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Abstract: This study compared the activity of cefepime + zidebactam (FEP-ZID) and selected
currently available antibacterial agents against a panel of multidrug-resistant (MDR) clinical isolates
chosen to provide an extreme challenge for antibacterial activity. FEP–ZID had a very broad
and potent in vitro spectrum of activity, and was highly active against many MDR isolates of
Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. Notably, it inhibited isolates
producing carbapenemases of Ambler classes A, B, and D, and P. aeruginosa isolates with multiple
resistance mechanisms including combinations of upregulated efflux, diminished or non-functional
OprD porins, and AmpC overproduction. Its clinical role will be determined initially by the
breakpoints assigned to it, comparison studies with other investigational β-lactamase inhibitor
combinations, and ultimately by the developing body of therapeutic outcome data.
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1. Introduction

Gram-negative multidrug-resistant (MDR) pathogens, particularly carbapenemase-producing
organisms (CPOs), cause infections of high mortality that are typically treated with antibiotic
combinations that include toxic drugs such as polymyxins and aminoglycosides [1]. Recent Food
and Drug Administration (FDA) approvals of the β-lactamase inhibitor combinations ceftazidime
+ avibactam and meropenem + vaborbactam have created the potential for safer treatments of
infections by CPOs producing Ambler class A carbapenemases, and also pathogens that produce
AmpC and/or extended spectrum β-lactamases [2–6]. Other β-lactamase inhibitor combinations are
under development, e.g., imipenem + relebactam, aztreonam + avibactam, meropenem + nacubactam,
cefepime + zidebactam, and cefepime + VNRX-5133, some of which are active against CPOs producing
Ambler class A, B, and D carbapenemases [2,4,5,7–13]. The clinical potential of the new β-lactamase
inhibitor combinations is significant, but the optimism about them should be tempered by reports of
reduced susceptibility or resistance to ceftazidime + avibactam in clinical isolates sometimes emerging
during therapy [14–19]. Arising concerns include whether the ceftazidime + avibactam resistance
can impact the effectiveness of the developmental combinations, and whether or not ceftazidime +
avibactam resistance indicates the need to avoid suboptimal combinations of co-drugs and inhibitors.
For example, ceftazidime was previously associated with the development of resistance when used for
treating infections by extended spectrum β-lactamase (ESBL) nd AmpC producers [20–22]. Therefore,
given the benefit of hindsight, it was a questionable choice of co-drug for avibactam. Furthermore,
it is possible that avibactam, a diazobicyclooctane, has attributes that may prove to be suboptimal in
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that various types of β-lactamases may develop resistance to it [19,23,24], and its clinical spectrum of
carbapenemase coverage is limited to class A and possibly OXA-48-like class D carbapenemases [7].
Class B carbapenemases and the class D carbapenemases of Acinetobacter spp. are gaps in its spectrum.
It is also currently unknown if resistance to avibactam may confer resistance to its diazobicyclooctane
analogues, relebactam and nacubactam.

Cefepime + zidebactam (FEP–ZID) is a unique combination agent in that its bicyclo-acyl hydrazide
component, zidebactam, is a β-lactamase inhibitor which possesses intrinsic antibacterial activity.
That is, zidebactam can both protect cefepime from hydrolysis by β-lactamases and extend its
spectrum of antibacterial activity [12,13]. With the aim of assessing its activity against Gram-negative
isolates chosen to provide an extreme challenge of antibacterial activity, a study was designed
to evaluate the in vitro activity of FEP–ZID and selected currently available antibacterial agents
against a panel of well-characterized MDR clinical isolates, with a special focus on diverse types of
carbapenemase producers.

2. Methodology

2.1. Isolates

The study isolates consisted of 132 isolates, comprising of Enterobacterales (n = 102), Pseudomonas
aeruginosa (n = 18), and Acinetobacter baumannii (n = 12) that were previously characterized by molecular,
phenotypic, and biochemical tests for types of β-lactamase production. Some P. aeruginosa isolates
were also characterized for degree of efflux and porin expression. These isolates were donated by the
Centers for Disease Control and Prevention, Food and Drug Administration Antimicrobial Resistance
Isolate Bank, and the Microbiology Laboratory at the University of Louisville Hospital. The study also
includes isolates from previously published studies [25,26]. The specific resistance mechanisms for the
three groups of organisms (Enterobacterales, P. aeruginosa, and A. baumannii) are provided in Table 1
and Supplementary Tables S1 and S2 for individual isolates. The class A carbapenemases, produced
by 39 isolates, included KPC-2, KPC-3, KPC-4, KPC-5, KPC-6, KPC-8, KPC-18, NMC-A, SME-type,
and GES-5. The class B carbapenemases, produced by 28 isolates, included IMP-1, IMP-7, IMP-8, VIM-1,
VIM-2, VIM-4, VIM-7, NDM-1, GIM-1, and SPM-1, and the class D carbapenemases, produced by 22
isolates, included OXA-23, OXA-40, OXA-58, OXA-48, OXA-181, and OXA-232. Five CPOs produced
two classes of carbapenemases. ESBLs that were produced by 22 non-CPO isolates of Enterobacteriaceae
included CTX-M-1, CTX-M-2, CTX-M-9, CTX-M-12, CTX-M-14, CTX-M-15, CTX-M-18, CTX-M-28,
CTX-M-45, TEM-16, SHV-3, SHV-4, SHV-7, and SHV-12, with some isolates co-producing an AmpC
β-lactamase. Ten isolates of Enterobacterales produced plasmid-mediated AmpCs of CMY, DHA, FOX,
and LAT types. The above-mentioned β-lactamases are ones capable of causing resistance to at least
one of the study drugs. Types of isolates included in the study but not included in the above groups
either produced limited-spectrum β-lactamases or had other resistance mechanisms, such as reduced
permeability or upregulated efflux.
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Table 1. Resistance mechanisms of organism groups.

Organism Group Type of Resistance Mechanism Specific Mechanisms

Enterobacterales

Class A Carbapenemase KPC-2, KPC-3, KPC-4, KPC-6, KPC-8, KPC-18,
NMC-A, SME-type, GES-5

Class B Carbapenemase IMP-1, IMP-8, VIM, VIM-1, VIM-2, NDM, NDM-1,
Class D Carbapenemase OXA-48, OXA-181, OXA-232

Dual Carbapenemase Classes KPC-18 + VIM-1, OXA-181 + NDM, NDM-1 + OXA-181+ CTX-M-15

ESBL (+/- AmpC)
CTX-M-1, CTX-M-2, CTX-M-9, CTX-M-12, CTX-M-14,
CTX-M-15, CTX-M-18, CTX-M-28, CTX-M-45, TEM-16,

SHV-3, SHV-4, SHV-7, SHV-12
Plasmid-mediated AmpC CMY, DHA, FOX, LAT

P. aeruginosa

Class A Carbapenemase KPC, KPC-5,
Class B Carbapenemase IMP-1, IMP-7, IMP-18, VIM-2, VIM-4, VIM-7, GIM-1, SPM-1

Efflux/Porin/AmpC/ESBL
Upregulation for MexAB-OprM, MexEF-OprN,

MexXY-OprM, diminished or nonfunctional OprD,
AmpC upregulation, OXA-45 ESBL

A. baumannii

Class A Carbapenemase KPC
Class B Carbapenemase NDM
Class D Carbapenemase OXA-23, OXA-40, OXA-58

Dual Carbapenemase Classes OXA-23 + NDM

2.2. Susceptibility Testing

Antibiotic susceptibility test results were reported as minimum inhibitory concentrations (MICs),
and interpreted against breakpoints where possible. Breakpoints are specific concentrations of
antibacterial agents considered to be predictive of therapeutic responses to normally attained tissue of
body fluid concentrations. They are typically described as susceptible (agent is likely to be clinically
active), resistant (agent is likely to be ineffective), and intermediate (activity uncertain when agent
is dosed as recommended, but may be effective at higher doses). The in vitro activities of FEP–ZID,
piperacillin + tazobactam, ceftolozane + tazobactam, cefepime, imipenem, ceftazidime, levofloxacin,
amikacin, and polymyxin B were determined by Clinical and Laboratory Standards Institute
(CLSI) agar dilution methodology, using doubling dilutions of antibacterial agents incorporated
in Mueller–Hinton agar (BD Diagnostics, Sparks, MD, USA), inocula of 104 colony forming units
(cfu)/spot, and overnight incubation at 35 ◦C. Concentrations of zidebactam and β-lactamase inhibitors
comprised a fixed 4 µg/mL of tazobactam for ceftolozane + tazobactam and piperacillin + tazobactam,
and a 1:1 ratio combination for FEP–ZID and cefoperazone + sulbactam. MICs of β-lactamase inhibitor
combinations were reported for only the β-lactam co-drug. Where applicable, susceptibility was
interpreted using appropriate CLSI breakpoints for relevant organism groups [27]. The CLSI high-dose
susceptible breakpoint of ≤8 µg/mL was used for cefepime when tested alone. In the absence of CLSI
breakpoints, susceptibility was not interpreted for tests with FEP–ZID and cefoperazone + sulbactam.
The control strains were Escherichia coli ATCC 25922, E. coli ATCC 35218, Klebsiella pneumoniae ATCC
700603, and P. aeruginosa ATCC 27853. Results were summarized as the concentrations that inhibited
50% and 90% of isolates (MIC50 and MIC90 values, respectively). Percent susceptibility was calculated
only for organism groups with a minimum of 10 isolates.

The sources of the laboratory powders of antibacterial agents were: Wockhardt Research Center
Aurangabad, India (cefepime, ceftolozane, cefoperazone, zidebactam, and tazobactam); Thermo Fisher
Scientific Chemicals Inc., Ward Hill, MA, USA (imipenem and amikacin); TCI America, Portland,
OR, USA (levofloxacin, piperacillin, and ceftazidime); and VWR International, LLC, Batavia, IL, USA
(polymyxin B).

3. Results

3.1. Activity against All Isolates

As shown in Table 2, FEP–ZID and polymyxin B were the most potent agents against this
collection of predominantly carbapenemase-producing isolates. The MIC50 and MIC90 values for
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FEP–ZID were 0.5 and 16 µg/mL, respectively, and they were 1 and ≥16 µg/mL, respectively, for
polymyxin B. With the exception of imipenem (MIC50 and MIC90 values 4 and 128 µg/mL, respectively),
all other comparison agents had 32 to 256-fold higher MIC50 values than FEP–ZID and high off-scale
MIC90 values.

Table 2. Potencies against all isolates.

Agent Results Against All 132 Isolates in µg/mL

MIC Range MIC50 MIC90

FEP-ZID 0.03 – ≥128 0.5 16
Cefepime 0.03 – ≥128 16 ≥128

Cefoperazone + sulbactam ≤0.25 – ≥64 16 ≥64
Ceftolozane + tazobactam ≤0.06 – ≥64 32 ≥64
Piperacillin + tazobactam 0.5 – ≥256 128 ≥256

Ceftazidime ≤0.06 – ≥256 128 ≥256
Imipenem ≤0.06 – ≥256 4 128
Amikacin ≤0.25 – ≥256 16 ≥256

Levofloxacin 0.03 – ≥32 16 ≥32
Polymyxin B 0.25 – ≥16 1 ≥16

3.2. Activity against CPOs

In tests with all CPOs, FEP–ZID was the most potent agent, with respective MIC50 and MIC90

values of 1 and 16 µg/mL. Polymyxin B was the next most potent agent, with MIC50 and MIC90

values of 1 and ≥16 µg/mL (Table 2). Against isolates producing class A carbapenemases (Table S1),
FEP–ZID and polymyxin B had respective MIC50 and MIC90 values of 0.5 and 8 µg/mL, and 1 and
≥16 µg/mL. Cefepime (MIC50 and MIC90 values of 4 and ≥128 µg/mL, respectively) and amikacin
(MIC50 and MIC90 values of 8 and 64 µg/mL, respectively) were the only other agents exhibiting
activity against more than 50% of the class A CPOs (both 56.1% susceptibility). Isolates producing class
B carbapenemases were more resistant, but FEP–ZID (MIC50 and MIC90 values of 2 and 32 µg/mL,
respectively) was distinctly more active than the comparison agents, all of which had high, off-scale
MIC90 values, with very few isolates being susceptible. Similarly, against isolates producing class D
carbapenemases, with the exception of polymyxin B, FEP–ZID, with MIC50 and MIC90 values of 2 and
16µg/mL, respectively, was distinctly more active than the comparison agents. With the exception of one
isolate of OXA-48-producing K. pneumoniae (MIC ≥ 128 µg/mL), all other Enterobacterales producing
OXA-48-like carbapenemases had FEP–ZID MICs of ≤2 µg/mL. OXA-carbapenemase-producing
isolates of A. baumannii were more resistant overall than OXA-producing Enterobacterales. A. baumannii
isolates producing OXA-23 or OXA-40 had FEP–ZID MICs in the range 4 to 32 µg/mL. One isolate
producing two carbapenemases (OXA-23 + NDM) had a FEP–ZID MIC of ≥128 µg/mL. All other dual
carbapenemase producers had FEP–ZID MICs of ≤2 µg/mL.

3.3. Activity against ESBL-Producing and Plasmid-Mediated AmpC-Producing Enterobacterales

FEP–ZID, polymyxin B, and imipenem were the most active agents against ESBL-producing
Enterobacterales. Only two agents, FEP–ZID and polymyxin B, had low MIC90 values (2 µg/mL for both
agents). Imipenem was the next most active agent (MIC90 value of 16 µg/mL and 83.4% susceptibility).
All other comparison agents had high, off-scale MIC90 values. Among these, only amikacin (72.7%),
ceftolozane + tazobactam (59.1%), and piperacillin + tazobactam (59.1%) inhibited more than 50% of
the ESBL producers.

Against the plasmid-mediated AmpC-producing Enterobacterales, FEP–ZID (MIC50 and MIC90

values of 0.12 and 2 µg/mL, respectively) and cefepime (MIC50 and MIC90 values of 0.5 and 8 µg/mL,
respectively, and 90% susceptibility) were the most active agents. Polymyxin B was the next most
active agent (MIC50 and MIC90 values were both 1 µg/mL). Eight of the 10 plasmid-mediated
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AmpC-producing isolates had FEP–ZID MICs of ≤0.25 µg/mL. The agents most compromised by
plasmid-mediated AmpCs were ceftolozane + tazobactam, piperacillin + tazobactam, and levofloxacin.

3.4. Activity against MDR Enterobacterales, P. aeruginosa, and A. baumannii Irrespective of Resistance
Mechanisms

FEP–ZID was the most active agent against all Enterobacterales, with a dramatically lower MIC90

value (2 µg/mL) than the other study drugs (128 µg/mL or high, off-scale values). Of the drugs for
which breakpoints were available, the most active were amikacin (58.8% susceptible) and imipenem
(47.1% susceptible).

Against all P. aeruginosa isolates, polymyxin B was the most potent agent, with MIC50 and MIC90

values of 2 and 4 µg/mL, respectively, followed by FEP–ZID (MIC50 and MIC90 values of 8 and
32 µg/mL, respectively). With the exceptions of amikacin and polymyxin B (both 61.1% susceptibility),
the other agents inhibited less than 40% of the isolates at the CLSI susceptible breakpoints. Agents
with most potency against the more susceptible P. aeruginosa isolates, indicated by MIC50 values,
were polymyxin B (2 µg/mL), FEP–ZID (8 µg/mL), ceftolozane + tazobactam (16 µg/mL), and
amikacin (16 µg/mL). Reduced susceptibility to FEP–ZID was either associated with IMP or VIM class
B carbapenemases, or combinations of mechanisms such as overexpressed MexAB-OprM or MexXY
efflux, diminished OprD function, and high-level AmpC production.

Polymyxin B (MIC50 and MIC90 values of 1 and 2 µg/mL, respectively, and 91.2% susceptibility)
and FEP–ZID (MIC50 and MIC90 values of 16 and 32 µg/mL, respectively) were the most active agents
against A. baumannii. On the basis of CLSI breakpoints, amikacin (50.0% susceptibility) was the next
most active agent, with the other drugs with breakpoints having susceptibility rates of only 0% to 8.3%.

4. Discussion

This study comprised a very challenging panel of isolates. The diversity of the range of
single-carbapenemase and dual-carbapenemase production provided the strongest challenge for
FEP–ZID activity in this study, and thereby extended our understanding of the activity of FEP–ZID and
provided insights into its potential against MDR isolates of Enterobacterales, P. aeruginosa, and A. baumannii.
FEP–ZID was notable for its activity against CPOs producing all three Ambler classes of carbapenemases
and against P. aeruginosa with multiple resistance mechanisms, including combinations of upregulated
efflux, diminished or non-functional OprD porins, and AmpC overproduction. Especially notable
was the ability of zidebactam to enhance the activity of cefepime against CPOs producing class D
carbapenemases. Nontoxic treatment for infections by MDR A. baumannii isolates producing OXA class
D carbapenemases is currently an unmet medical need. There is also a need for effective therapies for
infections by MDR isolates of P. aeruginosa [28,29]. The activity of FEP–ZID against such isolates warrants
clinical investigation.

If the potency of FEP–ZID translates into clinical efficacy in humans, FEP–ZID could be
considered as an expanded spectrum β-lactam/β-lactam enhancer combination. This is consistent with
previous reports [12,13,30]. The need for FEP–ZID breakpoints and recommended testing methods
is urgent, because the CPO problem is global and associated with high mortality [31–35]. There are
no drugs to treat all CPO infections, and resistance continues to emerge. It is essential to reduce
the mortality and control the spread of these organisms, and it must be done now. The need
for effective therapies is urgent. To avoid delays from hindering the quest for effective therapy
of all types of CPO infections, recent surveillance data, population pharmacokinetic (PK), Monte
Carlo-based pharmacokinetic/pharmacodynamic (PK/PD) studies, and animal models utilizing
human-simulated dosing regimens against high MIC strains can be analyzed to expedite breakpoint
and testing recommendations.

At this time, in the absence of FEP–ZID breakpoints, we avoided making interpretations of
susceptibility or resistance in our analysis, and solely reported in vitro potency data for this agent.
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5. Conclusions

In conclusion, FEP–ZID exhibited broad spectrum potency against a wide range of MDR
Gram-negative pathogens in this study. Depending on the breakpoints that are assigned,
its antibacterial spectrum may provide more comprehensive CPO coverage for empirical
therapy of infections than the current limited-spectrum agents, ceftazidime + avibactam and
meropenem + vaborbactam. The clinical role of FEP–ZID will be determined initially by the
breakpoints assigned to it, followed by comparison studies with other investigational β-lactamase
inhibitor combinations and, ultimately, by the developing body of therapeutic outcome data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/8/1/32/s1,
Table S1: Activity of FEP-ZID and Comparison Agents, Table S2: MIC of FEP-ZID and Comparators against All
Tested Strains.
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