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Abstract: The use of metal oxide nanoparticles is one of the promising ways for overcoming antibiotic
resistance in bacteria. Iron oxide nanoparticles (IONPs) have found wide applications in different
fields of biomedicine. Several studies have suggested using the antimicrobial potential of IONPs.
Iron is one of the key microelements and plays an important role in the function of living systems of
different hierarchies. Iron abundance and its physiological functions bring into question the ability
of iron compounds at the same concentrations, on the one hand, to inhibit the microbial growth
and, on the other hand, to positively affect mammalian cells. At present, multiple studies have been
published that show the antimicrobial effect of IONPs against Gram-negative and Gram-positive
bacteria and fungi. Several studies have established that IONPs have a low toxicity to eukaryotic
cells. It gives hope that IONPs can be considered potential antimicrobial agents of the new generation
that combine antimicrobial action and high biocompatibility with the human body. This review
is intended to inform readers about the available data on the antimicrobial properties of IONPs, a
range of susceptible bacteria, mechanisms of the antibacterial action, dependence of the antibacterial
action of IONPs on the method for synthesis, and the biocompatibility of IONPs with eukaryotic cells
and tissues.
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1. Introduction

Nowadays, the application of nanotechnological solutions, such as the use of nanopar-
ticles, is one of the promising ways to overcome antibiotic resistance in bacteria [1–5].

Nanoparticles (NPs) of several metals and their oxides, such as Ag, ZnO, Fe2O3, Fe3O4,
Al2O3, TiO2, and CuO, exert antibacterial action against Gram-negative and Gram-positive
bacteria, as well as the antifungal action [6–14].

Iron is one of the most abundant elements on Earth and the fourth-most abundant
element in the Earth’s crust. Iron makes up more than 85% of the mass of the Earth’s
core and about 5% of the mass of the Earth’s crust [15,16]. In living systems, iron is
one of the key microelements. It has several important functions: it is a cofactor of
several enzymes (catalase) and transport proteins (hemoglobin), ETC proteins (cytochromes
and FeS proteins), and is necessary for DNA repair [17–20]. Iron is also found in the
regulatory proteins of enterobacteria Salmonella enterica, including Fur, Fnr, NorR, SoxR,
IscR, and NsrR [21–26]. Several bacteria can accumulate iron oxides in special organelles
called magnetosomes—for example, Magnetospirillum magneticum [27]. It is assumed
that they provide bacteria with the constant magnetic dipole, presumably for navigation
purposes [28]. It was shown in Magnetospirillum magneticum wild-type and DmagA1-
/- that magnetosomes plays a key role in magneto-aerotaxis. Magneto-aerotaxis is the
direct motion of bacteria downward in microaerobic environments favorable to growth [29].
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Bacteria that use the iron oxidation reaction Fe2+ + 0.25 O2 + H+→ Fe3+ + 0.5 H2O for energy
generation and metabolism maintenance have been described. A minimum two groups of
obligate iron-oxidizing bacteria: Betaproteobacteria and Zetaproteobacteria are described in
the phylum Proteobacteria [30]. Iron is necessary for the proliferation of microbial agents of
infectious diseases that developed ways for iron acquisition from the host, while the host
has protective mechanisms preventing iron acquisition by microorganisms [30,31].

In light of the presented facts, it is logical to ask whether NPs (IONPs) based on
compounds of the biogenic element, which is so important for vital activities, can have a
bactericidal effect. On the one hand, a negative answer is expected; however, several studies
noticed the antimicrobial action of IONPs [32,33]. On the other hand, the bactericidal action
was repeatedly confirmed for NPs based on other biogenic elements: ZnO and CuO, as
was mentioned above.

Iron is like a double-edged sword. Despite its above-mentioned functions in living
organisms, it is able to catalyze reactions of damaging DNA, lipids, and proteins by the
Fenton reaction [34]. In this reaction, the free Fe2+ ion reacts with hydrogen peroxide
(H2O2); as a result, a hydroxyl radical and Fe3+ ion are formed. The following reaction of
Fe3+ with the superoxide anion radical (O2

−·) leads to the formation of molecular oxygen
(O2) and regeneration of Fe2+ as the initial catalyst. To protect it from the damage caused
by the generation of hydroxyl radicals, it is necessary to maintain an extremely low level
of free iron ions inside cells [35]. ROS generation is no single mechanism of antibacterial
action of IONPs. A more detail description of these mechanisms is contained in Section 2.2.

The antibacterial properties are found both in nanoparticles based on iron oxides
(IONPs) and in free iron ions; however, contrary to free ions, IONPs do not exert a signifi-
cant toxic effect on mammalian cells [8,36,37]. Iron oxide nanoparticles can be obtained
by different methods, from laser ablation to chemical synthesis [38–43]. It is assumed that
the antibacterial properties of iron oxide nanoparticles are associated not only with the
oxide form but, also, with the size, morphology, and other physicochemical properties
of nanoparticles. Several types of iron oxides are known. The most frequently found are
hematite Fe2O3, magnetite Fe3O4, and limonite Fe2O3 × H2O [5,16].

Iron oxide nanoparticles (IONPs) have found wide applications in different fields of
biomedicine—for example, in visualization and diagnostics [44]; in magnetic resonance
imaging and computed tomography [45–48]; in positron emission tomography [49]; in
cancer therapy with magnetic hyperthermia [50–52]; and for the separation of cells or
molecules and the development of biosensors, which can applied to immunoassays, neuro-
electronic studies, and biomedical imaging [53–56]. IONPs may be used in the imaging
and tracking of brain cells in vivo [57]. A possibility of using iron oxide nanoparticles
for delivering medicines and viral vectors to target cells is shown [58,59]. The antibacte-
rial activity of iron oxide nanoparticles (IONPs) is of special interest, as the emergence
of antibiotic-resistant strains is a serious problem for world public health. The direct
bactericidal action of IONPs was described by the example of S. aureus [32]. Fe3O4 NPs
can be used in regenerative medicine [60]. With that, IONPs have good biocompatibility
in vivo and in vitro [61,62], which qualitatively distinguish IONPs from ZnO NPs having
high cytotoxicity [63,64]. The balance of the antimicrobial activity and biocompatibility
makes IONPs an attractive candidate for the role of an antimicrobial preparation of the
new generation. The present review is intended to inform readers about available data on
the antibacterial properties of IONPs, a range of susceptible bacteria, mechanisms of the
antibacterial action, the dependence of the antibacterial action of IONPs on the method for
synthesis, and the biocompatibility of IONPs with eukaryotic cells and tissues.

2. Main Part
2.1. Susceptible Microorganisms

A list of microorganisms susceptible to the toxic action of IONPs is presented in
Table 1. A minimum of 10 species of Gram-negative and 11 species of Gram-positive
bacteria, as well as three fungal species susceptible to IONPs, have been mentioned in the
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literature (Table 1). The majority of the indicated microorganisms have epidemiological
significance [65]. A range of the bacteriostatic concentrations for IONPs is quite wide and
makes up 25–2000 µg/mL.

Table 1. List of the microorganisms susceptible to the toxic action of IONPs.

Group of Microorganism Species/Serotype Reference

Gram-negative bacteria

Escherichia coli [33,66–80]
Klebsiella pneumoniae [70,72,74,77,80–82]

Klebsiella sp. [36]
Proteus mirabilis [73]
Proteus vulgaris [83]

Pseudomonas aeruginosa [71,79,80,82,84–86]
Salmonella enterica serotype

typhimurium [76,81,87]

Serratia marcescens [32,71]
Vibrio cholerae [8]

Xanthomonas sp. [83]

Gram-positive bacteria

Bacillus brevis [8]
Bacillus cereus [87]

Bacillus licheniformis [8]
Bacillus sp. [36]

Bacillus subtilis [8,70,72,73,76,78,79]
Corynebacterium sp. [75]
Enterococcus hirae [66]

Listeria monocytogenes [71,87]
Micrococcus luteus [67]

Staphylococcus aureus [8,33,36,67–70,72,74,76,77,79–
81,85,86]

Staphylococcus
epidermidisStreptococcus mutans [8,88,89]

Fungi

Aspergillus niger [90]
Candida albicans [87,90]
Candida glabrata [87]
Candida glochares [87]
Candida saitoana [87]
Fusarium solani [90]

IONPs have antimicrobial activity against both Gram-positive (including Staphylococ-
cus aureus) and Gram-negative (including Escherichia coli) bacteria [33]. The data about the
dependence of the antibacterial action of IONPs on the bacterial group (Gram-positive or
Gram-negative) are ambiguous. On the one hand, there are data about the comparable ef-
fects of IONPs against Gram-negative and Gram-positive bacteria [91], similar to CuO [92],
which distinguishes IONPs from ZnO NPs [93]. On the other hand, there are data about the
more pronounced bacteriostatic action of Fe3O4 against Gram-negative bacteria compared
to Gram-positive [66]. The authors linked the indicated differences with the peculiarities of
the cell wall structure and metabolism of Gram-positive and Gram-negative bacteria [66].

2.2. The Mechanisms of Antibacterial IONP Activity

One of the main mechanisms of IONP toxicity is ROS generation [5,94], including
in photocatalysis, Fenton reactions, or similar ones [88]. ROS, in turn, have a genotoxic
action, damaging DNA molecules (Figure 1) [94]. An increase in ROS concentration can
be caused by a decrease in the activity of antioxidant system enzymes (SOD, catalase, and
glutathione reductase) [67]. Metal ions are able to bind mecapto (–SH), amino (–NH), and
carboxyl (–COOH) groups of proteins, including enzymes, which leads to inactivation
or partial inhibition [95]. Additionally, IONPs damage the bacterial cell wall integrity, as
shown in reference [94]. The direct binding of IONPs with the cell wall of Staphylococcus
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aureus was shown by scanning electron microscopy [96]. IONPs can cause a decrease in the
expression of antibiotic resistance genes (ARGs) in antibiotic-resistant bacteria found in
operating rooms [5]. IONPs are able to disturb the function of F0/F1-ATPase and reduce
the rate of H+ flow through the membrane and the redox potential [66]. The mechanisms
of the antimicrobial action for IONPs have been suggested in several studies based on their
size and are common for other types of metal oxide nanoparticles [95,97]. An ability to
inhibit DNA replication by the inactivation of topoisomerase is described for nanoparticles
with small sizes [98]. It was shown by the method of electron microscopy that Fe2O3 NPs
can bind directly with the cell wall of E. coli. IONPs can also penetrate into the cytoplasm,
concentrate in it, and cause vacuole formation and cell wall disruption [84,99].
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Fe3O4 IONPs can concentrate between the outer and inner membranes of the cell
wall in Gram-negative bacteria due to binding with the FHL complex in the inner mem-
brane. Therefore, Fe3O4 IONPs have more pronounced antimicrobial actions against
Gram-negative bacteria [66].

Bactericidal and antibiofilm activities were shown in Fe3O4 IONPs. Positively charged
and neutral IONPs promoted a higher reduction of Streptococcus mutans biofilms compared
with negatively charged IONPs [89]. IONPs coated with oleic acid can prevent biofilm
formation by S. aureus and P. aeruginosa [85]. IOPNs have the ability to adsorb and penetrate
into bacterial biofilms due to their physicochemical characteristics, such as a surface charge,
hydrophobicity, and high surface area ratio by volume [100,101].

Iron oxide nanoparticles have both magnetic and paramagnetic properties [68,87,102].
Fe3O4 NPs with high paramagnetic activity are also named superparamagnetic iron oxide
nanoparticles (SPIONs) [103,104]. SPIONs in the presence of the alternating magnetic fields
cause cell death and biofilm destruction due to the vibration damage, local hyperthermia,
and ROS generation. All of the above-mentioned factors lead to the dissociation of bacteria
from a biofilm, damage of the bacterial cell wall, membrane rupture, the fusion of different
cells with each other, and death [69].

In 80% of studies, IONPs show only bacteriostatic action. The bactericidal action of
IONPs is described in the literature in 20% of cases.

2.3. Methods of IOPNs Synthesis

The methods for IONP synthesis are multiple and include coprecipitation [105], ther-
mal decomposition [70], low temperature synthesis [71], the sol–gel method [106], hy-
drothermal method [69], electrochemical method [83], laser ablation [91,107], sonochemical,
microwave, microemulsion methods, matrix-mediated method using PVA, “green synthe-
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sis” [68], and many others [32,84,108]. In the case of research of IONP antibacterial effects,
most used in coprecipitation, thermal decomposition, the sol–gel method, laser ablation,
and “green synthesis” (Table 2); therefore, we shall briefly describe these methods below.

Aqueous coprecipitation is the most widely used chemical method of IONP synthe-
sis [105,109]. In this method, IOPNs are synthesized by the simultaneous precipitation
of Fe2+ and Fe3+ salts (molar ratio 1:2) in a basic solution at room temperature or under
heat [105,109,110]. The advantage of the coprecipitation method is the low cost of IOPNs
synthesis. It is important in cases of large-scale production [27]. The disadvantages of the
method are the large size distribution of produced IONPs, aggregation, poor crystallinity, a
high possibility of oxidation, and poor magnetic property [111]. The change of pH in the
solution can improve the properties of IONPs synthesized by coprecipitation [112].

The thermal decomposition is a nonaqueous synthesis in which organometallic com-
pounds such as Fe(Acac)3, Fe(C2O4) × 2 H2O, Fe(CH3COO)2, or ferrocene suffer decay
at high temperatures in organic solvents (high boiled) or via being solvent-free in the
presence of stabilizing surfactants like aliphatic amine and fatty acids [113]. This method
may generate high-quality IONPs with close distributions of particle sizes and a high
magnetism and degree of crystallinity [113]. Addition advantages of this method are the
high yield and absence of IONP aggregation [114]. The main disadvantage of this method
is the insolubility of produced IONPs in water. Therefore, further steps are required to
make their surfaces hydrophilic and use IONPs in biological solutions [115].

The sol–gel method (wet–chemical method) is a sum of reactions of condensation and
hydrolysis between iron alkoxides and salts (e.g., chlorides, nitrates, and acetates) [116].
The main advantage of this method is a good homogeneity and size and high purity and
quantity of IONPs [116]. The disadvantages of the method are the requirements for compli-
ance with exact values of the pH, temperature, and concentration of the reagents during a
synthesis; high cost of precursors; and low wear resistance of synthesized IONPs [117].

Laser ablation synthesis in a solution is a synthesis that is triggered by the immersion
of pulsed laser beams on the target material in a liquid solution [118]. Laser ablation
synthesis allows to work with a wide range of materials and solvents. The size and
clustering of IONPs are difficult to control [118]. Laser ablation allows the synthesis of
FeOx crystal to a few atom clusters in the following modification: phosphonates as an
aqueous solution and bulk iron as a target [72].

The so-called “green synthesis” has aroused considerable interest. It is a modification
of synthesis methods (as a rule, coprecipitation) with the application of plant extracts
used as a reducing agent. There are reports about the application of leaf extracts of the
Psidium guajava [68], Cynometra ramiflora [88], Sida cordifolia [119], Zea mays [87], Argemone
mexicana [73], Couroupita guianensis [81], Tridax procumb [120], peel extracts of Punica grana-
tum [70], Ruellia tuberosa [74], Malva sylvestris [82], and Citrus sinensis [121]. This method is
low-cost, if coprecipitation is used as a basic technique [74,82,121].

Large-scale synthesis is a modification of the coprecipitation method with controlled
heating and addition polyacrilic acid salts or sodium oleate as the surfactant [103]

The hydrothermal method is a synthesis of IONPs from iron precursors at high
pressure and temperature conditions in an aqueous medium [103,104]. Aqueous synthesis
methods generate particles with low crystallization [122]. Replacing water with other
organic solvents allows the formation of IONPs with high crystallinity and controlled
shapes. This method is named solvothermal synthesis [113]. The disadvantage of this
method is the long time it takes for synthesis (hours to days) [123].

2.4. Dependence of the Antimicrobial Action of IONPs on the Size and Type of Iron Oxides

The majority of studied IONPs have a spherical shape (Table 2), which excludes a
contribution of the shape into the antimicrobial action. Therefore, we assessed the sizes
and compositions of IONPs. Based on the analyzed literature data, we did not reveal
an association between the IONPs’ size and the minimum bacteriostatic concentrations
(Figure 2a). Several IONP types are distinguished depending on the oxide on which
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basis they are synthesized: NPs based on hematite (α-Fe2O3) [5,68], β-Fe2O3, γ-Fe2O3,
ε-Fe2O3 [124–126], and Fe3O4 [83,127]. We found that Fe2O3 NPs show more pronounced
bacteriostatic actions compared to Fe3O4 NPs (Figure 2b). For more detailed analyses, we
assessed the contribution of a method for IONP synthesis of their antimicrobial properties.
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2.5. Dependence of the Antimicrobial Action of IONPs on a Synthesis Method

The methods for IONPs synthesis are multiple and include coprecipitation [105],
thermal decomposition [70], low-temperature synthesis [71], the sol–gel method [106],
hydrothermal method [69], electrochemical method [83], laser ablation [91,107], sonochem-
ical, microwave, microemulsion methods, matrix-mediated method using PVA, and many
others [32,84,108]. IONPs synthesized by the low-temperature method from iron sulfate
showed an antimicrobial effect against E. coli, P. aeruginosa, Serratia marcescens, and Listeria
monocytogenes, exerting bacteriostatic action and inhibiting biofilm formation [71]. NPs
obtained by laser ablation had comparable bacteriostatic effects against Gram-negative
(Escherichia coli, Pseudomonas aeruginosa, and Serratia marcescens) and Gram-positive (Staphy-
lococcus aureus) bacteria. The bacteriostatic actions of IONPs do not depend on a solvent
(SDS or DMF) or bacterial group (Gram-positive or Gram-negative) [91].

2.5.1. Coprecipitation Method

The most common method for IONP synthesis when studying the antimicrobial prop-
erties is the coprecipitation of salts Fe3+/Fe2+ [56,73,75,86,127–129]. This synthesis method
is the most available. Modifications of the method are possible. For instance, the addition
of oleic acid for the generation of conjugated IONPs [127,129], as well as the coprecipita-
tion of different metal salts, allow us to obtain composite NPs—for example, based on
FeSO4 × 7 H2O and Co(NO3)2 × 6 H2O [76]. One of the methods for improving the antimi-
crobial properties of IONPs is the use of composites—for example, α-Fe2O3/Co3O4 [105].
Composite NPs have more pronounced antimicrobial actions against B. subtilis,
S. aureus, E.coli, and S. typhimirium. The synergistic effect of Fe2O3 and Co3O4 was observed
compared to oxides used individually. However, upon the strong bacteriostatic action
(practically a full inhibition of the bacterial growth at a concentration of 1200 mg/mL), the
bactericidal action was almost absent [76]. α-Fe2O3/ZnO NPs show more pronounced
bacteriostatic actions against Gram-positive Bacillus subtilis and Staphylococcus aureus and
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Gram-negative Escherichia coli and Salmonella typhi than IONPs and ZnO NPs; with that,
the size of the inhibition zone increases when the ZnO concentration in the composite is
increased [76], (Table 2).

Compared to Fe3O4 NPs, the composite Fe3O4/SiO2 NPs has a more pronounced
photocatalytic bactericidal action against Escherichia coli and Staphylococcus aureus; with
that, the effect was higher against Gram-positive bacteria [130]. The use of the combined
method for IONPs synthesis allows achieving a significant bacteriostatic effect against
Staphylococcus aureus, Xanthomonas, Escherichia coli, and Proteus vulgaris [83].

2.5.2. “Green Synthesis”

The so-called “green synthesis” has aroused considerable interest. It is a modification
of synthesis methods (as a rule, coprecipitation) with the application of plant extracts used
as a reducing agent [83,106–110].

IONPs synthetized by the “green” method show comparable antimicrobial effects
against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria [68]. However,
the antimicrobial effect of 50–100 µg/µL of IONPs is about three times lower than that of
20 µg/mL of streptomycin. IONPs synthesized in the presence of Punica granatum peel
extract exert a bacteriostatic effect on Pseudomonas aeruginosa; with that, these IONPs do
not have hemolytic activity against erythrocytes [70]. IONPs in complex with Cynometra
ramiflora extract have more pronounced bacteriostatic effects against Gram-positive S.
epidermalis compared to Gram-negative E. coli [88]. NPs synthesized in the medium of
the Zea mays extract did not have their own antimicrobial and antifungal properties but
significantly enhanced the bacteriostatic action of kanamycin and rifampicin against Gram-
positive Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus and Gram-negative
Escherichia coli and Salmonella typhimurium, as well as the antifungal activity these antibiotics
against six strains of Candida [87]. In addition to the antimicrobial properties, IONPs
obtained as a result of “green” synthesis had antioxidant properties and inhibited their
proteasome activity, which allowed us to regard IONPs as possible candidates for cancer
therapy [87].

Compared to Fe3O4 NPs, Fe3O4/Malva sylvestris NPs had more pronounced bacterio-
static and bactericidal effects against Staphylococcus aureus, Corynebacterium sp., Pseudomonas
aeruginosa, and Klebsiella pneumoniae and exerted cytotoxic action against the Hep-G2 and
MCF-7 cell lines [82].

IONPs synthesized in the Argemone mexicana extract had more pronounced bacte-
riostatic activity against E. coli, P. mirabilis, and B. subtilis than pure IONPs, which was
comparable with the effects of streptomycin [73].
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Table 2. Parameters of the nanoparticles reported in the literature.

№ Synthesis Method Composition Size, nm Shape Concentration Medium,
Conditions Microorganism Biological

Effect Ref

1 Coprecipitation method Fe2O3 25–40 Sph 10–50 µg/mL NA, 48 h, 37 ◦C
E. coli,

S. aureus,
S. dysentery

BS [33]

2

Chemical precipitation using
Psidium Guajava leaf extract

as a reducing agent followed
by heat treatment

Fe2O3 34 Sph 20–100 µg/mL MHA, 24 h, 37 ◦C E. coli,
S. aureus BS [68]

3

Chemical precipitation using
Punica granatum peel extract
as a reducing agent followed

by heat treatment

- - - 31 µg/mL MHA, 24 h, 37 ◦C P. aeruginosa BS [70]

4 Wet chemical method Fe3O4 33–40 Sph 25–100 µg/mL NA, 24 h, 37 ◦C

E. coli,
P. vulgaris,
S. aureus,

Xanthomonas sp.

BS [83]

5 Modified coprecipitation
method Fe3O4 10.64 ± 4.73 Sph 50–500 µg/mL NA, 24 h, 3 ◦C E. coli,

E. hirae BS [66]

6 Coprecipitation α-Fe2O3/Co3O4
composite 25 Rod/

hexag 400–800 µg/mL MHA, 24 h, 37 ◦C

B. subtilis,
E. coli,

S. aureus,
S. typhimurium.

BC [76]

7
Chemical precipitation using
Cynometra ramiflora extract as

a reducing agent
Fe2O3/Fe3O4 - Sph

70 µL of IONPs
suspen-

sion/disk
NA, 24 h, 37 ◦C E.coli,

S. epidermidis BS [88]

8 Coprecipitation method α-Fe2O3,
ZnO/α-Fe2O3

~30 Sph/oval 400–800 µg MHA, 24 h, 37 ◦C

B. subtilis,
E. coli,

S. aureus,
S. typhimurium

BS [76]



Antibiotics 2021, 10, 884 9 of 23

Table 2. Cont.

№ Synthesis Method Composition Size, nm Shape Concentration Medium,
Conditions Microorganism Biological

Effect Ref

9 Coprecipitation method Fe3O4 6–9 Sph 32–128 µg/mL LB broth, 37 ◦C

E. coli,
L. monocytogenes,

P. aeruginosa,
S. marcescens

BS [71]

10
Chemical precipitation using
Sida cordifolia as a reducing

agent and stabilizer
Fe2O3 16 Sph 50 µg/mL MHA, 24 h, 37 ◦C

B. subtilis,
E. coli,

K. pneumoniae,
S. aureus

BS [119]

11 Coprecipitation method IONPs with
amoxicillin - - 0.05–10 mM TSB, 24 h, 37 ◦C P. aeruginosa,

S. aureus

Stimulation of
bacterial growth
in the presence
of humic acid

[86]

12 Ready commercial product
(Sigma-Aldrich) Fe2O3 <5 - 0.05–10 mM LB, 37 ◦C E. coli BC [99]

13
Coprecipitation using the

aqueous extract of corn (Zea
mays L.) ear leaves

Fe3O4 37.86 Sph 25–50 µg/disc

NB, 37 ◦C at 24 h,
for bacteria,

PDA, 28 ◦C at 48 h
for fungi

B. cereus,
C. albicans,
C. glabrata,

C. geochares,
C. saitoana,

E. coli,
L. monocytogenes,

S. aureus,
S. typhimurium,

BS [87]

14
Coprecipitation method in

alkaline media with leaf
extract of A. mexicana

Fe3O4 10–30 Sph 12.5–50 mg/disc MHB, 24 h, 37 ◦C
B. subtilis,

E. coli,
P. mirabilis,

BS [73]

15

Laser ablation in
dimethylformamide (DMF)
and sodium dodecyl sulfate

(SDS) solutions

α-Fe2O3 50–110 Sph 4.25 mg/mL NA, 24 h, 37 ◦C

E. coli,
P. aeruginosa,

S. aureus,
S. marcescens

BS [91]
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Table 2. Cont.

№ Synthesis Method Composition Size, nm Shape Concentration Medium,
Conditions Microorganism Biological

Effect Ref

16
Coprecipitation using

Couroupita guianensis aqueous
fruit extract

Fe3O4 ~17 Sph 25–75 µg/mL NA, 24 h, 37 ◦C
E. coli,

K. pneumoniae,
S. typhimurium

BS [81]

17 Coprecipitation Fe3O4 coated by
SiO2

~20 Sph - NA, 24 h, 37 ◦C E. coli,
S. aureus, BS [130]

18
Chemical precipitation using
Tridax procumbens leaf extract

as a reducing agent
Fe3O4 - Sph 10–40 µL PDA P. aeruginosa BS [120]

19 Coprecipitation Fe3O4 8 Sph 50–200 µg/mL LB, 37 ◦C, 14 h E. coli BS [75]

20 Ultra-large-scale synthesis
Fe3O4 or

Fe3O4 coated by
alginate

~16, for coated
with alginate

~230
Sph 2.5–10 µg LB, 37 ◦C, 16–18 h P. aeruginosa BS [95]

21
Chemical precipitation using
Ruellia tuberosa leaf aqueous
extract as a reducing agent

FeO 52.78 Rod 25–75 µg/mL MHA, 24 h, 37 ◦C,
E. coli,

K. pneumoniae,
S. aureus

BS [74]

22 Coprecipitation PEG-Fe3O4 26 ± 1.26 Sph 0.1–100 µg/mL -
E. coli,

M. luteus,
S. aureus,

BS [67]

23 Coprecipitation using Malva
sylvestris as a reducing agent Fe3O4 30–50 Sph 62.5 mg/mL BHI, 24 h, 37 ◦C,

Corynebacterium
sp.,

K. pneumonia,
P. aeruginosa,

S. aureus,

BS, BC [82]

24 One-pot hydrothermal
method Fe3O4 ~160 Sph 300–1000

µg/mL LB, 37 ◦C, 14 h E. coli,
S. aureus BS [69]

25

Chemical precipitation using
orange peel extract as a
reducing and stabilizing

agent

Fe2O3 ~50 - 0.5 mg/mL NA, 36 ◦C, 24 h

B. subtilis,
E. coli,

P. aeruginosa,
S. aureus

BS [121]
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Table 2. Cont.

№ Synthesis Method Composition Size, nm Shape Concentration Medium,
Conditions Microorganism Biological

Effect Ref

26
Chemical precipitation using

Urtica leaf extract as a
reducing agent

α-Fe2O3,
α-Fe2O3-Ag 100–200 Different 35 µg/mL

5–35 µg/disc MHA, 24 h, 37 ◦C,

Bacillus sp.,
E. coli,

K. pneumoniae,
S. aureus

BS [36]

27 Coprecipitation Fe3O4 10.64 ± 4.73 Sph 50–250 µg/mL Peptone medium,
24 h, 37 ◦C,

E. coli
DH5α-pUC18

ampicillin-
resistant;

E. coli pARG-25
kanamycin-

resistant

BS [66]

28 Coprecipitation Fe3O4 10–120 Sph 50 mg/mL NA, 24 h, 37 ◦C,

B. brevis,
B. licheniformis,

B. subtilis,
E. coli,

P. aeruginosa,
S. aureus,

S. epidermidis,
S. flexneri,
V. cholera

BS [9]

29 Coprecipitation
Fe3O4,

Co/Fe2O4,
Mn/Fe2O4

14–68 Cubic spinel 25–2000 µg/mL NB, NA, 24 h, 37 ◦C, B. subtilis,
E. coli BS [102]

30 Solvothermal method IONPs modified
with oleic acid 75–1110 Sph 25–125 µg/mL LB broth, 48 h, 37

◦C,
P. aeruginosa,

S. aureus BS [85]

31

Laser ablation in
dimethylformamide (DMF)
and sodium dodecyl sulfate

(SDS) solutions

α-Fe2O3 50–110 Sph - NA, 24 h, 37 ◦C,

E. coli,
P. aeruginosa,

S. aureus,
S. marcescens

BS [91]
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Table 2. Cont.

№ Synthesis Method Composition Size, nm Shape Concentration Medium,
Conditions Microorganism Biological

Effect Ref

32 Sol–gel combustion Fe2O3 35.16 ± 1.47 Sph 65 ± 1.5 µg/mL MHB, 24 h, 35 ± 2
◦C,

B. subtilis,
E. coli,

P. aeruginosa,
S. aureus

Low BC [13]

33
Matrix-mediated method

using PVA
(polyvinyl acetate)

Fe3O4/Fe2O3 9 ± 4 Sph 30–3000 µg/mL, TSB, 24 h, 37 ◦C, S. aureus BS, BC [32]

34 Laser ablation in the water IONPs/carbon
nanotubes 6–7

Sph IO on
the carbon
nanotubes

400–800 µg/mL NB, 24 h, 37 ◦C,
E. coli,

K. pneumoniae,
S. aureus

BS [77]

35 Coprecipitation
Fe3O4

conjugated with
TEPSA or TPED

14.6 ± 1.4,
20.4 ± 1.3 or

21.2 ± 1.6
Sph 1–3 µg/mL TYE, 24 h, 37 ◦C, in

the dark
Streptococcus

mutans BC [89]

36 Coprecipitation Fe3O4 coated by
citric acid ~30 Sph 100 µg/mL NA, 24 h, 37 ◦C, E. coli,

S. typhimurium BS [131]

37 Coprecipitation method
Fe3O4,

Fe2O3 coated by
chitosan

10–20 Sph 2.5–50 µM NB, 37 ◦C B. subtilis,
E. coli BC [78]

38 Coprecipitation Fe3O4 coated by
chitosan ~11 Sph 30–40 µg/mL

TSA for bacteria,
YEPD for C. albicans,

CYA for
A. niger, Potato

sucrose agar for F.
solani.

48 h at 30 ◦C

A. niger,
B. subtilis,
C. albicans,

E. coli,
F. solani

BS [90]

39 Coprecipitation method
Fe2O3, FeO,
coated by

gentamicin
10–15 Sph 200 µg/mL LB broth, 24 h, 37

◦C

B. subtilis,
E. coli,

P. aeruginosa,
S. aureus

BC [79]

40 Coprecipitation Fe3O4 20–25 - 5–80 µg/mL NB, 24 h, 37 ◦C B. cereus,
K. pneumoniae, BS, BC [132]
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Table 2. Cont.

№ Synthesis Method Composition Size, nm Shape Concentration Medium,
Conditions Microorganism Biological

Effect Ref

41

Coprecipitation using
Glycosmis

mauritiana water extract as a
reducing agent

Fe3O4 <100 Sph 10–30 µg/µL MHA, 24 h, 37 ◦C,

E. coli,
K. pneumoniae,
P. aeruginosa,

S. aureus

BS [80]

BHI—Brain heart infusion, BS—bacteriostatic effect, BC—bactericidal effect, Hexag—hexagonal, IONPs—iron oxide nanoparticles, LB—lysogeny broth, MHA—Mueller–Hinton Agar, NA—Nutrient Agar,
NB—Nutrient broth, PDA—Potato dextrose agar, Rod—rod-shaped, Sph—spherical, TEPSA—3-(triethoxysilyl) propylsuccinic anhydride, TPED—N-[3-(trimethoxysilyl)propyl] ethylenediamine, TSB—Tryptic
soy broth, YEA—Czapek yeast extract agar, and YEPD—yeast extract peptone dextrose.
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Fe3O4 NPs synthesized with a Couroupita guianensis extract inhibited the growth of E.
coli, S. typhimurium, K. pneumoniae, and S. aureus and induced the apoptosis of the hepato-
cellular carcinoma (HepG2) cell line [81]. IONPs synthesized in a Ruellia tuberosa extract
inhibited the growth of E. coli, K. pneumoniae, and S. aureus in a dose-dependent manner.
The IONP effectiveness turned to be higher than that of streptomycin. The mechanism of
antimicrobial action is the photocatalytic generation of ROS [74]. Fe2O3/Citrus sinensis NPs
exerted a comparable bacteriostatic action against Gram-positive (B. subtilis and S. aureus)
and Gram-negative (E. coli and P. aeruginosa) bacteria. The inhibitory effect of Fe2O3/Citrus
sinensis NPs was comparable with chlorhexidine, hexachlorophene, benzalkonium chloride,
and phenol taken in equal concentrations [121]. α-Fe2O3 NPs, in combination with a Sida
cordifolia extract, had comparable bacteriostatic activity against E. coli, K. pneumoniae, B.
subtilis, and S. aureus. The bacteriostatic effect against Gram-positive bacteria was more
strongly pronounced and was comparable with the effect of neomycin [119]. Unfortunately,
for several extracts—for example, Couroupita guianensis—“green synthesis” leads to an
enhancement of IONP cytotoxicity [81]. In another study, the antioxidant properties were
described for Fe3O4 NPs synthesized by the “green method” [87]. In a meta-analysis,
we found that IONPs generated by the “green synthesis” method had three times more
pronounced bacteriostatic activity than IONPs generated by the coprecipitation method
(Figure 2c).

2.6. Additional Methods for Increasing the Antimicrobial Activity of IONPs

Iron oxide nanoparticles have both magnetic and paramagnetic properties [68,87,102–104].
The use of an alternating magnetic field allows additional increases in the bactericidal
action of Fe3O4 NPs against E. coli and S. aureus, causing cell death and biofilm destruction
due to the photocatalytic generation of ROS, and local hyperthermia and vibration damage
occurred under the action of the magnetic field. All of the above-mentioned factors lead to
the dissociation of bacteria from the biofilm, damage of the bacterial cell wall, membrane
rupture, the fusion of different cells with each other, and death [69].

Fe2O4 composite NPs with the addition of different ratios of Co and Mn have magnetic
properties due to Fe2O4 and inhibit the growth of E. coli and cause damage to E. coli and B.
subtilis in a dose-dependent manner [102].

IONP conjugation with carbon nanotubes allows achieving a bactericidal effect against
Gram-negative (E. coli and K. pneumoniae) and Gram-positive (Staphylococcus aureus) bacte-
ria; with that, the CFU were reduced by two and more times compared to the control [77].
Carbon nanotubes/IONPs accelerated wound healing in mice in a wound-healing test
by 25% and 50% compared to IONPs or carbon nanotubes taken individually. It is worth
noting that, in this study, the size of the inhibition zone increased insignificantly upon a
considerable decrease in the CFU; therefore, the antimicrobial effect of IONPs assessed by
a size of the inhibition zone in the majority of studies can be underestimated. In contrast to
other IONPs types, Fe3O4 IONPs coated with oleic acid exert a different effect on the growth
and viability of Gram-positive (Enterococcus hirae) and Gram-negative (E. coli) bacteria.
More pronounced antimicrobial action was observed against Gram-negative bacteria [127].
The authors linked this phenomenon with differences in the cell wall structure; in particular,
with the ability of Fe3O4 IONPs to concentrate between the outer and inner membranes of
the cell wall in Gram-negative bacteria and the presence of the FHL complex in the inner
membrane of E. coli, which is an additional target for IONP Fe3O4. Fe3O4 NPs covered with
oleic acid cause a reduction in the growth of kanamycin- and ampicillin-resistant E. coli
strains due to retardation of the logarithmic growth phase, lag phase extension, reduction
of the H+ flow through the membrane, and redox potential [85,131]. IONPs coated with
oleic acid not only inhibit the growth of S. aureus and P. aeruginosa but also prevent biofilm
formation [131].

Surface modification is also a key way to improve IONP the antibacterial proper-
ties [78] The conjugation of IONPs with chitosan enhanced the bactericidal action of IONPs
against Bacillus subtilis and Escherichia coli due to ROS generation [78].
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Fe3O4 NPs covered with polyethylene glycol (PEG) exert a dose-dependent bacterici-
dal action against the E. coli and S. aureus and antibiotic-resistant Micrococcus luteus strain.
The mechanism of toxicity resides in a decrease in the activity of the antioxidant system
enzymes (SOD, catalase, and glutathione reductase) and, as a consequence, enhancement
of ROS generation and lipid oxidation [67].

Fe3O4 NPs conjugated with chitosan have bactericidal and fungicidal actions against
Candida albicans, Aspergillus niger, and Fusarium solani [90]. Coating with alginate or to-
bramycin did not have a significant effect on the bacteriostatic activity of Fe3O4 NPs against
P. aeruginosa [84].

Conjugation with polyethylene glycol (PEG) and chitosan allows not only improving
the antimicrobial properties of IONPs but also reducing the undesirable adsorption of
IONPs on liver macrophages [133,134].

One of the methods for improving the antimicrobial properties is the use of a com-
bination of “green synthesis” and a change in the NP compositions—for example, the
addition of gold. The bacteriostatic effect of the mixture Urtica/α-Fe2O3•Ag NPs against
S. aureus, Bacillus sp., Klebsiella sp., and E. coli was higher compared to Urtica/α-Fe2O3
NPs. An increase in the inhibition zone was proportional to the silver concentration in the
composite. Both Urtica/α-Fe2O3•Ag NPs and Urtica/α-Fe2O3 NPs had more pronounced
effects on the growth of the Gram-negative strains [36]. Some of the mechanisms of action
of Fe3O4 and Ag NPs are membrane damage, a decrease in the redox potential, and H+

fluxes, which lead to the inhibition of the activity of bacterial Fo/F1-ATPase [131].
The combined use of NPs from iron oxides and gold does not reduce the growth of

the bacterial biomass of the E. coli culture but prevents bacterial cell division [75]; as a
consequence, E. coli alters their morphology from rods to filaments with a length of several
micrometers. The mixture of Fe3O4 and Au NPs inhibits the growth of the kanamycin-
resistant Escherichia coli and Salmonella typhimurium strains more effectively than Fe2O3
NPs [75].

An approach to an improvement in the antimicrobial properties of IONPs by their
conjugation with antibiotics is described by the example of gentamicin [79]. With that,
a more pronounced bacteriostatic effect was achieved against Gram-positive B. subtilis
and S. aureus than Gram-negative E. coli and P. areuginosa. A conjugation with gentamicin
reduced the minimum inhibitory concentration against all indicated strains by more than
ten times [79]. In several cases, the conjugation of IONPs with antibiotics can give an
opposite result. IONPs conjugated with amoxicillin enhanced the growth of Pseudomonas
aeruginosa and Staphylococcus aureus [86]. The presence of organic acids (humic acid) addi-
tionally accelerates bacterial growth. In general, it is possible to significantly influence the
antimicrobial activity of IONPs by additives, coatings, and conjugates, which, undoubtedly,
can be promising in the development of this direction.

2.7. Biocompatibility of IONPs

It is shown that IONPs have good biocompatibility and biodegradability. In particular,
the intravenous injection of 0.8 mg/kg of γ-Fe2O3 NPs did not influence the weight gain in
rats or cause the activation of apoptosis in HUVEC cells [61]. After intravenous injection,
NPs were found in rat lungs, liver, and kidneys but not in the brain or heart. A significant
proportion of NPs was eliminated with urine after 72 h [61]. In general, IONPs show
an absence or low cytotoxic effects on cell cultures. For example, no adverse effect of
IONPs coated with polyethyleneimine, dimercaptosuccinate, or citrate on primary rat
cerebellar cortex astrocytes and cultured murine astrocytes was observed [62,135]. IONPs
conjugated with PEG-phospholipids (WFION) did not influence the viability of the B16 F10
cell line at doses up to 0.75-mg Fe/mL [136]. Fe3O4 NPs show a bacteriostatic effect and,
at the same time, do not exert a hemolytic action [66,70]. In several cases, IONPs enhance
Casp3-dependent apoptosis in HUVEC cells, cause ROS generation, membrane damage,
changes in the cytoskeleton, and so on [137]. In general, the cytotoxic properties of IONPs
are manifested at much higher concentrations than the antimicrobial properties.
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2.8. Disadvantages of IONPs

The disadvantages of IONPs include relatively weak antimicrobial action against
several strains and insufficient biocompatibility with eukaryotic cells. For example, Fe2O3
NPs inhibit the growth of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa,
and Bacillus subtilis less effectively than ZnO and CuO NPs. The inhibitory action of
Fe2O3 NPs on Escherichia coli growth was lower than that of ZnO and CuO NPs [138].
This effect may be explained by differences in the antibacterial properties of considered
metals. Iron Fe2+ is necessary for the proliferation of bacteria [31]. Fe3+ inhibited E. coli
growth in concentrations above 0.25–1 mM, but Fe3+ had only a bacteriostatic effect without
bactericidal action [139]. Zn2+ and Cu+ decrease the viability of Staphylococcus aureus and
Escherichia coli in concentrations of 2.41 and 0.46 mM, respectively [140]. Fe NPs exert more
pronounced bacteriostatic actions against Pseudomonas aeruginosa than Fe3O4 NPs [84]. Lee
et al. [97] did not observe the bactericidal action of Fe3O4 NPs against E. coli contrary to Fe
NPs, Ag NPs, or FeSO4 NPs. Fe2+ from IONPs in the presence of humic acid can enhance
the growth of Pseudomonas aeruginosa [86]. The bacteriostatic action of Fe3O4 NPs against
various microbial species differs significantly [8]. Fe3O4 NPs effectively inhibits the growth
of Staphylococcus epidermidis, Staphylococcus aureus, Bacillus licheniformis, and Bacillus subtilis.
The effect is comparable with the action of neomycin. With that, Fe3O4 NPs are two times
less effective at inhibiting the growth of Bacillus brevis and Vibrio cholerae than neomycin
and absolutely do not influence the growth of Shigella flexneri and Pseudomonas aeruginosa.

Unfortunately, IONPs has not only bacteriostatic and bactericidal activities but toxicity
for some eukaryotic cell lines [108]. The main mechanism of IONP toxicity is the production
of ROS, which leads to increasing the level of lipid peroxidation, decreasing the antioxidant
enzymes, and protein aggregation [141–144]. IONPs can lead to cell iron overload. Iron
overload causes serious deleterious and leads to cell death [142,143]. In addition, a high
dose of IONPs increases the lipid metabolism, the breakage of iron homeostasis, and
exacerbates the loss of murine liver functions in vivo [145].

The IONP applications in biomedicine are limited due to a lack of control and predic-
tion of the final IONP properties, such as IONP interactions with cells [146]. An important
aspect of IONPs in biomedical applications is their surface chemistry [147]. The coating
of IONPs by PEG reduces protein adsorption, increases stability to the IONPs, decreases
the IONP uptake by culture cells in and by entire organisms in vivo, and increases IONP
retention times in the blood flow [148–150]. Unfortunately, PEG can be oxidized by host
enzymes, which leads to a loss of some PEG-IONP proteins [148]. Proteins are commonly
the first biomolecules that IONPs encounter when they interact with biological systems
in vitro or in vivo [146]. IONPs may be coated by bovine serum albumin (BSA) or fetal
bovine serum [151]. BSA forms a protective layer on the NPs to improve the biocompat-
ibility and transport of the IONPs. BSA-coated IONPs allow to accumulate the drug in
the tumor due to an enhanced permeability and retention and to reduce the risk of hyper-
sensitivity reactions [152]. Drugs released from BSA-coated IONPs can be triggered by
protease digestion in target tissues, and finally, the unfolding BSA protein on the IONPs can
facilitate their clearance by phagocytes after drug delivery [153]. Additionally, BSA coating
supports the colloidal stability of the IONPs in cell culture experiments [151]. Multiple
specialized characterization methods are widely used to characterize IONP surfaces: TEM,
UV-visualization, MD simulation, isothermal titration calorimetry, ζ-potential measuring,
etc. [151]. The antibacterial properties of BSA-IONPs remain unclear.

3. Conclusions

IONPs have found wide applications in different fields of biomedicine. The antibacte-
rial activities of IONPs are of special interest. However, the situation with the antimicrobial
activities of IONPs is ambiguous. On the one hand, the antibacterial activities of IONPs
depend, to a significant extent, on the microbial strain, and the inhibitory actions of IONPs
are often less pronounced than that of NPs of other metal oxides (CuO or ZnO). On the
other hand, IONPs show less-pronounced cytotoxic properties and better biocompatibility
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in vivo compared to CuO or ZnO NPs. We assume that, in the near future, IONPs will
allow achieving a balance between antimicrobial actions and biocompatibility in vivo. In
this case, IONPs can be considered potential antimicrobial agents of the new generation.
Based on the analyzed data, we believe that the most promising method for increasing the
antimicrobial properties of IONPs and improving biocompatibility is “green synthesis”
and other variants of the additive or composite generation of nanoparticles.
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