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Abstract: Most of the existing methods developed for predicting antibacterial peptides (ABPs) are
mostly designed to target either gram-positive or gram-negative bacteria. In this study, we describe
a method that allows us to predict ABPs against gram-positive, gram-negative, and gram-variable
bacteria. Firstly, we developed an alignment-based approach using BLAST to identify ABPs and
achieved poor sensitivity. Secondly, we employed a motif-based approach to predict ABPs and
obtained high precision with low sensitivity. To address the issue of poor sensitivity, we developed
alignment-free methods for predicting ABPs using machine/deep learning techniques. In the case of
alignment-free methods, we utilized a wide range of peptide features that include different types
of composition, binary profiles of terminal residues, and fastText word embedding. In this study,
a five-fold cross-validation technique has been used to build machine/deep learning models on
training datasets. These models were evaluated on an independent dataset with no common peptide
between training and independent datasets. Our machine learning-based model developed using
the amino acid binary profile of terminal residues achieved maximum AUC 0.93, 0.98, and 0.94 for
gram-positive, gram-negative, and gram-variable bacteria, respectively, on an independent dataset.
Our method performs better than existing methods when compared with existing approaches on an
independent dataset. A user-friendly web server, standalone package and pip package have been
developed to facilitate peptide-based therapeutics.

Keywords: antibacterial peptides; fastText Embeddings; therapeutic peptides; gram-positive/negative/
variable bacteria; machine learning; deep learning; similarity search

1. Introduction

Since their initial discovery, the widespread use of antibiotics has resulted in the emer-
gence of drug-resistant strains of pathogenic bacteria [1]. Peptide-based therapeutics have
gained considerable attention in the last few decades to manage drug-resistant strains of
bacteria. Antibacterial peptides (ABPs) are short oligopeptides of between 5 and 100 amino
acid residues [2–4]. They are distinguished by their cationic nature and enriched with cer-
tain amino acids such as Arginine and Lysine. These peptides have amphipathic properties,
which aid in their incorporation into pathogen cell membranes (Figure 1) [5,6]. Additionally,
ABPs can employ intracellular modes of action, such as modulating enzymatic activity,
protein degradation and synthesis, and nucleic acid synthesis. This multifaceted mode of
action provides an advantage over traditional antibiotics in terms of reduced development
of resistance [2,4,7,8].

Though experimental methods are highly accurate, they are not suitable for high
throughput, as these are time-consuming, labour-intensive, and expensive (Figure 1) [9–12].
To address this challenge, numerous in silico methods have been developed for predicting
antibacterial peptides. In 2007, Lata et al. developed a method of AntiBP using machine
learning (ML) techniques to classify antibacterial and non-antibacterial peptides [13]. Since
then, numerous prediction models have been developed that include AmpGram, AI4AMP,
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AMPfun, and AMPScanner [14–23]. In addition, attempts have been made to develop
class-specific prediction servers, like AntiBP2, for predicting the source of antibacterial
peptides [24–26].
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Figure 1. Overview of Antibacterial Peptides: Properties, Mechanisms, Assays, Structures, and
Synthesis Type.

One of the most significant disadvantages of present approaches is their inability to
address all bacterial types, notably gram-(indeterminate/variable) bacteria, which cannot
be detected by gram-staining methods. Furthermore, the models are often trained on
limited data that are no longer a representation of the current state of the field. In order
to complement the existing method, a conscious and systematic effort was undertaken to
address the aforementioned shortcomings. The focus of this study is to build prediction
models capable of identifying antibacterial peptides for all categories of bacteria, including
gram-variable strains, by leveraging large and diverse datasets.

2. Results
2.1. Compositional Analysis

We calculated the composition of amino acids for three groups of ABP training datasets.
The graph in Figure 2 depicts a comparison of average compositional analyses for the
three groups of ABPs. In the case of the gram-positive (GP) ABPs dataset, amino acids
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such as Leu, Lys, Arg, Cys, and Trp have a higher average composition compared to
non-ABPs. Regarding the gram-negative (GN) ABPs, the average composition of residues
like Leu, Lys, Arg, Trp, and Pro is higher. Similarly, for the gram-variable (GV) ABPs, the
amino acids Leu, Lys, Arg, and Trp have a higher composition, respectively, compared
to non-ABPs. It is important to note that different types of ABPs (e.g., GP, GN, GV) have
different compositions for different amino acids; for example, see the composition of
residues Cys, Lys, and Arg. These observations indicate that each group of ABPs has
different properties.
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variable bacteria.

2.2. Positional Conservation Analysis

We conducted positioning analyses for our three sets of ABPs to determine preference
patterns. As shown in Figure 3, residues like Lys, Arg, Ala, Leu, and Phe predominate in
the first position of GP ABPs at the N-terminus, whereas Leu, Arg, and Trp are commonly
found in the second position, while the C-terminus of GP ABPs is dominated by residues
Gly, Trp, Arg, and Lys. At the N-terminus of GN ABPs, residues like Lys, Val, Arg, Leu,
and Phe predominated in the first position, whereas Lys, Leu, Arg, Trp, and Phe were
commonly found in the second position. Similarly, at the C-terminus, specific residues
are favoured; for example, residues Lys, Arg, Leu, and Trp are present at most locations.
In the case of GV ABPs at the N-terminus, the first position is favoured by Gly, Phe, Lys,
Arg, Ile, and Leu, whereas Leu, Trp, Lys, Ile, Arg, and Phe were often found in the second
position. Meanwhile, the C-terminus is dominated by the residues Lys, Leu, Arg, Trp, Phe,
Ile, and Gly. Overall, when the amino acid composition of ABP and non-ABP is compared,
positively charged Lys and Arg are predominant in antibacterial peptides (see Figure 3).
Similarly, Gly and Leu propensity are high in ABPs because they are hydrophobic in nature,
which aids in bacterial lipid membrane integration.
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Figure 3. Two sample logo (TSL) representations of ABPs ((A) Gram-positive, (B) Gram-negative, and
(C) Gram-variable bacteria) showing preferred positions for amino acids. Here, the first eight residues
belong to the N-terminus, while the last eight residues belong to the C-terminus of the peptide.

2.3. Performance of BLAST-Search

We utilised BLAST to query the ABPs of the validation dataset against sequences in
training datasets. Various e-values were used to determine the optimal e-value at which the
BLAST module performed the best. Hits were obtained from the total number of peptides
in the validation set (372 for GP ABPs, 582 for GN ABPs and 3594 for GV ABPs). Results for
e-value for three groups of ABPs from 10−20 to 103 for GP ABPs, GN ABPs, and GV ABPs
are shown below in Table 1. Though the number of hits grows with increasing e-values,
performance suffers as it allows incorrect hits.
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Table 1. Comparison of performance among BLAST modules at different e-values for GP, GN, and
GV ABPs.

e-Value
Hits Correct Hits Incorrect Hits Percentage of Correct Hits

GP GN GV GP GN GV GP GN GV GP GN GV

10−20 39 30 470 39 28 450 0 2 20 100 93 96

10−10 110 138 1188 104 133 1042 6 5 146 95 96 88

10−06 150 234 1516 141 226 1301 9 8 215 94 97 86

0.0001 173 262 1730 162 253 1477 11 9 253 94 97 85

0.001 195 284 1925 181 275 1649 14 9 276 93 97 86

0.01 211 326 2114 196 315 1809 15 11 305 93 97 86

0.1 230 362 2326 211 349 1992 19 13 334 92 96 86

1 272 416 2608 242 395 2228 30 21 380 89 95 85

10 329 506 3222 268 462 2658 61 44 564 81 91 82

50 357 552 3488 286 489 2840 71 63 648 80 89 81

100 359 557 3537 289 492 2869 70 65 668 81 88 81

200 361 564 3560 290 498 2884 71 66 676 80 88 81

1000 366 571 3584 295 500 2902 71 71 682 81 88 81

GP: gram-positive, GN: gram-negative, GV: gram-variable.

2.4. Performance of Motif-Based Approach

We discovered GP, GN, and GV-associated motifs from training datasets of three ABP
groups using MERCI. The training dataset was used to identify discriminatory patterns
for each group, and the existence of these motifs was then utilized to give group labels to
each peptide sequence in the validation dataset. The number of distinct motifs at three
different frequencies in the training set and the proportion of accurate motifs discovered in
the validation dataset for each group are shown in Table 2.

Table 2. Number of unique motifs found in GP, GN, and GV ABPs at three different frequencies in
the training and validation dataset.

Training Set Validation Set

Category of
ABPs

Frequency of
a Motif

Number of
Motifs

Total
Occurrence

Coverage
(No. of

Sequence)

Test File
Coverage

(No. of
Sequence)

Correct
Hits

Percentage
of Correct

Hits

Gram-positive

fp10 329

6105

285 44 35 79.55%

fp20 126 122 19 16 84.21%

fp30 14 92 14 12 85.71%

Gram-negative

fp10 778

14,136

735 233 206 88%

fp20 217 455 152 142 93%

fp30 81 302 117 113 97%

Gram-variable

fp10 3079

47,627

3268 774 665 86%

fp20 651 1585 343 321 94%

fp30 121 826 168 163 97%

The motifs like ‘YGN, YGNG, YGNGV, and NNG’ are solely present in GP antibacterial
peptides. Alternatively, the motifs ‘RPPR, PRPR, RRIY, and LPRP’ are exclusively found in
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GN antibacterial peptides. Similarly, motifs such as ‘KKLLKK, RIVQ, SKVF, and RIVQR’
are only found in GV antibacterial peptides. The detailed results of the top 10 motifs in
GP, GN, and GV ABPs at fp10 are provided in Table 3. The total number of occurrences
of the top 10 exclusive motifs for GP, GN, and GV is 373, 682, and 509, while the coverage
sequences are 90, 107, and 275, respectively.

Table 3. Top 10 Motifs exclusively present in GP, GN, and GV antibacterial peptide sequences at fp10.

S. No.

Gram-Positive Gram-Negative Gram-Variable

Motifs Hits
(No. of Sequences) Motifs Hits

(No. of Sequences) Motifs Hits
(No. of Sequences)

1 YGN 47 RPPR 78 KKLLKK 63

2 YGNG 47 PRPR 74 RIVQ 54

3 NNG 44 RRIY 71 SKVF 52

4 YGNGV 38 LPRP 67 RIVQR 51

5 YYGN 36 IYN 67 IVQRI 50

6 YYGNG 36 IYNR 66 KRIVQ 49

7 VDW 34 PRRI 65 VVIR 48

8 NGLP 31 PRRIY 65 RWWR 48

9 PTGL 30 RIYN 65 DFLR 47

10 RCRV 30 RRIYN 64 RIVQRI 47

2.5. Machine Learning-Based Models

We created three independent prediction models on training datasets of three groups
of ABPs, utilizing different ML classifiers such as Random Forest (RF), Decision Tree (DT),
Gaussian Naive Bayes (GNB), Logistic Regression (LR), Support Vector Classifier (SVC),
K-Nearest Neighbour (KNN), and Extra Tree (ET), and analyzed the performance of these
models on different feature sets.

2.5.1. Performance of Composition-Based Models

In this section, we computed the performance of 17 distinct compositional features.
We discovered that ET-based classifiers outperformed all other classifiers by comparing
the AUC-ROC curves (see Figure S1). Using AAC-based features, we achieved maximum
performance on the validation set with an AUC of 0.94 and MCC of 0.75 for GP ABPs.
Similarly, employing PCP-based features on the validation set, we obtained comparable
results (i.e., AUC = 0.94 and MCC = 0.72). Other composition-based features perform well
across all three datasets. In the case of GN ABPs, we attain a maximum AUC of 0.98 and
MCC of 0.86 using AAC-based features. On the validation set of GN ABPs, all other
features likewise operate admirably. While using AAC-based features in the case of GV
ABPs, we achieved an AUC of 0.95 and MCC of 0.74 on the validation set. Here, APAAC
also performs better on the validation set, whereas SOC, BTC, and SEP underperform. The
complete training and testing dataset results on all features for GP, GN, and GV ABPs are
provided in Table 4, and the rest of the results are provided in Tables S1–S3.

2.5.2. Performance of Binary Profile-Based Features

We also built machine learning-based models using binary profiles of N, C, and NC
terminals to incorporate information about frequency as well as the order of residues
(Table 5). For different binary profile features in the GP ABPs dataset, the RF, SVC, and
ET models outperform all other classifiers. On the training set, AAB performed best for
the NC-terminal, with AUC and MCC of 0.91 and 0.64, respectively, and a similar trend
was found in the validation set, with AUC and MCC of 0.93 and 0.66, respectively. (The
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complete result is provided in Tables S4–S6.) Similarly, for the GN ABPs dataset, the ET
and SVC models outperform all other classifiers. Here, all the binary features perform
quite well and show the highest AUC of 0.98 on the validation set for the NC-terminal with
an MCC of 0.86. For the GV ABPs dataset, the SVC and RF models perform best among
all other classifiers for the binary profile features. A similar trend was found here also, as
the NC-terminal performed best for binary features on the training set, with an AUC of
0.92, and also performed well on the validation set, with an AUC of 0.94. Therefore, the
models developed using the binary profile features of the NC-terminal perform superior
to individual N and C termini, suggesting that both the N and C-terminals are crucial in
distinguishing gram-positive ABPs from non-ABPs.

Table 4. The performance of extra tree models developed using 17 types of composition-based
features on training and validation datasets, evaluated on GP, GN, and GV ABPs.

Feature
Type

Training Set Validation Set

GP GN GV GP GN GV

AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC

AAC 0.93 0.71 0.96 0.80 0.93 0.71 0.94 0.75 0.98 0.86 0.95 0.74

DPC 0.91 0.68 0.95 0.77 0.92 0.70 0.93 0.72 0.98 0.86 0.92 0.70

ATC 0.84 0.52 0.91 0.69 0.86 0.58 0.84 0.51 0.95 0.78 0.89 0.62

BTC 0.75 0.36 0.79 0.43 0.76 0.38 0.70 0.29 0.84 0.51 0.76 0.37

CTC 0.88 0.59 0.94 0.75 0.90 0.68 0.90 0.68 0.97 0.82 0.91 0.71

PCP 0.91 0.64 0.95 0.76 0.91 0.67 0.94 0.72 0.97 0.84 0.93 0.72

AAI 0.91 0.67 0.95 0.77 0.91 0.68 0.92 0.71 0.97 0.86 0.92 0.73

RRI 0.89 0.61 0.94 0.75 0.91 0.68 0.91 0.66 0.97 0.82 0.92 0.69

PRI 0.87 0.58 0.94 0.72 0.90 0.66 0.88 0.63 0.97 0.80 0.91 0.67

DDR 0.91 0.65 0.94 0.73 0.91 0.69 0.93 0.67 0.97 0.80 0.92 0.72

SEP 0.61 0.18 0.72 0.37 0.74 0.35 0.60 0.16 0.80 0.44 0.79 0.45

SER 0.92 0.67 0.96 0.78 0.92 0.71 0.92 0.69 0.97 0.86 0.93 0.72

SPC 0.90 0.64 0.94 0.76 0.90 0.67 0.92 0.71 0.96 0.81 0.92 0.71

PAAC 0.93 0.70 0.96 0.80 0.92 0.71 0.93 0.72 0.97 0.87 0.93 0.74

APAAC 0.93 0.70 0.96 0.79 0.92 0.71 0.93 0.72 0.98 0.87 0.95 0.75

QSO 0.92 0.70 0.96 0.79 0.92 0.71 0.93 0.73 0.97 0.84 0.93 0.73

SOC 0.66 0.20 0.76 0.39 0.61 0.15 0.64 0.27 0.79 0.43 0.64 0.20

MCC: Matthews correlation coefficient, AUC: Area under the receiver operating characteristic curve, AAC: Amino
acid composition, APAAC: Amphiphilic pseudo amino acid composition, DDR: Distance distribution of residue,
DPC: Di-peptide composition, QSO: Quasi-sequence order, PCP: Physico-chemical properties composition, PAAC:
Pseudo amino acid composition, RRI: Residue repeat information, SPC: Shannon entropy of physicochemical
properties, ATC: Atomic composition, BTC: Bond type composition, CTC: Conjoint triad descriptors, AAI: Amino
acid index, PRI: Property repeats index, SEP: Shannon entropy of a protein, SER: Shannon entropy of a residue,
SOC: Sequence order coupling number, GP: gram-positive, GN: gram-negative, GV: gram-variable.

2.5.3. Performance of Word Embedding Features

In this feature extraction method, we wanted to assess the efficiency of different seg-
mentation sizes and the n-gram mixture employed. We evaluated the overall performance
of several classifiers from each ABP group in both training and testing tests. The outcomes
of the classifiers are shown in Table 6. Among the four segmentation sizes, the feature
type corresponding to biological words of length one and two contributed to the best
overall average performance for all groups using an ET-based model. This demonstrates
the significance of individual amino acid residues in an antibacterial peptide sequence. The
complete results are provided in Table S7.
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Table 5. The performance of ML models, developed using binary profiles-based features at different
terminals on training and validation datasets, evaluated on GP, GN, and GV ABPs.

Feature Type Terminal
Training Set Validation Set

AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC

Category of ABP (Model) GP (RF) GN (ET) GV (SVC) GP (RF) GN (ET) GV (SVC)

AAB

N 0.90 0.62 0.94 0.74 0.92 0.70 0.92 0.67 0.97 0.85 0.93 0.73

C 0.87 0.59 0.92 0.68 0.89 0.64 0.86 0.55 0.95 0.79 0.89 0.63

NC 0.91 0.64 0.95 0.75 0.92 0.73 0.93 0.66 0.98 0.86 0.94 0.74

Category of ABP(Model) GP (SVC) GN (SVC) GV (RF) GP (SVC) GN (SVC) GV (RF)

DPB

N 0.88 0.59 0.93 0.72 0.48 −0.10 0.89 0.63 0.97 0.80 0.86 0.52

C 0.85 0.54 0.91 0.67 0.88 0.59 0.85 0.53 0.95 0.77 0.86 0.56

NC 0.90 0.64 0.94 0.73 0.91 0.67 0.91 0.68 0.98 0.87 0.67 0.32

Category of ABP(Model) GP (ET) GN (ET) GV (SVC) GP (ET) GN (ET) GV (SVC)

AIB

N 0.89 0.59 0.94 0.74 0.92 0.71 0.91 0.65 0.97 0.85 0.93 0.69

C 0.88 0.56 0.92 0.69 0.89 0.65 0.88 0.57 0.96 0.76 0.89 0.64

NC 0.91 0.65 0.95 0.73 0.92 0.73 0.93 0.69 0.98 0.85 0.94 0.73

Category of ABP (Model) GP (RF) GN (ET) GV (SVC) GP (RF) GN (ET) GV (SVC)

PCB

N 0.90 0.64 0.94 0.72 0.91 0.70 0.92 0.63 0.97 0.84 0.93 0.73

C 0.88 0.61 0.91 0.67 0.88 0.62 0.86 0.57 0.94 0.74 0.88 0.63

NC 0.91 0.64 0.94 0.73 0.92 0.72 0.93 0.70 0.98 0.86 0.94 0.75

MCC: Matthews correlation coefficient, AUC: Area under the receiver operating characteristic curve, AAB: Amino
acid-based binary profile, DPB: Dipeptide-based binary profile, PCB: Physico-chemical properties based binary
profile, AIB: Amino-acid indices based binary profile, GP: gram-positive, GN: gram-negative, GV: gram-variable,
RF: Random forest classifier, ET: Extra-tree classifier, SVC: Support vector classifier.

Table 6. The performance of best ML models developed using FastText-based features on training
and validation datasets, evaluated on GP, GN, and GV ABPs.

Feature
(n-Gram Size)

Training Set Validation Set

GP GN GV GP GN GV

AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC

1 g 0.91 0.67 0.95 0.77 0.89 0.64 0.92 0.68 0.97 0.84 0.92 0.71

2 g 0.91 0.66 0.94 0.75 0.92 0.71 0.91 0.71 0.97 0.82 0.93 0.74

3 g 0.87 0.57 0.92 0.70 0.91 0.68 0.84 0.56 0.96 0.82 0.92 0.68

2 g & 3 g
Combined 0.91 0.66 0.95 0.77 0.92 0.73 0.90 0.65 0.97 0.82 0.93 0.73

MCC: Matthews correlation coefficient, AUC: Area under the receiver operating characteristic curve. Best ML-
model: for GP and GN ABP; 1 g, 2 g, and 2 g & 3 g combined = ET (Extra-tree) classifier, while for GV ABP; 1 g,
2 g, and 2 g & 3 g combined = SVC (Support vector classifier). For 3 g in all three ABPs = LR (Linear regression)
performed best.

2.6. Deep Learning-Based Models

We built prediction models on training datasets of GP ABPs, utilizing different deep
learning (DL) classifiers such as artificial neural networks (ANN), recurrent neural networks
(RNN), convolutional neural networks (CNN) and long short-term memory (LSTM), and
analyzed their performance on three different feature sets. By comparing the AUC-ROC
curves on different sets of features of GP APBs, we discovered that ML-based classifiers
outperformed all DL-classifiers (see Figures 4–6).
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The performance of all ML and DL-based models on the top-performing amino acid
binary feature of the NC-terminal of GP ABPs is shown in Table 7. Among all the ML
models, RF outperforms with an AUC and MCC of 0.93 and 0.71, while in the case of
DL models, ANN performs better with an AUC and MCC of 0.89 and 0.62. The overall
performance of all DL models on compositional, binary, and word embedding features
of GP ABPs are provided in Tables S14–S16, respectively. We found that the DL models
performed significantly less effectively than the ML models on all feature sets of GP ABPs.
The one possible reason for observed lower performance of DL algorithms in this context
might be attributed to the comparatively limited dataset size, as DL performs better on
bigger datasets. Therefore, in order to reduce computational time and effort, we choose
not to run the DL models on the other two ABPs, i.e., GN and GV. As a result, we did not
proceed with the DL-based models in our further research.
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Table 7. The comparison of performance of DL and ML models on the validation dataset developed
using AAB-based features of the NC -terminal for gram-positive ABP.

Models Sn Sp FPR Acc AUC AUPRC F1 Kappa MCC

ML models

DT 64.5 79.6 20.4 72.0 0.78 0.74 0.70 0.44 0.45

RF 80.7 90.3 9.7 85.5 0.93 0.92 0.85 0.71 0.71

LR 72.0 86.0 14.0 79.0 0.89 0.89 0.78 0.58 0.59

KNN 71.0 85.0 15.1 78.0 0.88 0.87 0.76 0.56 0.57

GNB 70.4 79.6 20.4 75.0 0.79 0.80 0.74 0.50 0.50

ET 80.1 89.8 10.2 85.0 0.93 0.92 0.84 0.70 0.70

SVC 76.3 90.9 9.1 83.6 0.92 0.92 0.82 0.67 0.68
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Table 7. Cont.

Models Sn Sp FPR Acc AUC AUPRC F1 Kappa MCC

DL models

ANN 76.9 85.0 15.1 80.9 0.89 0.89 0.80 0.62 0.62

CNN 75.3 85.5 14.5 80.4 0.89 0.90 0.79 0.61 0.61

RNN 79.6 84.4 15.6 82.0 0.88 0.89 0.82 0.64 0.64

LSTM 68.8 85.0 15.1 76.9 0.85 0.86 0.75 0.54 0.54

Sn: Sensitivity, Sp: Specificity, Acc: Accuracy, MCC: Matthews correlation coefficient, AUC: Area under the
receiver operating characteristic curve, AUPRC: Area under the precision-recall curve, AAB: Amino acid-based
binary profile, RF: Random forest classifier, SVC: Support vector classifier, ET: Extra-tree classifier, KNN: K-
nearest neighbour, GNB: Gaussian naive bayes, LR: Logistic regression, ANN: Artificial neural network, CNN:
Convolution neural network, RNN: Recurrent neural network, LSTM: Long short-term memory.
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2.7. Performance of Cross-Prediction

We evaluated the performance of each binary features-based ML model on both
training and testing datasets (see Figure S2). In this study, we perform cross-prediction of
our best-performing models, i.e., RF-based, ET-based, and SVC-based models for GP, GN,
and GV ABPs, respectively, on different validation datasets, and the best performance is
highlighted in bold, shown in Table 8. The models perform best with their own datasets
and are significantly poorer when making predictions with different groups of validation
datasets. The AUC of the models falls with different sets of validation data, such as in the
case of gram-positive ABPs, where the model trained with GP ABPs has an AUC of 0.93 on
the GP validation dataset, drops to 0.89 and 0.91 on the GN and GV validation datasets. In
the case of GN ABPs, models attain an AUC of 0.98 on their own validation dataset and
drop to 0.85 and 0.93 on the GP and GV validation datasets, respectively. Similarly, the
AUC of the GV ABPs model on its own validation dataset is 0.94, which drops to 0.88 and
0.93 for GP and GN validation datasets. This trend indicates the necessity for developing
different models for each of the three groups of ABPs. We have also generated a confusion
matrix of the best-performing model using the binary feature AAB (NC-terminal), given in
Figure S3.

Table 8. The analysis of the cross-prediction performance of RF, ET, and SVC-based models for GP, GN,
and GV ABPs, respectively, using AAB binary feature of NC-terminal on different validation datasets.

Validation
Dataset

Performance
Measures

Models

Gram-Positive Gram-Negative Gram-Variable

Gram-positive
ABPs

Sn 80.7 50.0 67.7

Sp 90.3 89.3 87.6

Acc 85.5 69.6 77.7

AUC 0.93 0.85 0.88

AUPRC 0.92 0.83 0.87

MCC 0.71 0.43 0.57

Gram-negative
ABPs

Sn 66.0 92.4 91.1

Sp 89.4 94.9 87.3

Acc 77.7 93.6 89.2

AUC 0.89 0.98 0.93

AUPRC 0.85 0.98 0.92

MCC 0.57 0.87 0.78

Gram-variable
ABPs

Sn 80.2 76.2 83.9

Sp 87.4 92.0 90.1

Acc 83.8 84.1 87.0

AUC 0.91 0.93 0.94

AUPRC 0.89 0.93 0.93

MCC 0.68 0.69 0.74
Sn: Sensitivity, Sp: Specificity, Acc: Accuracy, MCC: Matthews correlation coefficient, AUC: Area under the
receiver operating characteristic curve, AUPRC: Area under the precision-recall curve.

2.8. Performance of Hybrid Approaches

From the above results, we have observed that AAB-based features for the NC terminal
outperformed for all three groups of ABPs prediction models. Therefore, to construct the
final predictions, we coupled BLAST similarity and MOTIF scores with best-performing
ML-model scores computed using AAB (NC-terminal) features.
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2.8.1. ML-Based Models with BLAST Search

In this study, in order to improve the performance of the individual ML models, we
developed three hybrid models using the BLAST + ML technique to categorise ABPs into
three categories. We began by using a similarity search (BLAST) to predict positive and
negative peptides. We calculated the performance of three hybrid models on validation
datasets using the best feature and best model at different e-value cut-offs. Once the ML
model has made the forecast, the presence of the hit is utilised to fine-tune the prediction.

In the case of GP ABPs, the performance of the hybrid approach with BLAST slightly
increases, more than the individual ML approach with AUC and AUPRC of 0.94 and
0.93, respectively, at an e-value of 10−20. However, there is no substantial increase in the
performance of the hybrid model using this method in the other two scenarios for GN and
GV ABPs, even at the lowest evaluated e-value of 10−20. The detailed results of the hybrid
model with this BLAST approach are provided in Tables S8–S10. These results indicate that
BLAST + ML is not better than ML alone.

2.8.2. ML-Based Models with Motif Approach

Similarly, we constructed hybrid models using the MOTIF-search and ML called
Motif + ML. First, we utilised the motif search to predict positive and negative peptides
based on whether or not a motif was detected in validation data. The best model’s score
is then added to the motif score to calculate the performance of three hybrid models on
validation datasets at varying frequencies. However, we observed the same pattern as
with the BLAST + ML strategy, with no substantial improvement in the performance of
the hybrid model. The detailed results of the hybrid model with this MOTIF approach are
provided in Tables S11–S13.

Overall, combining ML-based models with blast and motif approaches does not
outperform individual ML-based models.

2.9. Comparison with Other Prediction Tools

Our best-performing models were compared to five different ML and DL-based ABP
predictors, namely, AMPScanner vr.2, AI4AMP, iAMPpred, AMPfun, and ABP-Finder.
Currently, only a few tools, such as ABP-Finder and AMPfun, examine the distinction of an-
tibacterial peptide groups based on gram staining. Other techniques, such as AMPScanner
vr2, iAMPpred, and AI4AMP, predict whether or not the peptide has broad antibacterial
action. We evaluated the performance of existing methods on our validation datasets. In
the case of the two-stage classifier ABP-Finder, the performance was evaluated based on the
type of validation set employed, as it considers classes of antibacterial peptides. Predictions
of the validation set of GP ABPs are regarded as correct only if designated as gram-positive;
otherwise, predictions of gram-negative or both are considered incorrect. Similarly, the
accurate estimation for GN ABPs should be gram-negative, whereas predictions given as
gram-positive or both are incorrect. In the case of GV ABPs, showing predictions as both
are regarded right, whereas either gram-positive or gram-negative prediction is considered
incorrect. As we obtained output in binary form, AUC cannot be computed for the ABB-
finder. Similarly, the discrepancy in sensitivity and specificity for all other tools is very
large for all three sets of ABPs (Table 9). When we ran the validation set on our model, we
obtained AUC of 0.93, 0.98, and 0.94 for GP ABPs, GN ABPs, and GV ABPs, respectively,
which is greater than any of the abovementioned tools. Because of fewer false positives
and the greatest AUC, AntiBP3 is able to attain a balanced sensitivity and specificity.

2.10. Implementation of AntiBP3 Server

We integrated our best-performing models in AntiBP3, a user-friendly online server
(https://webs.iiitd.edu.in/raghava/antibp3/ (accessed on 20 November 2023)) that pre-
dicts antibacterial peptides for different groups of bacteria based on sequence informa-
tion for each entry. The web server includes five main modules: (i) Predict, (ii) Design,
(iii) Protein scan, (iv) BLAST scan, (v) Motif scan, and (vi) Package. The web server

https://webs.iiitd.edu.in/raghava/antibp3/
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(https://webs.iiitd.edu.in/raghava/antibp3 (accessed on 20 November 2023)), python
based standalone package (https://webs.iiitd.edu.in/raghava/antibp3/package.php (ac-
cessed on 20 November 2023)), GitLab (https://gitlab.com/raghavalab/antibp3 (accessed
on 20 November 2023)) and PyPI repository (https://pypi.org/project/antibp3/ (accessed
on 20 November 2023)) are freely-available to the community.

Table 9. The comparison of existing prediction tools with AntiBP3 on the validation dataset to
discriminate the three groups of ABPs, i.e., gram-positive, negative and variable.

Method Algorithm Sn Sp Acc AUC AUPRC MCC

gram-positive ABPs

AMPScanner vr2 CNN & LSTM 84.4 59.7 72.0 0.79 0.75 0.46

AI4AMP CNN & LSTM 82.8 86.6 84.7 0.90 0.82 0.69

iAMPpred SVM 79.6 60.8 70.2 0.75 0.71 0.41

AMPfun SVM 90.3 57.0 73.7 0.83 0.76 0.50

ABP-Finder RF 8.1 100.0 54.0 - - 0.21

AntiBP3 RF 80.7 90.3 85.5 0.93 0.92 0.71

gram-negative ABPs

AMPScanner vr2 CNN & LSTM 73.9 45.7 59.8 0.54 0.48 0.20

AI4AMP CNN & LSTM 67.7 59.8 63.8 0.62 0.55 0.28

iAMPpred SVM 75.6 44.0 59.8 0.57 0.51 0.21

AMPfun SVM 73.9 45.7 59.8 0.58 0.52 0.20

ABP-Finder RF 1.0 100.0 50.5 - - 0.07

AntiBP3 ET 92.4 94.9 93.6 0.98 0.98 0.87

gram-variable ABPs

AMPScanner vr2 CNN & LSTM 90.3 59.0 74.6 0.80 0.74 0.52

AI4AMP CNN & LSTM 91.5 86.2 88.8 0.93 0.88 0.78

iAMPpred SVM 89.8 61.2 75.5 0.78 0.71 0.53

AMPfun SVM 95.5 61.8 78.6 0.87 0.79 0.61

ABP-Finder RF 68.1 79.4 73.7 - - 0.48

AntiBP3 SVC 83.9 90.1 87.0 0.94 0.93 0.74

Sn: Sensitivity, Sp: Specificity, Acc: Accuracy, MCC: Matthews correlation coefficient, AUC: Area under the
receiver operating characteristic curve, AUPRC: Area under the precision-recall curve, SVM/SVC: Support vector
machine/classifier, RF: Random forest classifier, ET: Extra tree classifier, CNN: Convolution neural network,
LSTM: Long short-term memory.

3. Discussion

ABPs, belonging to the class of antimicrobials, play a crucial role in innate immunity
similar to defensins and exhibit potent activity against drug-resistant bacteria [27]. The field
of in silico prediction of antibacterial peptides has witnessed the development of various
methods. One of the major obstacles faced by researchers is the continuous updating of
these models to incorporate the latest information. In 2010, we developed AntiBP2 for
predicting ABPs, which was trained on a small dataset (999 ABPs and 999 non-ABPs).
Despite it being heavily used and cited by the scientific community, it has not been updated
since 2010. This is true with most of the existing methods. In this study, we made a
systematic attempt to develop prediction models using the most up-to-date information.
Rather than adopting a single generalised model like AntiBP2, here we developed different
bacterial group-specific methods for predicting ABPs, allowing us to capture the distinct
features and variations within each group. In this study, we created three prediction

https://webs.iiitd.edu.in/raghava/antibp3
https://webs.iiitd.edu.in/raghava/antibp3/package.php
https://gitlab.com/raghavalab/antibp3
https://pypi.org/project/antibp3/
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models to classify antibacterial peptides into three categories of ABP against gram-positive,
gram-negative, and gram-variable bacteria [28–30].

We developed numerous prediction models using alignment-free ML and DL tech-
niques from sequence-based features, including compositional and binary profiles. We
investigated every possible feature in an attempt to predict the various categories of ABPs
with high accuracy. We discovered that among all the compositional features-based models,
the model created utilizing basic amino acid composition outperformed the models devel-
oped using other sophisticated compositional features. In the case of binary-based features,
the NC terminus, which considers both amino acid order and composition, performs better
than N- or C-terminus-based features concordant with the trend followed by the AntiBP
and AntiBP2 method [31,32]. However, fastText features also perform comparably with
compositional or binary-based features. By evaluating the ML and DL performance on
all these feature sets, we discovered that the ML-based approaches are better than the DL;
hence, we didn’t continue with the DL further.

Along with the ML and DL approaches, commonly used alignment-based methods,
BLAST and Motif-search, were used to annotate the peptide sequence. However, our hybrid
models (BLAST + ML and MOTIF + ML) do not outperform individual ML-based models,
which might be owing to the prevalence of false positives even in extreme cases, such as
at the lowest e-value of 10−20, which reduces the AUC in hybrid techniques. Our method
outperformed existing methods on an independent or validation dataset, which is not used
to build models. This implies that our approach can more precisely categorise antibacterial
peptides into their respective groups.

4. Materials and Methods
4.1. Dataset

We collected the ABPs from multiple repositories that specialize in antibacterial pep-
tides for gram-positive, gram-negative, and gram-variable bacteria. These public reposito-
ries include APD3, AntiBP2, dbAMP 2.0, CAMPR3, DRAMP, and ABP-Finder, as depicted
in Figure 7 [12,24,33–36]. We removed sequences containing non-standard amino acids
(BJOUXZ), as well as eliminating sequences shorter than eight and longer than 50 amino
acids [37]. Our final dataset consists of 11,370 unique antibacterial peptides belonging to
three groups: 930 peptides for GP bacteria, 1455 peptides for GN bacteria, and 8985 pep-
tides for GV bacteria. To create non-antibacterial peptides (non-ABPs) for the negative
dataset, we followed a similar approach to that used in AntiBP and AntiBP2 [13,24,38].
This search yielded 11,257 sequences, which were then integrated with the negative dataset
used in the ABP-Finder. We then removed the duplicate sequences, resulting in a final
set of 10,000 unique sequences called non-ABPs. This non-ABP data was then randomly
split according to different classes of ABP training and validation sets, in order to create a
balanced dataset.

We divide the entire data into training and validation datasets, where the training
dataset contains 80% of the data, and the validation dataset contains 20% of the data
(Figure 7). In the case of GP, the training dataset comprises 744 ABP and 744 non-ABP,
whereas the validation dataset has 186 ABP and 186 non-ABP. Similarly, the training dataset
for GN contains 1164 ABP and 1164 non-ABP, and the validation dataset includes 291 ABP
and 291 non-ABP. Likewise, the training dataset for GV contains 7188 ABP and 7188 non-
ABP, whereas the validation dataset contains 1797 ABP and 1797 non-ABP. The validation
dataset was not utilized either for training or testing the method and has been used to
assess the performance of the prediction models.
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The complete workflow of the current study is illustrated in Figure 8.
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4.3. Two Sample Logo

We used the Two Sample Logo (TSL) to construct sequence logos for the three cate-
gories of ABPs in both the positive and negative datasets [39]. In the sequence logos, the
x-axis depicts the amino acid residues in the generated sequence logos. At the same time,
the positive y-axis displays the bit-score for the enriched residues, whereas the negative y-
axis displays the depleted residues in the given peptide sequences, reflecting the relevance
of a single residue at a given location. TSL, on the other hand, accepts peptide sequences
as a fixed-length vector for input. Therefore, we combined eight amino acids from the
N-terminus (beginning) and eight residues from the C-terminus (end) for each peptide
sequence, to create a fixed-length vector of sixteen residues corresponding to the shortest
peptide length in our dataset, which is eight residues.

4.4. Sequence Alignment Method

In this study, we used an alignment-based approach to categorise ABPs into GP, GN,
and GV based on similarity. We utilized the NCBI-BLAST+ version 2.13.0+ (blastp suite)
to implement a similarity search approach [40,41]. We created a specialized ABP database
containing the respective ABP sequences and a non-ABP database containing non-ABP
sequences for each group set (GP, GN, and GV) using the makeblastdb suite. Finally, the
validation dataset was then queried against the custom databases using the BLASTP suite.
The peptides were classified based on the presence of the most significant hit in either the
respective ABPs or the non-ABPs databases. If the top BLAST result was an ABPs peptide
from a certain group, the query sequence was classified as a member of that group. On the
other hand, if the top hit was from the non-ABP database, the peptide was classified as a
non-ABP sequence. We conducted the BLAST with several e-value cut-offs ranging from
10−20 to 103 to discover the optimal value of the e-value threshold.

4.5. Motif Search

In our study, we investigated the motif-based strategy for identifying conserved
motifs in ABPs [42,43]. We employed Motif—EmeRging and with Classes—Identification
(MERCI) [44], a tool for identifying conserved motifs that use Perl script. In MERCI, both
the positive and negative datasets were given as input, but it gave only the motifs for the
positive sequences at a time. The algorithm then found ungapped patterns/motifs with a
motif occurrence frequency of 10, 20, and 30 (fp10, fp20, and fp30) that may successfully
differentiate between positive and negative samples for the particular ABP group. Here, the
parameter fp corresponds to a criterion that determines how prevalent a motif (a pattern
in the peptide sequences) should be in order to be considered relevant i.e., motifs with
occurrences beyond these thresholds are retained. This will exclude motifs that appear
less frequently than the specified threshold, which allows the algorithm to focus on more
significant and frequently occurring motifs in the dataset. The selected numbers for fp are
arbitrary; additionally, on increasing the frequency threshold, the coverage decreases. Thus,
we obtained three distinct sets of motifs for each ABP group and computed the overall
motif coverage.

4.6. Feature Generation

In the current work, we estimated various features utilising peptide sequence informa-
tion. We utilised the Pfeature [45] standalone software to compute composition-based and
binary profile-based features of our datasets and developed a prediction model for each
of them.

4.6.1. Compositional Features

We calculated seventeen different types of descriptors/features, including AAC (amino
acid composition), APAAC (amphiphilic pseudo amino acid composition), DDR (distance
distribution of residue), DPC (di-peptide composition), QSO (quasi-sequence order), PCP
(physico-chemical properties composition), PAAC (pseudo amino acid composition), RRI
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(residue repeat Information), SPC (Shannon entropy of physicochemical properties), ATC
(atomic composition), BTC (bond type composition), CTC (conjoint triad descriptors), AAI
(amino acid index), PRI (property repeats index), SEP (Shannon entropy of a protein), SER
(Shannon entropy of a residue), SOC (sequence order coupling number).

4.6.2. Binary Profile Features

In order to compute binary profiles of ABPs and non-ABPs, the length of variables
should be fixed. The minimum length of peptides in our dataset is eight; hence, we con-
structed binary profiles for N8, C8, and combined terminal residues N8C8 after computing
the fixed length patterns. Similarly, for each peptide sequence in both positive and nega-
tive datasets, we generated four different types of binary profile features for N-, C-, and
NC-terminals, including AAB (amino acid-based binary profile), DPB (dipeptide-based
binary profile), PCB (physico-chemical properties based binary profile), AIB (amino acid
indices-based binary profile).

4.6.3. Word Embedding

Word embedding is a strong natural language processing technique that includes
encoding words as vectors in a high-dimensional space based on their contextual informa-
tion [46]. The fastText method was used as our word-embedding technique [47,48]. The
peptides were converted into n-grams of varying sizes, such as 1-g (individual words),
2-g (pairs of nearby words), 3-g (triplets of adjacent words), and a mixture of 2-g and 3-g.
We next trained the fastText model on the pre-processed training dataset, which generates
word-embedding vectors with a fixed dimension (often several hundred) [49]. Finally, we
used these feature vectors to train our model to accomplish the necessary classification or
prediction job.

4.7. Machine Learning Algorithms

Several machine learning methods were used to create the three classification models
in our study. Random forest (RF), decision tree (DT), gaussian naive Bayes (GNB), logistic
regression (LR), support vector classifier (SVC), k-nearest neighbour (kNN), and extra tree
(ET) are among these methods [50–56]. To build these classifiers, we used the Scikit-learn
package, a prominent Python library for machine learning [57].

4.8. Deep Learning Algorithms

DL is a method that uses patterns with several hidden layers to learn hierarchical data
representations. Initial layers capture low-level properties, which are then combined with
succeeding layers to represent the overall data comprehensively [58]. In this study, varied
deep learning methods were implemented to perform the classification tasks. Artificial
neural network (ANN) [59], recurrent neural network (RNN) [60], convolutional neural
network (CNN) [61] and long short-term memory(LSTM) [62], were among these methods.
To build the DL-based models, we have used the Keras framework [63] and at the back-end
we used the TensorFlow library [64].

4.9. Cross-Validation Techniques

We employed both internal and external validation strategies to evaluate the per-
formance of our models. For internal validation, we used the stratified five-fold cross-
validation approach, which helps to reduce biases and overfitting. The training dataset was
randomly split into five equal sets, each with a comparable number of ABPs and non-ABPs.
Four of the five sets were utilised for training the models, while the fifth set was used for
testing. This method was performed five times, with each set acting as the test set once,
ensuring robust evaluation across multiple iterations [65]. The model’s performance was
then assessed using the average performance throughout the five test sets. The perfor-
mance of the best model generated using the training dataset was evaluated using the 20%
independent validation dataset.



Antibiotics 2024, 13, 168 19 of 23

4.10. Hybrid or Ensemble Approach

In our study, we also used a hybrid or ensemble technique. The following two
hybrid techniques were applied in this case: (i) the alignment-based method (BLAST) was
combined with the alignment-free approach (ML-based prediction), and (ii) the motif-
based approach (MERCI) was combined with ML-based prediction. We adopted the same
approach as used in previous studies to combine alignment-based and alignment-free
approaches [41,66,67].

4.11. Performance Evaluation

The performance of several models was tested using conventional performance as-
sessment measures. We calculated both threshold-dependent metrics (such as sensitivity,
specificity, accuracy, Matthews correlation coefficient (MCC), and F1-score), and indepen-
dent parameters such as area under receiver operating characteristics (AUCROC) and area
under the precision-recall curve (AUPRC). The evaluation parameter formulas are shown
in the following Equations (1)–(5):

Sensitivity(Sn) =
TP

TP + FN
(1)

Speci f icity(Sp) =
TN

TN + FP
(2)

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
(3)

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

F1 =
2TP

2TP + FP + FN
(5)

where true positive (TP) and true negative (TN) are successfully predicted ABPs and non-
ABPs, while false positive (FP) and false negative (FN) are incorrectly predicted ABPs and
non-ABPs. MCC penalized over and under prediction. The harmonic means of the accuracy
and recall scores are used to determine the F1-score [43].

5. Conclusions

Developing in-silico prediction tools for designing and synthesizing novel ABPs
saves a significant amount of time and resources in screening peptide libraries. Separate
prediction algorithms are required to address the relevance of the AMP’s particular activity,
specifically antibacterial activity, source organism, and so on. In this study, we analyse
different ML models that leverage distinct peptide properties for training. However, we
demonstrated that all feature generation methods performed similarly. This highlighted the
point that the crucial information for distinguishing antibacterial peptides can be captured
solely from amino-acid sequence data without the need for sophisticated feature extraction
methods. This will simplify and improve the interpretability of the modelling procedures.
This study will aid in developing better and more effective antibacterial peptides against
resistant strains of all bacterial classes in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antibiotics13020168/s1, Figure S1: AUC-ROC comparison of different ML
models on compositional-based AAC features for GP, GN, and GV ABPs; Figure S2: The AUC-ROC
comparison of different ML models on binary-profile AAB features for NC-terminal for GP, GN, and
GV ABPs; Figure S3: Confusion matrix of best ML-model(AAB-based binary feature for NC-terminal)
on the validation set of GP, GN, and GV ABPs independent; Table S1: Performance of extra-tree
classifier on training and validation dataset developed using 17 types of composition-based features
for gram-positive ABPs; Table S2: Performance of extra-tree classifier on training and validation
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dataset developed using 17 types of composition-based features for gram-negative ABPs; Table S3:
Performance of extra-tree classifier on training and validation dataset developed using 17 types
of composition-based features for gram-variable ABPs; Table S4: Performance of ML-models on
training and validation dataset developed using four types of Binary profile-based features of N, C,
NC-terminal of gram-positive ABPs; Table S5: Performance of ML-models on training and validation
dataset developed using four types of binary profile-based features of N, C, NC-terminal of gram-
negative ABPs; Table S6: Performance of ML-models on training and validation dataset developed
using four types of binary profile based features of N, C, NC-terminal of gram-variable ABPs;
Table S7: Performance of ML-models on training and validation dataset developed using fastText
based features for GP, GN, and GV ABPs; Table S8: Performance of hybrid model (BLAST + ML) on
the validation set of gram-positive ABPs independent at different e-value; Table S9: Performance of
hybrid model (BLAST + ML) on the validation set of gram-negative ABPs independent at different
e-value; Table S10: Performance of hybrid model(BLAST+ML) on the validation set of gram-variable
ABPs independent at different e-value; Table S11: Performance of hybrid model (MOTIF + ML) on the
validation set of gram-positive ABPs independent set at different frequencies; Table S12: Performance
of hybrid model (MOTIF + ML) on the validation set of gram-negative ABPs independent set at
different frequencies; Table S13: Performance of hybrid model (MOTIF + ML) on the validation set of
gram-variable ABPs independent set at different frequencies; Table S14: Performance of DL-models
on validation dataset developed using composition-based features for gram-positive ABPs; Table S15:
Performance of DL-models on validation dataset developed using four types of binary profile-based
features of N, C, NC-terminal of gram-positive ABPs; Table S16: Performance of DL-models on
validation dataset developed using fastText based features for GP ABPs.
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