or Copper Determination

Cell-O°%-P(O)(OH)-H and/or Cell-O°-P(0)(O~)-H x Cu?* samples were degraded
by wet digestion to phosphoric(V) acid and phosphoric(V) acid and copper (II) nitrate
according to the scheme that is presented in Figure 15. Phosphorus and copper were
subsequently determined by means of Flame Atomic Absorption Spectroscopy (FAAS)
spectrophotometry (determination of copper) and Inductively Coupled Plasma Mass
Spectrometry (ICP-MS) (the determination of phosphorus).

H OH

o
HNO;-H,0,
—_— H3PO, + CO,
hv, 180°C
%T\

(a) Cell- O -P(O)(OH)-H

o

/ o2

\\
HNO;3-H,0,
———> Hpo, + C& 4+ cO,
hv, 180°C

(b)CeII-O -P(O O)HxCu n
Figure 15. Digestion of (a) Cell-O%-P(O)(OH)-H and (b) Cell-O%-P(O)(O~)-H x Cu?*.

2.9. Flame Atomic Absorption Spectroscopy FAAS

The determination of copper content in samples Cell-0°-P(O)(OH)-H x Cu?* (h) were
assessed after prior digestion (Figure 15) by the FAAS method [71] and are listed in Table 9.

Table 9. Copper content in Cell-0°-P(O)(OH)-H samples and their copper complexes Cell-O%-P(0)(O~)-H x Cu?*.

No Phosphorylation Time Cu Concentration
) (h] mg/kg ' /100 g [%] mMol/ kg
1 Cell-0°-P(O)(OH)-H 0 0 0 0
2 Cell-0°-P(O)(O~)-H (6 h) x Cu?* 6 263.8 0.0264 415
3 Cell-0O%-P(0)(O~)-H (24 h) x Cu?* 24 423.6 0.0424 6.67
4 Cell-0°-P(0)(O~)-H (48 h) x Cu®* 48 659.2 0.0659 10.37
5 Cell-0°-P(0)(O™)-H (72 h) x Cu?* 72 655.4 0.0655 10.32

/a Cell-0°-P(O)(OH)-H(t) obtained after given time of cellulose phosphorylation. b/ The results have been measured in triplicate and
presented as mean value with deviation approximately £2%.

The results of determination of copper content in the phosphorylated cellulose samples
illustrate the efficiency of the Cu-complexation reaction (-P(O)(OH)-H:Cu?* = ca. 10:1).
The results of FAAS analysis show that the copper concentation in the modyfied cellulose
samples depends on the concentration of phosphite functions in the Cell-O°-P(O)(OH)-H
which increases with the duration of cellulose phosphorylation. Thus, samples with the
higher content of cellulose phosphorus groups show the greater copper content after Cu-
complexation reaction (Cell-O®-P(0)(O~)-H(6 h) x Cu?*: 263.8 mg/kg); Cell-O°-P(O)(O™)-
H(48/72 h) x Cu?*: 659.2 and 655.4 respectively). There was no copper content in the
cellulose sample Cell-O%-P(O)(OH)-H.
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2.10. Specific Surface Area, Total Pore Volume and Average Pore Diameter Measurement

Table 10 presents the specific surface area Spgr [m2/ g] measurements, obtained by the
use of the BET technique [72], of the cellulose (determined and literature data), cellulose
phosphates Cell-O°-P(O)(OH)-H and Cell-O°-P(O)(O~)-H(48 h) x Cu?* complex. Several
data on specific surface area of Avicel PH-101/102 obtained by use of the BET technique
are reported in the literature [72-77]. The literature results of cellulose specific surface
area are in a wide range from 1-5.7 [m?/g], determined using the nitrogen gas adsorption
method [63,72-77] to 149-161 [m?/ g] while using the water vapor adsorption method [73].
The large differences in BET results may be related to different types of samples pre-
treatments [72,73].

The specific surface area of the unmodified cellulose (Avicel) is equal to 1,99 [m2/ gl
(Table 11). The phosphorylation of cellulose by PCl; results in a gradual decrease of
specific surface area from 1.99 [m?/g] to 1.11 [m?/g] for Cell-O°-P(O)(OH)-H(6 h) and,
consequently, to 0.83 [m2/ g] for Cell-0°-P(O)(OH)-H(72 h). This trend can be the result of
substitution of the 6-hydroxyl function of cellulose (hydrogen bond acceptor and donor)
by the multifunctional H-phosphonate function (P = O, P-O-H, P-O-C), which is able to
form four hydrogen bonds with surrounding hydroxyls of the cellulose matrix.

The phosphorylations of cellulose by PClj results in a gradual decrease of the specific
surface area from 1.99 [m?/ g] to 1.11 [m?/ g] for Cell-O°-P(O)(OH)-H(6 h) and, conse-
quently, to 0.83 [m?/g] for Cell-O®-P(O)(OH)-H(72 h). This trend can be the result of
substitution 6-hydroxyl function of cellulose by the difunctional H-phosphonate function,
which is able to form at least to two hydrogen bonds with surrounding hydroxyls of
cellulose matrix. Therefore, the surface of Cell-O°-P(O)(OH)-H gradually rolls up with
an increase of Dp/Dg index. At the same time, complexation of phosphorylated cellulose
(Cell-0°-P(O)(OH)-H (48 h)—Cell-0°-P(O)(O~)-H(48 h) x Cu?*) leads to a complex in
which both the donor-acceptor of hydrogen bonds of H-phosphonate function are blocked
by copper causing an increase of the specific surface area up to 1.75 [m?/g] in Cu-complex
(Cell-O°-P(O)(OH)-H(48 h) x Cu?*) (see the structures in Figure 4).

Table 10. Specific surface area (Sggt) determinations of the examined samples.

Cellulose, Cell-O%-P(0)(OH)-H and SpeT [M?/g]

Specific Surface Area 2

No. 5 a 2 Ref.
Cell-O°-P(O)(O~)-H@48 h) x Cu** N,-BET Method H;0(ga)-BET Method
. . 1 149
1 Microcrystalline cellulose 12 161 [73]
2 Avicel PH 102 MCC powder 1.3 [74]
3 Cellulose linters 2.8 [63]
Cellulose mercerized linters 1.0
Avicel CE 15 0.5
4 Avicel DG 1.2 [75]
Avicel HFE 102 0.6
5 Avicel PH-101 5.71 [76]
Avicel PH-101 (ball milled) 0.87
Cellulose Avicel PH-101 1.99
Cell-O°-P(O)(OH)-H (6 h) 1.11
Cell-O°-P(O)(OH)-H (24 h) 0.88 .
6 Cell-0°-P(O)(OH)-H (48 h) 0.88 This work
Cell-O%-P(O)(OH)-H (72 h) 0.83
Cell-O%-P(0)(O~)-H(48 h) x Cu?* 1.75

/2 N»-BET method-determined by N, gas adsorption. HyOgas)-BET method-determined by H,O gas adsorption.
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Is worth to note, that in Oshima paper [77] the specific surface areas of cellulose
adsorbents determined using the N,-BET method were 19.2 m? /g for phosphorylated
bacterial cellulose (PBC), 2.4 m? /g for phosphorylated plant cellulose (PPC), whereas
27.3 m? /g for BC, and 1.0 m?/g for PC.

Therefore, the surface of Cell-O°-P(O)(OH)-H gradually rolls up with the increase
of Dg index; this increases with the phosphorylation time. At the same time, the com-
plexation of phosphorylated cellulose (Cell-O°-P(O)(OH)-H(48 h)—Cell-O°-P(O)(OH)-
H(48 h) x Cu?*) leads to a complex in which both donor-acceptor of hydrogen bonds of
H-phosphonate function are blocked by copper causing increase of the specific surface area
up to 1.75 [m?2/ g] in Cu-complex (Cell-O°-P(0)(O~)-H(48 h) x Cu?*) (see the structures in
Figure 16).
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Cell-0°-P(0)(OH)-H
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Figure 16. The ability for the formation of hydrogen bonds by 6-hydroxyl of cellulose (Cell-O°-H), cellulose-6-
hydrogenphosphate (Cell-0°-P(O)(OH)-H) and cellulose-6-hydrogenphosphate-cooper (II) complex (Cell-0°-P(O)(OH)-H
x Cu?"). Dotted lines in blue present possible hydrogen bonds with appropriate acceptors/donors.

2.11. Antibacterial Activity

All of the synthesized cellulosic complexes were tested for their antimicrobial activ-
ities, in which Escherichia Coli (Gram-negative bacteria, ATCC11229) and Staphylococcus
aureus (Gram-positive bacteria, ATCC 6538) were adopted as the bacterium models. Their
antibacterial activities were determined with the agar plate diffusion method. Table 11
lists the results of antibacterial activity tests and Figures 17 and 18 illustrate the bacterial
growth on Petri dishes.

The results of tests on the antibacterial activity of Cell-0°-P(O)(OH)-H x Cu®* com-
posites, according to standard EN-ISO 20645:2006 [78].
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Table 11. Results of tests on the antibacterial activity of Cell-O°-P(O)(O~)-H x Cu?* complexes, according to standard
EN-ISO 20645:2006 [78].

Cu in Cell-0°-P(0)(0O~) x Cu?*)-H ZOI1’® [mm]
No. Cell-O%-P(O)(OH)-H (t) 12 In The Starting Composite Spots Deposited Bacteria Average /¢
i LZ, sMoll ke sa
1 Cell-O°-P(O)(OH)-H 0 0 0 - -
2 Cell-O%-P(O)(OH)-H (6 h) x CuZ* 263.8 0.26 0.04 - -
3 Cell-0°-P(O)(OH)-H (24 h) x Cu®* 423.6 0.42 0.07 - -
4 Cell-O°-P(O)(OH)-H (48 h) x Cu?* 659.2 0.66 0.10 1 1
5 Cell-0°-P(O)(OH)-H (72 h) x Cu®* 655.4 0.66 0.10 1 1

/210 mg of composite Cell-O°-P(O)(O~)-H x Cu®* was used for preparation of the disc. /b Zone of inhibition. /¢ Concentration of
inoculum (bacterial suspension) amount of live bacteria: Escherichia coli: CFU/mL = 1.2 x 10%; Staphylococcus aureus: CFU/mL = 1.7 x 108.
/d Values of Table 9.

Table 12 summarizes the antibacterial properties of various metal salts/nanoparticles
and antibiotics against representative gram positive (Escherichia coli) and gram negative
(Staphylococcus aureus) bacteria.

Table 12. Antibacterial properties of various metal salts/nanoparticles and antibiotics against representative gram positive

(Escherichia coli) and gram negative (Staphylococcus aureus) bacteria, reflexed by their zone of growth inhibition (ZOI).

Agent Deposited On Spot ZOI [mm]
No Antibacterial Agent — - Lit.
mg/spot umol/spot Escherichia coli Staphylococcus aureus
1.1 CuCl, 0.05 15 14
1.2 AgNO; 0.05 16 15
23 CuNPS /2 0.05 17 16 [79]
3.4 Gentamycin 0.01 0.02 19 13
1.5 Penicillin 0.01 0.03 0 17
1.6 Tetracycline 0.03 0.07 19 19
0.06 0.38 0 0
0.12 0.75 0 0
21 CusSO; 0.24 15 9.4 8.2
1.92 12 13 14
2.2 Oxytetracycline 1.80 39 23 23 [80]
0.06 0.9 15 14
0.12 1.8 17 20
b
23 CNPs / 0.24 3.6 23 2
1.92 30. 38 37

/2 Synthesized by reduction of CuCl, by ascorbic acid. ®/ Synthesized by reduction of CuSO, by hydrazine.

Some recent papers have described similar results [81-84].

Lower ZOI values of the composites Cell-O°-P(0)(O~)-H x Cu?* in comparison with
ZOlI of soluble copper salts/nanoparticles is caused by a strong binding of copper ions by
the functionalities of Cell-O°-P(O)(OH)-H, namely by hydrogen-phosphate (III) function,
and also by surrounding cellulose hydroxyls. This results in a slow release of copper
from the surface of composite, presumably driven by a hydrolysis [85-87], which limits a
concentration of unbounded Cu (II) cations (Figure 19).
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(a) (b)

Figure 17. The Cell-O°-P(0)(O~)-H x Cu?* complexes antimicrobial activity tests against Escherichia Coli. Inhibition zones
of bacterial growth on Petri dishes: (a) Cell-0°-P(O)(OH)-H(48 h), (b) Cell-O%-P(O)(OH)-H(48 h) x Cu®*.

(@ (b)

Figure 18. The Cell-O°-P(O)(O~)-H x Cu?* complexes antimicrobial activity tests against Staphylococcus aureus. Inhibition
zones of bacterial growth on Petri dishes: (a) Cell-0°-P(O)(OH)-H(48 h), (b) Cell-O°-P(O)(OH)-H(48 h) x Cu?*.

Np” O\Cu *(ROH), / 2 (H,0), /
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Cell-0°-P(0)(0)-H x Cu?" Cell-0°-P(0)(0)-H x Cu?* Cell-0°-P(0)(OH)-H n

Figure 19. Release of copper ions from composite Cell-0%-P(0)(O~)-H x Cu®* (A—anion derived from agar gel buffer).

The results of biological studies prove antimicrobial protection against different:
Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial mi-



Antibiotics 2021, 10, 203

21 of 27

croorganisms of biofunctionalized cellulose materials, expressed by visible inhibition
zones of bacterial growth on Petri dishes and no visible bacterial growth under the sam-
ples (50 x microscope magnification). Copper content concentrations of approximately
650-660 mg/kg in modified cellulose samples (Cell-O°-P(O)(OH)-H(48 h) x Cu?*, Cell-
O°-P(O)(OH)-H(72 h) x Cu?*) provide antimicrobial properties according to the EN-ISO
20645:2006 standard (Table 11, Figures 17 and 18) [78].

3. Materials and Methods
3.1. Materials

Table 13 lists the reagents and standard solutions applied. All of these materials and
solvents were used as received without further purification and were purchased from
Merck (Darmstadt, Germany). Double distilled water was used in all of the experiments.
Bacterial strains: Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 6538) were
purchased from Microbiologics (St. Cloud, MA, USA).

Table 13. Materials and reagents.

Nr. Name CAS
1 Cellulose microcrystalline (Avicel PH-101), ~50 um particle size 9004-34-6
2 Phosphorus trichloride, 99% 7719-12-2
3 D-Glucose 6-phosphate disodium salt hydrate, >98% 3671-99-6
4 Nitric acid, 65%, Suprapur® 7697-37-2
5 Hydrogen peroxide 29.0-32.0% 7722-84-1
6 Copper(Il) nitrate [Cu(NO3); (1000 mg/L Cu) in 0.5 M HNO;3 13778-31-9

3.2. Methods
3.2.1. Specific Surface Area

The specific surface area of the investigated samples was measured using the Autosorb-
1 (Quantachrome Instruments, Boynton Beach, FL, USA) apparatus. The analysis was
performed while using the physisorption method with nitrogen being used as a sorption
agent [72]. The measurements were carried out at 77 K. For each experiment, about 1 g of
a given sample was weighed and used. Prior to the analysis, the samples were dried in
105 °C for 24 h and then degassed overnight at room temperature.

The five-point Brunauer-Emmett-Teller (BET) method was applied in order to de-
termine the specific surface area. The specific surface area was calculated twice for each
sample, using the five-point adsorption isotherm (P/Py in the range of 0.10-0.30) and the
39—point adsorption-desorption isotherm.

3.2.2. SEM/EDS—Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy

The microscopic analysis of samples was performed on a Tescan Vega 3 scanning
electron microscope (Brno, Czech Republic) with the EDS Oxford Instruments (Abingdon,
UK) X-ray micro analyzer. SEM microscopic examination of the surface topography was
performed under high vacuum using the 20 ekV probe beam energy. The surface of each
preparation was sprayed with a conductive substance (gold), while using a vacuum dust
extractor (Quorum Technologies Ltd., Lewes, UK). The magnification was from 500 to
20000x.

3.2.3. ATR-FTIR—Attenuated Total Reflection Fourier Transform Infrared Spectroscopy

The chemical structure of cellulose samples surface was assessed using ATR-FTIR
spectroscopy in the range of 4004000 cm™~! using a spectrometer Jasco’s 4200 (Tokyo,
Japan) with an ATR attachment Pike Gladi ATR (Cottonwood, AZ, USA).
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3.2.4. Potentiometric Titration of Cell-O®-P(O)(OH)-H

Potentiometric titrations were performed using a Cerko-Lab System (Gdynia, Poland)
microtitrator that was equipped with a combined glass electrode Hydromet ERH-13-6
(Gliwice, Poland). Cell-O°-P(O)(OH)-H (5 mg) samples were placed into glass vessel,
followed by an addition of water (2 mL). Subsequently, under intensive stirring, the
suspensions were titrated with KOH (0.016 M, carbonate-free), under inert atmosphere (Ar
bubbling), at room temperature in the pH range of 2-12. Each titration was repeated at
least four times.

3.2.5. ICP-MS—Inductively Coupled Plasma Mass Spectrometry—Determination of
Phosphorus by Means of Inductively Coupled Plasma Mass Spectrometry

The method consists of the degradation of cellulose-O-phosphate (P(III)) to phosphoric
acid (P(V)) (Figure 15) and the subsequent analysis of the obtained solution using the ICP-
MS technique. Degradation/digestion of the sample was carried out in the mixture: nitric
acid, hydrogen peroxide, water, and accelerated by ultrasound irradiation (temperature
200 °C, microwave digestion, 15 min.).

The decomposition of samples was carried out in a computer-controlled, closed, single-
module microwave mineralizer Magnum II (Ertec, Wroctaw, Poland), which was equipped
with an integrated pressure temperature control. The process was performed by the wet
method, in a closed single-module vessel with a 110 mL reaction chamber under elevated
pressure. Microwave energy accelerated the degradation processes. The microwaves
were absorbed by the reagents (usually acid or salt solutions) resulting in an increase of
temperature and pressure, so that the mushroom-shaped membrane rose, and five heads
appeared to accelerate the rapid decomposition of the sample or its chemical synthesis.

Elemental analyses (C and H) were recorded on an Elemental Analyzer Euro EA
(Eurovector, Pavia, Italy), phosphorus determinations were performed after prior digestion
of cellulose phosphate samples, while using an Agilent 7900 ICP-MS Spectrometer (Santa
Clara, CA, USA) that was equipped with a quadruple mass analyzer.

3.2.6. Degradation of Cell-O°-P(O)(OH)-H

Sample Cell-O%-P(O)(OH)-H (0.03 4 0.0001 g) was transferred into a reaction vessel of
a mineralizer containing a degradation solution, which consisted of a mixture of HNOj3
(67%, 1 mL), HyO; (30%, 1 mL), and water (4 mL). The vessel was locked and placed into a
mineralizer (degradation parameters: temperature 180-200 °C (£10 °C), max. pressure
20 bar, 15 min, power 100%). After degradation digest (Figure 15a) was quantitatively
transferred into volumetric flask and diluted to 50 mL by water.

3.2.7. FAAS—Atomic Absorption Spectrometry with Flame Excitation

The determination of copper content in Cell-O°-P(O)(OH)-H(t) x Cu?* samples was
assessed using single-module Magnum II microwave mineralizer from Ertec (Wroclaw,
Poland) and Thermo Scientific Thermo Solar M6 (LabWrench, Midland, MD, Canada)
atomic absorption spectrometer.

The total copper content of the sample M [mg/kg; ppm] was calculated according to

the formula [71]:
_ CGi xV|[mg
M= [kg] ®

where:

C—metal concentration in the tested solution [mg/L];
m—mass of the mineralized sample [g]; and
V—volume of the sample solution [mL].

3.2.8. Microbial Activity

The antibacterial activity of Cu-cellulose biochelates was tested according to EN ISO
20645:2006 Textile fabrics—Determination of antibacterial activity—Agar diffusion plate test [78]
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against a colony of gram-negative bacteria: Escherchia coli (ATCC 25922) and gram-positive
bacteria: Staphylococcus aureus (ATCC 6538), analogously as polypropylene nonwovens [37].

The antibacterial activity of samples was tested by the agar diffusion method using
Muller-Hinton medium agar. The test was initiated by pouring each agar onto sterilized
Petri dishes and it was allowed to solidify. The surfaces of agar media were inoculated
by overnight broth cultures of bacteria (ATCC 25922: 1.2 x 108 CFU/mL, ATCC 6538:
1.7 x 108 CFU/mL). Samples of the cellulose: phosphorylated derivatives and cellulose
Cu-complex (Cell-O°-P(O)(OH)-H(48 h) x Cu?*) were placed onto the inoculated agar
and then incubated at 37 °C for 24 h. The diameter of the clear zone around the sample
was measured as an indication of inhibition of the microbial species. All of the tests
were carried out in duplicate. Simultaneously, the same tests were carried out for control
samples—samples of unmodified cellulose.

4. Conclusions

Cellulose phosphorylation in vapor phase with PCl3 has been completed after 48 h
and afforded cellulose-O-phosphates (III) Cell-O-P(O)(OH)-H with substitution degree
DS =0.018.

The reaction (Cell-OH—Cell-O-P(O)(OH)-H) was carried out without solvent and
co-reagents, in ambient temperature, in eco-friendly conditions.

Cellulose-O-phosphates (I1I) Cell-O-P(O)(OH)-H, so obtained, have been converted
into copper complex (Cell-O-P(O)(OH)-H—Cell-O%-P(O)(OH)-H x Cu?*).

All of the synthesized Cell-O-P(O)(OH)-H and Cell-O°-P(O)(OH)-H x Cu?* samples
have been analyzed while using an array of physical methods, including IR (confirmed
the presence of phosphonate function) and NMR spectrometry (3! P-NMR confirmed the
selective O°-phosphorylation of AGU, it means the structure Cell-O°-P(O)(OH)-H), alka-
cymetric titration of acidic functionalities of the composite (confirmed one deflection
point — characteristic for R-O-P(O)(OH)-H)), elemental analysis of composites (carbon and
hydrogen—combustion analysis, phosphorus—IP AAS and copper—FAAS), investigations
of Cell-O°-P(O)(OH)-H and Cell-O%-P(O)(OH)-H x Cu?* morphology (SEM) and their
specific surface activity.

For Cell-O°%-P(O)(OH)-H(48 h), Cell-0°-P(O)(OH)-H(72 h), and Cell-O°-P(O)(OH)-
H(48 h) x Cu?*, antibacterial tests against Escherichia coli (G-) and Staphyloccoccus aureus
(G+) have been carried out in vitro (agar disc diffusion method). The determined antimi-
crobial properties of Cell-O°-P(O)(OH)-H x Cu?* complexes revealed the antibacterial
in vitro action against representative Gram-negative and Gram-positive bacteria.

For all of the synthesized composites Cell-O°-P(O)(OH)-H and Cell-O°-P(O)(OH)-H
x Cu?*, we proposed the abbreviations system, coherent and compatible with earlier codes
for functionalized alkane phosphonic acids and derivatives [35,36].
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