Supplementary Materials:

Primer name	Primer sequence (5'-3')	Fragment size (bp)	Annealing temperature (℃)	Reference
fnbA	GATACAAACCCAGGTGGTGG	191	52	Zmantar et al., 2008
	TGTGCTTGACCATGCTCTTC			
fnbB	ACGCTCAAGGCGACGGCAAAG	197	62	Pereyra et al., 2016
	ACCTTCTGCATGACCTTCTGCACCT			
clfB	TGCAAGTGCAGATTCCGAAAAAAAC	194	62	Klein et al., 2012
	CCGTCGGTTGAGGTGTTTCATTTG			
спа	AAAGCGTTGCCTAGTGGAGAC	192	54	Zmantar et al., 2008
	AGTGCCTTCCCAAACCTTTT			
bap	CCCTATATCGAAGGTGTAGAATTG	971	60	Darwish and Asfour, 2013
	GCTGTTGAAGTTAATACTGTACCTGC			
icaA	CCTAACTAACGAAAGGTAG	1351	49	Wang et al., 2018
	AAGATATAGCGATAAGTGC			
icaD	AAACGTAAGAGAGGTGG	381	49	Pereyra et al., 2016
	GGCAATATGATCAAGATAC			
sea	CCTTTGGAAACGGTTAAAACG	127	55	Bayles, K, et al.,1998
	TCTGAACCTTCCCATCAAAAAC			
seb	TCGCATCAAACTGACAAACG	477	53	Bayles, K, et al.,1998
	GCAGGTACTCTATAAGTGCCTGC			
sec	AGATTTAGCAAAGAAGTACAAAGATG	490	63	Sergeev, et al.,2004
	AAGGTGGACTTCTATCTTCACACTT			
sed	GAGGTGTCACTCCACACGAA	349	57	Avanish K et al.,2009
	TGAAGGTGCTCTGTGGATAATG			
see	ACCGATTGACCGAAGAAAAA	264	51	Avanish K et al.,2009
	ATTGCCCTTGAGCATCAAAC			
seg	AGAATTAGCTAACAATTATAAAGATAA AAAAG	496	60	Sergeev, et al.,2004
	TCAGTGAGTATTAAGAAATACTTCCAT			
seh	TGATTTAGCTCAGAAGTTTAAAAATAA AAATG	466	62	Sergeev, et al.,2004
	TTTCTTAGTATATAGATTTACATCAATAT			
sei	TGGAACAGGACAAGCTGAAA	529	51	Avanish K et al.,2009
	TGTTTGCCATTAACCCAAAG			
sej	ATGAAAAAAAAAAATATTTATACTGATTT TCTCCC	807	57	Sergeev, et al.,2004

Table 1. Primers used in this study.

	TCTACAGAACCAAAGGTAGACTTATTA			
	ATAC			
sek	ATGAATCTTATGATTTAATTTCAGAATC	545	60	Sergeev, et
	AA			
	ATTTATATCGTTTCTTTATAAGAAATATC			a1.,2004
sel	ATGAAAAAAAGATTATTATTTGTAATTG	723	60	Sergeev, et al.,2004
	TTATTAC			
	ATCATCTTTTTGAAATTTCGACATCTAG			
sem	ATGAAAAGAATACTTATCATTGTTGTTT	258	60	Sergeev, et al.,2004
	TATTG			
	CTTCAACTTTCGTCCTTATAAGATATTTC			
sen	ATAAAAAATATTAAAAAGCTTATGAGA	777	60	
	TTGTTC			Sergeev, et
	ACTTAATCTTTATATAAAAAATACATCAA			al.,2004
	TATG			
seo	TATGTAGTGTAAACAATGCATATGCA	685	58	Sergeev, et
	TCTATTGTTTTATTATCATTATAAATTTG			
	CAAAT			u1.,2004
seq	GGAAAATACACTTTATATTCACAGTTTC	539	60	Sergeev, et
	ATTTATTCAGTTTTCTCATATGAAATCTC		00	al.,2004
ser	AGCGGTAATAGCAGAAAATG	363	51	Holtfreter, et
	TCTTGTACCGTAACCGTTTT			al., 2007
seu	AATGGCTCTAAAATTGATGG	215	49	Holtfreter, et
	ATTTGATTTCCATCATGCTC			al., 2007
tsst	AAGCCCTTTGTTGCTTGCG	447	53	Bayles, K, et
	ATCGAACTTTGGCCCATACTTT			al.,1998

Figure 1. PCR amplification for the detection of *fnbA*, *fnbB* and *clfB* gene of *S. aureus* isolates. M: DL2000 marker; 1-3: PCR verification of *fnbA* gene with 191 bp, Line 1-3: different isolates from raw goat milk; 4-5: PCR verification of *fnbB* gene with 197 bp, Line 4-5: different isolates from raw goat milk; 6-7: PCR verification of *clfB* gene with 194 bp, Line 6-7: different isolates from raw goat milk.

Figure 2. PCR amplification for the detection of *seo*, *sek*, *sei*, *seb*, *sea*, *cna*, *seu* and *see* genes of *S*. *aureus* isolates. M: DL2000 marker; 1-2: PCR verification of *seo* gene with 685 bp, Line 1-2: different isolates from raw goat milk; 3-4: PCR verification of *sek* gene with 545 bp, Line 3-4: different isolates from raw goat milk; 5-8: PCR verification of *sei* gene with 529 bp, Line 5-8: different isolates from raw goat; 9-10: PCR verification of *sea* gene with 127 bp, Line 9-10: different isolates from raw goat; 11-13: PCR verification of *seb* gene with 477 bp, Line 11-13: different isolates from raw goat; 14-15: PCR verification of *sea* gene with 192 bp, Line 14-15: different isolates from raw goat; 16-18: PCR verification of *sea* gene with 215 bp, Line 16-18: different isolates from raw goat; 19-20: PCR verification of *sek* gene with 264 bp, Line 19-20: different isolates from raw goat.

Figure 3. PCR amplification for the detection of *bap*, *sej* and *sen* genes of *S. aureus* isolates. M: DL2000 marker; 1-2: PCR verification of *bap* gene with 971 bp, Line 1-2: different isolates from raw goat; 3-4: PCR verification of *sej* gene with 807 bp, Line 3-4: different isolates from raw goat; 5-9: PCR verification of *bap* gene with 777 bp, Line 5-9: different isolates from raw goat.

Figure 4. PCR amplification for the detection of *sec*, *seh*, *seg*, *tsst* and *ser* genes of *S. aureus* isolates. M: DL2000 marker;1-2: PCR verification of *sec* gene with 490 bp, Line 1-2: different isolates from raw goat; 3-4: PCR verification of *seh* gene with 466 bp, Line 3-4: different isolates from raw goat; 5-7: PCR verification of *seg* gene with 486 bp, Line 5-7: different isolates from raw goat; 8-10: PCR verification of *ser* gene with 363 bp, Line 11-12: different isolates from raw goat.

Figure 5. PCR amplification for the detection of *sel*, *sed*, *icaD*, *seq* and *sem* gene of *S. aureus* isolates. M: DL2000 marker; 1-2: PCR amplification of *sel* gene with 723 bp, Line 1-2: different isolates from raw goat; 3-5: PCR verification of *sed* gene with 349 bp, Line 3-5: different isolates from raw goat; 6-8: PCR verification of *icaD* gene with 381 bp, Line 6-8: different isolates from raw goat; 9-12: PCR verification of *seq* gene with 539 bp, Line 9-12: different isolates from raw goat; 13-16: PCR verification of *sem* gene with 258 bp, Line 13-16: different isolates from raw goat.