

Figure S1. Possible additive effect of colistin and light on the proliferation rate of (a) E. coli DH5 α and (b) S. Typhimurium. LB was supplemented with different colistin concentrations. Cells grew either illuminated with $12 \mathrm{~mW} / \mathrm{cm}^{2}$ (grey lines) or protected from light (black lines). Depicted are measured values (circles) and fitted curves (lines) \pm standard deviations ($n=3$) showing one representative of three independent experiments. *: $\mathrm{p}<0.05$ vs. not-illuminated-free samples.

Figure S2. Growth kinetic of E. coli $\mathrm{DH} 5 \alpha$ in the presence of chlorophyllin/colistin concentrations. Liquid cultures containing chlorophyllin and/or colistin were exposed to light (upper row) or were protected from light (lower row; grey). In 30-minute intervals, $5 \mu \mathrm{~L}$ samples of were transferred into new 48 well plates with LB medium without supplementations. Cell growth was checked after further 24 h incubation estimating the turbidity of the medium inside the wells. Black circles indicate turbidity (=living cells), white circles no turbidity (=no living cells).

Figure S3. Chlorophyllin uptake into E. coli, S. Typhimurium and E. coli pGDP2:mcr-1 in the presence of colistin. Samples were taken from liquid cultures after 24 h of incubation in darkness and microscopically analyzed in bright field (first row) and under blue light fluorescence. Red fluorescence is emitted from chlorophyllin inside the cells. Scale bars: $10 \mu \mathrm{~m}$.

Table S1. Effects of different colistin concentrations on the growth of E. coli DH5 α. Given are OD590 values \pm standard deviations $(\mathrm{n}=3)$ showing one representative of three independent experiments.

Time [min]	Colistin concentrations [$\mu \mathrm{g} / \mathrm{mL}$]									
	0.000	0.005	0.010	0.015	0.050	0.100	0.250	0.500	1.000	2.500
0	0.097	0.098	0.099	0.097	0.098	0.102	0.093	0.097	0.100	0.099
	± 0.001	± 0.003	± 0.002	± 0.001	± 0.001	± 0.003	± 0.002	± 0.002	± 0.001	± 0.001
60	0.134	0.124	0.121	0.122	0.120	0.119	0.107	0.095	0.076	0.078
	± 0.004	± 0.004	± 0.002	± 0.002	± 0.001	± 0.003	± 0.003	± 0.002	± 0.001	± 0.001
90	0.210	0.186	0.177	0.174	0.168	0.161	0.125	0.099	0.071	0.075
	± 0.007	± 0.008	± 0.005	± 0.006	± 0.010	± 0.006	± 0.003	± 0.001	± 0.001	± 0.001
120	0.335	0.302	0.282	0.285	0.271	0.244	0.143	0.099	0.068	0.070
	± 0.015	± 0.011	± 0.013	± 0.014	± 0.015	± 0.021	± 0.008	± 0.003	± 0.000	± 0.001
150	0.470	0.414	0.394	0.391	0.374	0.344	0.172	0.100	0.066	0.067
	± 0.008	± 0.015	± 0.022	± 0.023	± 0.017	± 0.021	± 0.013	± 0.005	± 0.001	± 0.001
180	0.584	0.529	0.500	0.493	0.470	0.465	0.203	0.096	0.062	0.063
	± 0.025	± 0.024	± 0.025	± 0.026	± 0.038	± 0.064	± 0.021	± 0.006	± 0.001	± 0.001

