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Abstract: The phytosynthesis of metal nanoparticles is nowadays attracting the increased attention of
researchers and is much needed given the worldwide matter related to environmental contamination.
The antimicrobial activity of colloidal and spray formulation of silver nanoparticles (AgNPs)
synthesized by pomegranate peel extract against Candida albicans and Staphylococcus aureus, and their
cytotoxicity in mammalian cells were tested in the present study. Dry matter, pH, total phenolics, and
ellagic acid in the extract were determined. Then, AgNPs were phytosynthesized and characterized
by X-ray diffraction, electron transmission microscopy, dynamic light scattering, zeta potential, and
Ag* dosage. Spray formulations and respective chemical-AgNP controls were prepared and tested.
The peel extract reduced more than 99% of Ag*, and produced nanoparticles with irregular forms
and an 89-nm mean size. All AgNP presented antimicrobial activity, and the spray formulation
of green-AgNP increased by 255 and 4 times the effectiveness against S. aureus and C. albicans,
respectively. The cytotoxicity of colloidal and spray green-AgNP was expressively lower than the
respective chemical controls. Pomegranate peel extract produced stable AgNP with antimicrobial
action and low cytotoxicity, stimulating its use in the biomedical field.

Keywords: silver; nanoparticles; Candida albicans; Staphylococcus aureus; herbal medicine; Punicaceae

1. Introduction

Recently, a state of alert on a topic that affects people globally, antimicrobial resistance,
has received much attention. This has led to the deaths of more than 700,000 people a year worldwide
and this number has risen every year [1]. It is estimated that there will be a reduction in the world
population of 11-444 million people in 2050 if antimicrobial resistance is not bypassed [1].
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As an alternative against antimicrobial resistance, one approach gaining in strength is the use of
inorganic particles at the nanoscale. The most prominent metals in the group of inorganic nanoparticles
are coppetr, zing, titanium, magnesium, gold, and silver [2-4]. In this context, silver nanoparticles have
been the most exploited as they have a wide range of toxicity against several microorganisms such as
Staphylococcus aureus, Escherichia coli, Candida albicans, and others [5].

The incorporation and use of silver nanoparticles has been observed in sundry sectors, for instance,
in the food industry as an attempt to produce packaging with antimicrobial activity [6]. Its use in the
area of cosmetics has also received prominence, as has its use in housecleaning, antiseptics, sunscreens,
soap, and shampoo [7-9] as well as in textile manufacturing [10].

Considering the synthesis of silver nanoparticles, many routes have been presented such
as electrochemical [11], radiation [12], photochemistry [13], and by biological methods [14].
Phytochemical synthesis has been noteworthy since the use of chemical compounds may result in
undesirable toxic effects not only for the human organism but also for the environment. Its effectiveness
in the production of silver nanoparticles has been demonstrated by the use of compounds of different
plants in the ion reduction, being characterized as rapid, low cost, and environmentally friendly
synthesis [15]. Furthermore, green-silver nanoparticles are usually less cytotoxic when compared to
those reduced by conventional chemical agents [16]. It is believed that silver nanoparticles reduced
by plant extracts do not carry on their surface chemical compounds used for the reduction and
stabilization of chemically produced silver nanoparticles that are toxic to human cells. It is still believed
that the phytochemicals present in the extracts are carried on the surface of the silver nanoparticles,
reducing their cytotoxic effect, aside from presenting different forms of chemically produced silver
nanoparticles [16]. Important aspects in green-synthesis should be taken into account including the
choice of plant to be used, being the plants which grow in different regions of the world more eligible
for this [16]. The previously known potential of the plant including antioxidant, anti-inflammatory;,
and antimicrobial such as the case of Punica granatum (pomegranate) should also be considered [17-19].
Some studies have also used Punica granatum to reduce silver ions to silver nanoparticles [19-21]. Silver
nanoparticles were green-synthesized and showed significantly lower cytotoxicity when compared to
the silver nanoparticles synthesized by a chemical pathway. This fact has stimulated the search for
the use of reduced silver nanoparticles by means of plant extracts for biological purposes such as the
treatment of contagious infectious diseases, especially those in need of topical treatment.

Thus, taking together the benefits of pomegranate and the antimicrobial applicability of silver
nanoparticles, the present study aimed to synthesize silver nanoparticles using pomegranate peel
extract, and to produce spray formulations containing the previously green-synthesized silver
nanoparticles. Their antimicrobial activity against Staphylococcus aureus and Candida albicans, and their
cytotoxicity effect on fibroblast cells were investigated.

2. Results

2.1. Characterization of Peel Extract, Silver Nanoparticles and Formulations

The pH and the dry matter of the peel extract obtained by maceration followed by percolation
were 3.13 and 86.39 (£0.96) % w/w, and the total phenolics expressed in gallic acid and the ellagic acid
were 392.0 (£9) and 3.64 (+0.03) mg/g, respectively.

The formation of silver nanoparticles was confirmed by comparing the XRD patterns and the
corresponding standard patterns of cubic of silver nanoparticles (Figure 1), according to the diffraction
standard (JCPDS file No. 04-0783). The reflection peak (2 2 2) is characteristic of the substrate (5i),
where silver particles were deposited as a thin film. TEM images (Figure 2) showed different forms
and sizes of silver nanoparticles produced by green and conventional chemical routes as well as in
their respective formulations. In general, green-synthesis produced particles with a larger size than
those obtained by conventional synthesis. Dynamic Laser Scanning (DLS) analyses of the formulations
prepared with green or conventional silver nanoparticles demonstrated different particle sizes, being
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the mean values of 89 + 21 and 19 & 4 nm for the green and conventional formulation, respectively.
The values of zeta potential of green and conventional silver nanoparticles were lower than —30 mV
(—46.2 = 6.06 mV green, and —67.5 £ 3.69 mV conventional), indicating the stability of both colloidal
silver nanoparticles.
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Figure 1. X-ray diffraction (XRD) of the green and chemical silver nanoparticles.

Figure 2. Images of transmission electron microscopy (TEM): (A) Green silver nanoparticles;
(B) Silver nanoparticles green formulation; (C) Chemical silver nanoparticles; (D) Silver nanoparticles
chemical formulation.

Almost 100% of the Ag* ions coming from AgNO3 were reduced by the pomegranate peel extract
(99.89%) and sodium citrate (99.51%). However, in the spray formulation containing chemical-silver
nanoparticles, the percentage of reduction was diminished to 68.18% although the formulation
maintained stable regarding Ag* ions concentration for 28 days (Table 1). Zeta potential data confirmed
the stability of the spray formulations regardless of the method used to obtain the silver nanoparticles
(Table 2). The total phenolics in the spray formulations with or without silver nanoparticles were
quantified at 0, 7, 14, and 28 days after having been prepared (Figure 3), and it has been significantly
reduced in the green-synthesized silver nanoparticle formulation after 14 days with values ranging
from 0.405 to 0.295 mg/g.
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Table 1. Values of the silver ionic reduction and zeta potential for green and chemical silver nanoparticle
formulations in different periods.

Silver Nanoparticles Green Formulation Silver Nanoparticles Chemical Formulation

Time
ugAgt/mL % of Reduction  Zeta Potential pgAg*/mL % of Reduction  Zeta Potential
TO 0.249 99.93% —73.7 £6.49 1.769 68.15% —78.2£3.06
T7 0.178 99.95% —68.3 £4.92 1.927 65.31% —729 £3.10
T14 0.220 99.94% —72.8 £6.49 1.543 72.22% —85.5 £3.36
T28 0.186 99.95% —68.6 £ 5.62 1.846 66.77% —76.5 £ 4.05

Table 2. Silver ion concentration (ugAg* /mL) and percentage of silver ions reduction after the reactions,
AgNP percentage, and values of minimum inhibitory concentration (MIC) of silver nanoparticles and
pomegranate peel extract found for Staphylococcus aureus and Candida albicans.

Samples Silver Iorfs Silve'r Fons0 Ag NP % MIC (ug/mL)
Concentration ~ Remaining % S.aureus  C. albicans

Control * 10,303.26 95.52 4.48 4.13 4.59
Pomegranate peel extract - - - 391 781

Silver nanoparticles green 10.89 0.11 99.89 67.50 68.75
Silver nanoparticles chemical 130.40 121 98.79 0.50 0.25
Pomegranate peel extract formulation - - - 0.37 0.18
Silver nanoparticles green formulation 0.249 0.01 99.99 0.26 16.87
Silver nanoparticles chemical formulation 1.769 31.85 68.15 0.56 112

* Control = Carboxymethylcellulose, propylene glycol, silver nitrate.

Silver nanoparticles green formulation Pomegranate peel extract formulation
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Different capital letters denote significant differences (p < 0.05; one-way ANOVA followed by Tukey's Multiple Comparison
Test) among the groups.

Figure 3. Total phenolics concentration for the silver nanoparticles green formulation and pomegranate
peel extract formulation in different periods. Different capital letters denote significant difference
(p < 0.05; one-way ANOVA followed by Tukey’s multiple comparison test) among the groups.

2.2. Antimicrobial Activity

The antimicrobial activity expressed as MIC values of silver nanoparticles and pomegranate peel
extract (ug/mL) (Table 1) was, in general, considerably lower for the spray formulations than the
active inputs regardless of the microorganisms tested. MIC values against C. albicans for active inputs
and spray formulations were 781 and 0.18 for the peel extract, 68.75 and 16.87 for the green-, and 0.25
and 1.12 for the chemical-silver nanoparticles. While for S. aureus, the values were 391 and 0.37, 67.5,
and 0.26, and 0.5 and 0.56 for pomegranate peel extract, green-, and chemical-silver nanoparticles in the
active inputs and spray formulations, respectively. In addition, different conditions of humidity and
temperature did not affect the effectiveness of the spray formulations against both microorganisms.

2.3. Cytotoxicity

Figure 4 shows the fibroblast L.929 cells viability in view of different concentrations of silver
nanoparticles (green and conventional route). Green silver nanoparticles presented lower cytotoxicity
than conventional ones. A dosage of 50 ng/mL was necessary to initiate the toxicity, but the



Antibiotics 2018, 7, 51 5o0f 14

cell viability was nearly 80%, while conventional-silver nanoparticles were quite toxic at very low
concentration (6.25 ug/mL) and was similar to the negative control (DMSO) with viability lower
than 20%. Furthermore, the addition of the reagents to prepare the formulations did not interfere
in the toxicity of the conventional-silver nanoparticles, whereas the cytotoxicity for the green-silver
nanoparticles formulation as well as for the extract formulation was considerably increased.
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Figure 4. Cytotoxicity evaluation of respective active input (green and chemical silver nanoparticles
and pomegranate peel extract), their respective formulations, and the vehicle (compounds of
spray-formulation without the active inputs). (A) Silver nanoparticles green; (B) Silver nanoparticles
green formulation; (C) Silver nanoparticles chemical; (D) Silver nanoparticles chemical formulation;
(E) Pomegranate peel extract; (F) Pomegranate peel extract formulation and (G) Vehicle.

3. Discussion

For future reproducibility of the experiment, the extract obtained by maceration followed by
percolation was duly characterized in relation to dry matter, total phenolics content, ellagic acid,
and pH. Total phenolics were determined only in samples that contained the pomegranate peel
extract, and then the chemical formulation did not present any phenolic content in its composition.
Polyphenols are effective hydrogen donors and are correlated to the number and position of hydroxyl
groups and conjugations as well as the presence of donor electrons in the aromatic ring B, because
of the ability of this aromatic ring to withstand the electron depletion located in the 7 electron
system [22]. The antimicrobial activity of various polyphenols and plant extracts have been evaluated
in pharmaceutical and food studies [23,24]. Some phenolic compounds present in sage, rosemary,
thyme, hops, coriander, tea, cloves, and basil are known to exhibit antimicrobial effects against
foodborne pathogens. Their mechanisms of action need to be further elucidated, and might be due to
a plethora of phenolic compounds present in a very single plant extract. Furthermore, as the bioactive
compounds in the extract presented antioxidant and anti-inflammatory activities, the antimicrobial
potential of the pomegranate peel extract in the in vivo trials could show better results, and should be
strongly stimulated in further studies. Regarding the multi conceptual nature of the term antioxidant
and bringing it into the context of this study, some polyphenols present in low concentrations could
prevent or reduce the extent of oxidative damage in mammalian cells. Taken together, these natural
biomolecules could indirectly protect the cells and reduce the cytotoxicity of silver nanoparticles.

The correct selection of the plant and the standardization of the methods to obtain the extracts to
be used as reducing or capping agent in the nanosynthesis of metal particles should be preponderant
when the green process is elected for the production of products in large scale. Additionally, a plethora
of plants used in the phytosynthesis of metal nanoparticles [25-27] and the lack of information of the
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extraction techniques used in the articles has hindered the comparison of the present results with those
found in the literature. For instance, different values and methods of total phenolics quantification
can be observed in the literature as described by Kalaycioglu et al. (2017) [28]. Similarly, other factors
can interfere in the evaluation and comparisons of the extracts such as the chemical and genotypic
composition of the plant, the variety and the soil type, the place of the plant origin, the harvest season,
maturation method, aside from the solvent and the process used for the obtention of the pomegranate
extract, among others [29].

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed
the smallest particles obtained by conventional chemical synthesis, and DLS data confirmed these
findings with mean sizes of 89 and 19 nm for green and chemical nanoparticles, respectively. The fission
of colloidal particles of different sizes and shapes may be related to additives (salts, polymers), solvent
properties (boiling temperature, affinity with created surfaces), the addition of nucleation, among
others [30]. The reagents used in the chemical synthesis would produce particles with more predictable
characteristics than the several substances and compounds present in the plant extract and used in
the phytosynthesis route, which would interfere with the size and form of the nanoparticles and
make phytosynthesis a challenge in controlling the reaction process and the morphological aspects
of the particles. Moreover, the presence of different bioactive substances in the extract would reduce
only a fraction of the silver ions present in the solution. The remaining silver ions would form other
nuclei and further the growth of the previously formed silver nanoparticles [31]. This process is called
Ostwald Ripening, where the largest particles consume the smaller ones and grow larger, where the
dissolution of the smaller ones and deposition of ions on the surface of larger ones occur [32].

Almost 100% of ions reduction was observed for both synthesis routes. However, when the
chemical silver nanoparticles were added to the formulation, a dissociation of ions from nearly 30%
was observed when compared to chemical silver nanoparticles alone. This fact could be due to the
presence of the components as carboxymethylcellulose and propylene glycol in the spray formulation
which possibly favored the silver ion dissociation into the system [33]. The presence of oxygen or
ligands for Ag* in the formulations may increase the dissolution rate of AgNP and lead to increased
dissolution through the formation of Ag* complexes [34]. Ag™ in solution will interact with various
ions and molecules that are present in aqueous media. Important ligands to be considered for Ag* are
sulfide and organic ligands such as the carboxylic acids group which are used as Ag coatings (e.g.,
citrate, lactate). Carboxyl ligands such as carboxymethylcellulose strongly bind Ag*, which may affect
the dissolution of AgNP and the bioavailability of Ag* [35].

Furthermore, the size of the Ag in the NP affects the extent and kinetics of the AgNP dissolution as
the smallest nanoparticles dissolve faster and to a greater extent [36]. This would explain the difference
in the dissolution of the nanoparticles in the formulations. Their dissolution is of high relevance for the
possible toxic effects of AgNP as Ag*™ appears in many cases to determine their toxicity [37]. This fact
was not observed when green-synthesis was carried out. This could be related to several compounds
present in the extract which would readily react with the released silver ions, or the encapsulation
of the silver nanoparticles promoted by those phytocompounds may have avoided the silver ions
dissociation from the silver nanoparticles and its release to the solution.

Zeta potential test demonstrated the stability of the silver nanoparticles, most notedly in the spray
formulations. Electrical charges on the surface of the nanoparticles prevent agglomeration, and thus
afford the stability of the nanoparticles [38,39]. Indeed, silver nanoparticles and spray formulations
presented a mean of 70 mV, which indicates their high stability of silver nanoparticles [40].

Antimicrobial results are also promising for the silver nanoparticles as well as the pomegranate
extract obtained. The formulations notably showed better results when compared with the input
active only. This fact could be explained for the proper dispersion of the active inputs (silver
nanoparticles and pomegranate peel extract) in the spray formulation. Additionally, a synergistic effect
could have occurred between those active inputs and the methylparaben present in the formulation.
In the literature, studies with an antimicrobial effect of pomegranate extract were conducted against
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Staphylococcus aureus, Enterobacter aerogene, Salmonella typhi, and Klebsiella pneumonia [41]. The MIC
values obtained in this study for pomegranate extract were in accordance with Bakkiyaraj et al.
(2013) [42] for both the microorganisms studied, and a difference was observed in C. albicans, but this
fact may be explained by the difference between the C. albicans strains used in the studies.

Chemical-silver nanoparticles, in formulation or not, produced MIC values against S. aureus about
10-fold lower than those produced by Prema et al. (2017) [33] (60 pg/mL), who also produced silver
nanoparticles stabilized with CMC. Indeed, the antimicrobial activity of chemical silver nanoparticles
was also determined by Monteiro et al. (2011) [43] with MIC values for C. albicans (0.5 pg/mL) in
accordance with this present study.

Noteworthy is the difference found in the present study in respect of cytotoxicity between the
chemical and green routes to obtain silver nanoparticles. Studies have shown that silver nanoparticles
produced with Protium serratum and Nyctanthes arbortristis extracts were biocompatible when tested
in 1929 fibroblasts [44,45]. It is believed that what makes the silver nanoparticle toxic to human
cells is the type of reducing agent used such as sodium citrate or sodium borohydride [46]. Even in
conventional syntheses of silver nanoparticles, reagents are used that prevent the aggregation of these
nanoparticles [47], which may further favor their cytotoxicity.

In the case of phytosynthesis of metal nanoparticles, plant extracts, aside from acting as reducing
agents, would act to stabilize the particles against dissolution, hence reducing the toxicity of the
silver nanoparticles solution. Furthermore, it is possible that some compounds in the extracts may
have a synergistic effect with the silver nanoparticles [48], making them less toxic to human cells.
Furthermore, extracts of Punica granatum have exhibited antioxidant [49] and anti-inflammatory [50]
activity, and may have contributed to reducing the cytotoxicity of green- in comparison with
chemical-silver nanoparticles.

In general, the stability assay (silver ions dosage, zeta potential, and antimicrobial activity)
showed a high stabilizing capacity of the formulations. However, the spray formulations of green
silver nanoparticles and pomegranate peel extract showed a significant reduction in the content
of total phenolics in 14 and 28 days. The decrease in the content of total phenolics may have
occurred due to the temperature variations inherent in the stability test, as occurred in the study
of [51] where the temperature affected the total phenolics content in the roselle-mango juice blends.
Moreover, in formulations containing green-silver nanoparticles, the components of the extract may
have been degraded or associated with the nanoparticles, explaining the faster decrease of the total
phenolics content when compared to the pomegranate extract formulation. Interestingly, ion dosage,
zeta potential, and antimicrobial activity were not affected by different conditions of temperature, time,
and humidity of the stability test.

Altogether, the reported results suggest that the plant extract mediated syntheses of AgNP showed
a pronounced lower cytotoxic effect in mouse fibroblast cells (L929) than the syntheses of AgNP by the
chemical method. Of note is the implication that different sizes between the green- chemical-AgNP as
well as the expected impurities sedimented on both obtained nanoparticles could have had on their
toxicity. Although it is quite tricky to obtain AgNP with a well-defined form and size and prevent the
particles aggregation [52], it is of importance to complement and support our findings, then strongly
recommend an eco-friendly approach to producing green-AgNP and prototype wound-care sprays
containing these particles.

4. Materials and Methods

4.1. Plant Material and Preparation of Pomegranate Peel Extract

Pomegranate samples were collected from a crop cultivated in Eixo (21°08'01” S, 51°06'06" W),
Mirandépolis, Sao Paulo, Brazil, during May 2015. Pomegranate peels were separated and stove-dried
at 50 °C, ground, and sieved to a granulometry lower than 2 mm. Peels were submitted to alcohol
extraction using 70% ethanol by maceration, followed by the percolation process [53]. The extract was
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characterized in relation to pH, dry matter, and total phenolics expressed as gallic acid. The chemical
marker of pomegranate, ellagic acid, was also identified and quantified.

4.1.1. Determination of Total Phenolics, pH, and Dry Matter

To determine the total phenolics, an analytical curve of gallic acid (Sigma-Aldrich Chemical Co.,
St. Louis, MO, USA) was carried out [54]. All extracts obtained and the standard solution of gallic acid
were prepared in 50 mL volumetric flasks using water as the solvent. The samples were homogenized
and, the flasks were brought to the ultrasonic bath for 30 min. A 0.5 mL aliquot was transferred to
another 50 mL flask where 2.5 mL of Folin-Denis reagent (Qhemis-High Purity, Hexis, Sdo Paulo,
Brazil) and 5.0 mL of 29% sodium carbonate (Cinética, Sao Paulo, Brazil) were added. The samples
were protected from light and the readings were performed after 30 min in a UV-Vis spectrophotometer
at 760 nm [53]. The pH was measured direct from a solution of 1% extract, using a pH kit (Merck
KGaA, Darmstadt, Germany) and dry matter was calculated after drying on a sample stove at 105 °C
and was expressed in percentage w/w. All data were analyzed in triplicate.

4.1.2. Determination of the Ellagic Acid Content

A Shimadzu liquid chromatograph and a Shimpack ODS C18 (Shimadzu Corporation, Kyoto,
Japan) reverse phase column (100 mm X 2.6 mm) were used to determine the ellagic acid content
by high performance liquid chromatography (HPLC). Analytical conditions were optimized based
on de Sousa et al. (2007) [55] with modifications. As the mobile phase, HPLC grade methanol and a
2% aqueous acetic acid solution with gradient elution (0-7 min, 20-72.5% v/v methanol, 7-7.5 min,
72.5-95% v /v methanol, 7.5-8.5 min 95% v /v methanol, 8.5-9 min 95-20% v /v methanol, 9-10 min
20% v /v methanol) were used. The flow rate was 1.0 mL/min, and the separation was achieved at
25 °C. The injection volume was 5 pL and the wavelength used was 254 nm. Peaks were determined
by comparison with an authenticated ellagic acid standard. Briefly, the sample was transferred to a
20 mL volumetric flask which was diluted with HPLC grade methanol. Extraction was undertaken
using a vortex for 5 min and ultrasonic bath for 1 h. For the extracts, samples were transferred to
volumetric flasks of 10 mL, using methanol HPLC as the solvent. All samples were vortexed for 5 min
and sonicated for 30 min. Samples were filtered through 0.45 um filter. All samples were prepared
in triplicate.

4.2. Synthesis of Green-Silver Nanoparticles

The protocols described by Gorup et al. (2011) [56] and Das et al. 2015 [57] with modifications
were used to produce silver nanoparticles. Briefly, 3.5% of carboxymethylcellulose (CMC) (Labsynth,
Diadema, Brazil), 20% of propylene glycol (PG) (Labsynth, Diadema, Brazil), 100 mM of silver nitrate
(SN) (Merck KGaA, Darmstadt, Germany), pomegranate peel extract at 30 mg/mL, and water to make
up 100% of the samples were used. Silver nanoparticles were not purified relative to the excess reagents.
The reaction was carried out at 50 °C for 12 min, and it was selected based on previous results.

4.3. Synthesis of Chemical-Silver Nanoparticles

Chemical-silver nanoparticles were produced according to Gorup et al. [53]. AgNO3 (Merck
KGaA, Darmstadt, Hesse, Germany) was dissolved in water, and brought to boiling at 90 °C. After 2
min of boiling, an aqueous solution of sodium citrate (Na3sCgH507) (Merck KGaA, Darmstadt, Hesse,
Germany) was added, and kept boiling for another 6 min until the solution reached a yellow amber
color. The stoichiometric ratio was 1:3, respectively for AgNOj3; and Na3zCgH505. Silver nanoparticles
were not purified relative to the excess reagents.
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4.4. Preparation of the Spray Formulations

The reagents used were CMC (Labsynth, Diadema, Brazil), PG (Labsynth, Diadema, Brazil),
and methylparaben (Labsynth, Diadema, Brazil) in a proportion of 0.1%, 7%, and 0.1%, respectively.
The active inputs (green- or chemical-silver nanoparticles and pomegranate peel extract) concentrations
were based on the minimum inhibitory concentration and cytotoxicity. Therefore, the final
concentrations of active inputs in the spray formulations were: 337.5 ug/mL of green-silver nanoparticles,
5.55 pg/mL chemical-silver nanoparticles, and 94 ug/mL of crude peel extract dry matter.

4.5. Characterization of the Silver Nanoparticles and the Spray Formulations

4.5.1. X-ray Diffraction (XRD), Dynamic Light Scattering (DLS), and Zeta Potential Analysis

A Shimadzu XRD diffractometer with a Cu Ko radiation operating at 30 kV and 30 mA and 26
range from 35° to 85° with step scan of 0.02° and scan speed 0.2°-min~!
analysis. To collect silver nanoparticles patterns, the nanoparticles were deposited on the surface of a
silicon substrate (Si) by dripping the aqueous colloidal dispersion on the substrate at room temperature
until the solvent had evaporated.

DLS experiments were performed at room temperature and at a fixed angle of 173° on a Zetasizer
Nano ZS (Malvern Instruments Ltd., Malvern, UK) equipped with 50 mW 533 nm laser and a digital

auto correlator. The number-average values obtained were compared to the size distributions of the

was used to perform XRD

silver nanoparticles. For the zeta potential test a Zetasizer (Malvern instruments, Malvern, UK) with an
MPT-2 titrator was used. Aliquots from each test suspension were obtained to conduct zeta potential,
and mean values were obtained from three independent measurements.

4.5.2. TEM Analyzes

The nanocompounds morphology was characterized by TEM images in a Jeol JEM-100 CXII
(JEOL USA Inc., Peabody, St. Louis, MO, USA) microscope equipped with Hamamatsu ORCA-HR
digital camera.

4.6. Silver Ions Dosage

The dosages of free silver ions (Ag*) present in the compounds and spray formulations were
performed to observe if the total amount of Ag added in the synthesis reaction was successfully
reduced. A specific electrode 9616 BNWP (Thermo Scientific, Beverly, MA, USA) coupled to an ion
analyzer (Orion 720 A*, Thermo Scientific, Beverly, MA, USA) was used. A 1000 ng Ag/mL standard
was prepared by adding 1.57 g of AgNO3 to 1 L of deionized water. The combined electrode was
calibrated with standards containing 6.25 to 100 ug Ag/mL to achieve equivalent silver concentrations
in the compounds. A silver ionic strength adjuster solution (ISA, Cat. No. 940011) that provided a
constant background ionic strength was used (1 mL of each sample/standard: 0.02 mL ISA).

4.7. Stability Test of the Spray Formulations

The spray formulations were submitted to a stability test with controlled conditions of temperature
and time. This test was based on Anvisa protocols (Cosmetics stability guide ISBN 85-88233-15-0;
Copyright® Anvisa, 2005) and the guide to stability studies (Ordinance No. 593 of 25 August 2000).
Briefly, samples of each spray formulation were submitted to alternating cycles of temperature daily
ranging from 40 to —5 °C for 28 days. The tests selected to evaluate the stability of the samples were ion
dosage, total phenolics content, zeta potential, and minimal inhibitory concentration (MIC). All tests
were done in the same conditions as described before, and were carried out at 0, 7, 14, and 28 days.



Antibiotics 2018, 7, 51 10 of 14

4.8. Antimicrobial Activity of the Silver Nanoparticles and the Spray Formulations

Minimal inhibitory concentration of the silver nanoparticles samples were determined following
the instructions of the Clinical Laboratory Standards Institute with some modifications. The samples
were first diluted in water and subsequently in culture medium specific for each microorganism,
Mueller Hinton broth (BD Difco, Franklin Lakes, USA) for Staphylococcus aureus (ATCC 25923),
and RPMI (Sigma-Aldrich, St. Louis, MO, USA) for Candida albicans SC 5314) [58]. The microorganisms
were adjusted to 5 x 10° cells/mL for S. aureus and 5 x 10° cells/mL for C. albicans, and the plates
were incubated for 24 h and 48 h in aerobiosis at 37 °C for S. aureus and C. albicans, respectively.
After incubation, the plates were visually read. The assays were performed in triplicate.

4.9. Cytotoxicity Analysis

For the evaluation of cytotoxicity, fibroblast cells of the L929 lineage were used. Cells were
cultured in DMEM culture supplemented with 10% fetal bovine serum (FBS), penicillin G (100 U/mL)
(Gibco® Carlsbad, USA), streptomycin (100 pg/mL), amphotericin B (25 pg/mL) and incubated in
a stove at 37 °C with 5% CO,. Cells were subcultured (5-7 days), using 0.9% saline to wash them
and 0.25% trypsin to disintegrate them from the vial. After disruption, these cells were centrifuged at
1000 rpm for 10 min at 10 °C, resuspended in complete DMEM medium (supplemented with FBS),
and cell counted in a Neubauer’s chamber.

The sub-cultured third to eighth passage fibroblasts were inoculated into 96-well microplates
at a density of 0.5 x 10° cells/well. They were then incubated at 37 °C with 5% CO,. After 24 h,
20 uL of different dilutions of each sample were added to the wells of the plate containing the
cells in medium not supplemented with SBF (incomplete medium) and incubated. Twenty-four
hours post-treatment, the medium was withdrawn, cells were washed with saline and 20 uL of
resazurin (Sigma-Aldrich) 0.01% w/v in deionized H,O was added to each well containing 180 pL
of DMEM medium supplemented with 10% Of SFB. The plates were then incubated for 4 h at 37 °C
and fluorescence was measured at 540 and 590 nm for excitation and emission, respectively [59].
Cell viability was expressed as a percentage of viable cells when compared to the control group
without treatment.

4.10. Statistical Analysis

GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA, USA) was employed for the
statistical analysis with a confidence level of 95%. Parametric statistical analyses were conducted with
one-way ANOVA followed by Tukey’s multiple comparison test for total phenols and zeta potential.
For the ion test the statistical analyses was Dunn’s multiple comparison test.

5. Conclusions

In light of the results obtained and the limitations of the present study, it was concluded that the
use of pomegranate peel extract showed it to be an efficient reducing agent for the production of silver
nanoparticles. Moreover, the antimicrobial potential and the low cytotoxicity demonstrated by green-silver
nanoparticles have stimulated the search for improvements in the bio-nanotechnology field. Furthermore,
the anti-inflammatory and antioxidant properties of pomegranate have encouraged further studies to use
nanosystems with future application in prophylaxis or treatment of biofilm-dependent diseases.
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