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Abstract: A series of new urea derivatives, containing aryl moieties as potential antimicrobial
agents, were designed, synthesized, and characterized by 1H NMR, 13C NMR, FT-IR, and LCMS
spectral techniques. All newly synthesized compounds were screened in vitro against five bacterial
strains (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Staphylococcus aureus) and two fungal strains (Candida albicans and Cryptococcus neoformans).
Variable levels of interaction were observed for these urea derivatives. However, and of major
importance, many of these molecules exhibited promising growth inhibition against Acinetobacter
baumannii. In particular, to our delight, the adamantyl urea adduct 3l demonstrated outstanding
growth inhibition (94.5%) towards Acinetobacter baumannii. In light of this discovery, molecular
docking studies were performed in order to elucidate the binding interaction mechanisms of the most
active compounds, as reported herein.
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1. Introduction

Bacterial and fungal diseases have become increasingly more prominent and complex in recent
years, particularly when compared to the last half of the twentieth century [1]. As a result, the need for
new antibacterial and antifungal agents has become a goal of extreme importance, especially in light of
the documented emergence of multi-drug-resistant (MDR) strains in recent years [2–7]. These MDR
strains already pose a well-recognized health threat to the world population and are frequently
associated with increased healthcare cost and prolonged hospital stays. Despite recent advances to
understanding the pathogenesis of infection, research laboratories have become increasingly focused
on the discovery of new and more effective drug candidates as the MDR strains continue to increase.
In particular, various, novel, synthetic small molecules have been synthesized and screened as potential
candidates to combat these resistant strains of bacteria and fungi [8–12]. We have been actively involved
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in the design and discovery of such new bioactive molecules to tackle MDR strains [13–22] and have
reported our most recent studies herein, which include some very promising discoveries.

Since urea functionality is a core moiety in many drug candidates, we have recently commenced a
research program focused on the development of potential urea functionalized antimicrobial agents [23].
Our initial research efforts have identified the novel urea derivatives I and II as the initial hits for bacterial
strain Staphylococcus aureus and fungal strain Cryptococcus neoformans, respectively, (Figure 1A) [23].
We have also studied the antimicrobial effects of N,N-disubstituted urea derivatives, where one of the
urea nitrogen was part of a piperazine ring system (e.g., III which showed moderate inhibition against
Candida albicans [24]. Encouraged by these results, we embarked on further exploring novel new urea
derivatives for antimicrobial activities, as shown in Figure 1B.
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Figure 1. Antimicrobial urea derivatives.

In this work, we explored the effects of diverse substitutions present on the nitrogen atoms of the
urea backbone. For instance, aryl or aliphatic substitutions were studied (Scheme 1). Very interestingly,
N,N-disubstituted compounds; (R)-3-(4-chlorophenyl)-1-methyl-1-(1-phenylethyl)urea (3e), (S)-1-benzyl-
3-(3,4-dichlorophenyl)-1-(1-phenylethyl)urea (3j), and (S)-1-benzyl-3-(4-fluorophenyl)-1-(1-phenylethyl)urea
(3n) demonstrated a good inhibition towards Acinetobacter baumannii. Remarkably, this study identified
a new potential lead drug candidate, 1-((3S,5S,7S)-adamantan-1-yl)-3-(3,4-dichlorophenyl)urea (3l) for
Acinetobacter baumannii. This compound (3l) exhibited selective and outstanding inhibition (94.5%)
towards Acinetobacter baumannii. A unique feature of this compound was that it included the lipophilic
adamantane moiety (Figure 1). Notably, this adamantane functionality is extensively used in drug
design and is part of several drug candidates [25–28].
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2. Results and Discussion

2.1. Chemistry

The basic synthetic approach for preparation of the seventeen new urea derivatives, containing aryl
moieties, is illustrated in Scheme 1. All compounds (3a–q) were successfully synthesized in a simple,
one-step method, via the reaction of amines with commercially available isocyanates, at 40–45 ◦C,
in toluene. The attractive features of this method were, (1) simple one-pot procedure, (2) mild reaction
conditions, (3) short reaction time, (4) easier work-up, and (5) high yields (76% to 83%).
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Scheme 1. Synthesis of urea derivatives (3a–q).

2.2. Spectroscopic Characterization

The chemical structures of the reported urea derivatives (3a–q) were confirmed by 1H NMR,
13C NMR, FT-IR, and LCMS spectral techniques. The spectral data of the compounds (3a–q) are
presented in the experimental section; these were in accordance with assigned structures for urea
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derivatives containing aryl moieties (Scheme 1). The FT–IR spectra, for the title urea compounds,
were recorded within the region of 400 to 4000 cm−1. The IR spectra of all urea derivatives exhibited
bands at 3264–3374 and 1648–1626 cm−1 assigned to the ν(NH) and ν(C=O) groups, respectively.
IR observed signals at 3028–2905 and 1595–1504 cm−1 might be assigned to the C-H and C=C
stretches of the aromatic rings. The chemical structure of all molecules was further confirmed by 1H
NMR spectroscopy and further confirmed by the 13C NMR spectra. The 13C NMR spectra of all urea
derivatives (3a–q) exhibited a characteristic signal of the urea carbonyl functional group (C=O) between
157.5 and 153.5 ppm. Further confirmation of the molecular structures of the reported compounds was
assessed by mass spectra. The molecular ion peak (M + H)+ and the base peak for all urea compounds
were clearly found in the mass spectrometry study. Thus, the molecular ion peaks agreed with the
molecular weight of the respective compounds.

2.3. Antimicrobial Activity

The in vitro antimicrobial activity of the freshly produced urea derivatives (3a–q) was evaluated
against five bacteria [Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Staphylococcus aureus] and two fungal [Candida albicans and Cryptococcus neoformans]
species. Colistin was used as a positive inhibitor standard for Gram-negative bacteria; Vancomycin was
used for the Gram-positive bacteria; and Fluconazole was used as a positive fungal inhibitor standard
for both fungi. The antimicrobial potential/results of these urea derivatives are summarized in Table 1.

The antimicrobial screening disclosed that some of the tested compounds demonstrated excellent
to moderate growth inhibition towards various tested microbial strains. The result indicated that
among the tested compounds, compounds 3c, 3e, 3f, 3i, 3j, 3l, and 3n showed moderate to excellent
growth inhibition against A. baumannii. Further, it was found that compounds (3c and 3g) showed
moderate growth inhibition towards K. pneumonia, whereas compound (3k) demonstrated moderate
growth inhibition against S. aureus. In contrast, all urea derivatives screened (3a–q) against E. coli,
P. aeruginosa, and C. albicans exhibited moderate to poor growth inhibition. Compound (3a) showed
moderate growth inhibition against the C. neoformans fungi, whereas the remaining compounds (3b–q)
revealed a poor growth inhibition. Overall, the results indicated that the adamantyl urea derivative
(3l) showed the highest growth inhibition towards the A. baumannii bacteria (94.5%) (Table 1), a very
exciting observation, which suggested development and biological evaluation of other adamantyl
urea derivatives.

2.4. Molecular Docking Studies

As noted above, antimicrobial screening revealed that our urea derivatives were superior inhibitors
against A. baumannii. Therefore, to investigate the mechanism of this antibacterial action, and explore the
intermolecular interactions between the synthesized compounds with the receptor, molecular docking
studies were performed on the crystal structure of the A. baumannii PBP1a, in complex with penicillin
G (PDB ID 3UDI, 2.6 Å X-ray resolution), using the surflex-dock program of the sybyl-X 2.0 software.
All inhibitors, along with the ligand, were docked into the active site of enoyl-(acyl-carrier-protein)
reductase (ENR), as shown in Figure 2. The predicted binding energies of the compounds are listed
in Table 2. The docking study revealed that all the compounds exhibited very good docking scores
against the enzyme.
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Table 1. Antimicrobial activity of compounds (3a–q) with the concentration set at 32 µg/mL in DMSO.

Compound (#)

Percentage of Inhibition of Growth [a]

Antibacterial Activity
Antifungal Activity

Gram-Positive Gram-Negative Bacteria

Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Acinetobacter baumannii Candida albicans Cryptococcus neoformans

3a −0.1 ± 2.26 4 ± 0.98 −20.65 ± 3.18 −0.75 ± 2.75 −88.85 ± 22.82 17.45 ± 19.44 30.65 ± 2.05
3b −29.7 5± 6.29 8.15 ± 2.61 11.15 ± 15.48 −7.4 ± 0.70 −58.1 ± 21.7 −1.4 ± 0.98 10.6 ± 12.58
3c 7.6 ± 1.55 3.3 ± 0.14 −2.34 ± 0.05 29.35 ± 0.77 20.1 ± 3.81 5.75 ± 2.19 −4.4 ± 0.42
3d 7.25 ± 0.49 5.35 ± 0.91 10.95 ± 15.62 17.55 ± 0.77 11 ± 31.39 −5.6 ± 0.00 2.2 ± 2.96
3e 0.45 ± 3.60 9.2 ± 0.00 −5.35 ± 18.17 −5.55 ± 6.15 51.85 ± 12.94 2.75 ± 1.34 −2.35 ± 7.56
3f 1.6 ± 0.28 3.55 ± 1.48 −12 ± 6.50 −4.9 ± 7.91 25.9 ± 27.86 3.15 ± 2.47 −3.2 ± 9.47
3g −5.8 ± 4.38 2.2 ± 5.09 −3.65 ± 10.53 21.25 ± 4.31 −6.3 ± 33.79 −4.0 ± 3.67 −9.85 ± 2.75
3h −0.9 ± 0.70 9.45 ± 3.18 2.3 ± 15.98 −3.65 ± 1.34 13.75 ± 46.31 2.2 ± 1.97 −4.45 ± 6.01
3i 12.4 ± 4.24 10.15 ± 0.63 −4.6 ± 15.13 11.4 ± 8.62 25.15 ± 31.59 6.25 ± 0.49 −6.2 ± 14.00
3j −11.05 ± 1.48 −1.65 ± 4.87 −17.45 ± 6.29 0.95 ± 3.18 49.35 ± 49.69 13.4 ± 3.81 −0.8 ± 19.37
3k 24.9 ± 1.13 −0.5 ± 2.40 −8.5 ± 6.50 −11.8 ± 0.70 −97.4 ± 93.76 4.45 ± 4.17 15.25 ± 1.76
3l 13.25 ± 0.49 −1.2 ± 0.28 −16.5 ± 0.14 −16 ± 1.69 94.5 ± 17.23 3.05 ± 3.32 12.05 ± 3.88

3m −23.5 ± 3.95 11.65 ± 0.07 −6.15 ± 22.41 −6.65 ± 1.20 −16.15 ± 8.27 0.35 ± 1.62 11.3 ± 7.91
3n 7.8 ± 1.69 7.9 ± 0.14 −3.25 ± 6.71 2.0 ± 1.13 46.35 ± 16.33 1.25 ± 3.88 −3.75 ± 1.06
3o 8.35 ± 0.07 2.25 ± 1.48 −5.4 ± 13.43 −21.5 ± 0.70 2.65 ± 33.44 0.00 ± 3.39 −2.6 ± 6.08
3p 2.15 ± 9.26 5.9 ± 2.26 −1.65 ± 19.86 −7.85 ± 2.61 14.6 ± 30.97 3.45 ± 1.20 3.4 ± 3.25
3q 7.55 ± 0.35 10.45 ± 0.07 −0.55 ± 16.05 −5.0 ± 4.24 14.9 ± 36.91 0.2 ± 3.25 −3.35 ± 4.73

[a] Percentage growth inhibition at a concentration of 32 µg·mL−1 calculated on the basis of negative (media only) and positive controls (bacterial/fungal media without inhibitor, set to
0%). Variation ± 10%. Colistin [Minimum Inhibition Concentration (MIC) 0.125–0.25 µg/mL] and vancomycin (MIC 1 µg/mL) were used as positive bacterial inhibitor standards for
Gram-negative and Gram-positive bacteria, respectively. Fluconazole was used as a positive fungal inhibitor standard for C. albicans (MIC 0.125 µg/mL) and C. neoformans (MIC 8 µg/mL).
Highest percentiles of antibacterial/antifungal growth inhibition are highlighted in bold. Data are expressed as the mean ± SD. SD—Standard Deviation. Best inhibition results are
indicated in bold.
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Table 2. Surflex Docking Score (kcal/mol) of the urea derivatives.

Compounds C Score a Crash
Score b

Polar
Score c D Score d PMF

Score e G Score f Chem
Score g

3UDI_Ligand 5.12 −1.73 5.34 −127.811 −36.763 −199.315 −26.957
3a 4.91 −0.99 0.43 −96.944 15.031 −156.919 −21.467
3b 4.98 −1.67 1.04 −108.502 −16.998 −206.677 −28.934
3c 4.86 −1.63 1.11 −106.679 −22.362 −177.149 −23.114
3d 4.75 −0.50 1.38 −72.791 21.318 −141.071 −19.363
3e 3.58 −1.22 0.00 −87.507 31.814 −143.787 −15.604
3f 4.73 −1.53 1.05 −108.037 −21.206 −206.699 −28.745
3g 4.17 −1.30 1.09 −102.700 −24.068 −171.270 −22.764
3h 2.91 −0.47 0.00 −79.382 −16.486 −124.882 −19.191
3i 3.44 −1.36 0.82 −94.042 −29.559 −161.576 −23.494
3j 4.96 −1.62 0.91 −105.444 −20.461 −208.403 −27.100
3k 4.37 −0.95 2.27 −95.562 −30.750 −146.048 −26.797
3l 3.61 −0.56 0.97 −86.268 −0.930 −140.976 −20.941

3m 5.19 −1.60 0.73 −101.453 41.298 −176.730 −19.940
3n 5.19 −1.94 0.08 −121.156 19.866 −212.017 −27.491
3o 4.43 −1.30 0.99 −99.796 −23.667 −166.866 −22.226
3p 3.48 −0.92 0.09 −85.783 17.463 −127.721 −18.822
3q 3.46 −0.66 0.00 −87.632 10.207 −129.574 −20.064

a CScore (Consensus Score) integrates a number of popular scoring functions for ranking the affinity of ligands
bound to the active site of a receptor and reports the output of the total score. b Crash-score revealing the
inappropriate penetration into the binding site. Crash scores close to 0 are favorable. Negative numbers indicate
penetration. c Polar indicating the contribution of the polar interactions to the total score. The polar score might be
useful for excluding the docking results that make no hydrogen bonds. d D-score for charge and van der Waals
interactions between the protein and the ligand. e PMF-score indicating the Helmholtz free energies of interactions
for the protein–ligand atom pairs (Potential of Mean Force (PMF)). f G-score showing hydrogen bonding, complex
(ligand–protein), and internal (ligand–ligand) energies. g Chem-score points for H-bonding, lipophilic contact, and
rotational entropy, along with an intercept term.

As depicted in Figure 3, compound (3n) makes a hydrogen bonding interaction at the active site
of the enzyme (PDB ID: 3UDI), the oxygen atom of carbonyl group interacts with the hydrogen atom
of SER487 (C=O——H-SER487, 1.99 Å). As depicted in Figure 4, compound (3j) makes a hydrogen
bonding interaction at the active site of the enzyme (PDB ID: 3UDI), oxygen atom of the carbonyl group
interacts with the hydrogen atom of THR670 (C=O——H-THR670, 2.14 Å). The binding interaction
of 3UDI_ligand with enzyme active sites shows six bonding interactions and the docked view of the
same; as depicted in Figure 5. Figure 6A,B represents the hydrophobic and hydrophilic amino acids
surrounded to the studied compound (3n and 3j).
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All compounds showed consensus scores in the range 5.19–2.91, indicating the summary of all
forces of interaction between ligands and the enzyme. Moreover, it was observed that the studied
compounds displayed the same type of interactions with amino acid residues SER487 and THR670,
as that of the reference 3UDI_ligand. This indicated that molecules preferentially bound to the enzyme
in comparison to the reference 3UDI_ligand (Table 2).

As documented above, new urea derivative (3l) showed highest growth inhibition against
A. baumannii. Hence, a molecular docking study was also performed for 3l. As represented in Figure 7,
compound 3l showed hydrogen bonding interaction at the active site of the enzyme (PDB ID: 3UDI).
The adamantane ring was surrounded by hydrophobic amino acids ALA537, ILE566, GLY675, ILE555,
PHE554, ALA682, and VAL565 (Figure 8), which might have resulted in the increased activity of
compound (3l). Superimposition of 3l (magenta color) with benzyl penicillin (purple color) has been
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depicted in Figure 9. As shown in the figure, the adamantane moiety was superimposed with β-lactam
and thiazolidine rings.
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3. Materials and Methods

3.1. General Consideration

All chemicals, including isocyanates, were purchased from Sigma-Aldrich chemical company
and were used without further purification. All solvents were of analytical grade and were used
without further purification. All reactions were carried out under aerobic conditions, in oven-dried
glassware with magnetic stirring. Heating was accomplished by either a heating mantle or silicone oil
bath. Reactions were monitored by thin-layer chromatography (TLC) performed on 0.25 mm Merck
TLC silica gel plates, using UV light as a visualizing agent. Purification of the reaction products was
carried out by flash column chromatography using silica gel 60 (230–400 mesh). Yields refer to the
chromatographically pure material. Concentration in vacuo refers to the removal of volatile solvent
using a rotary evaporator attached to a dry diaphragm pump (10–15 mm Hg), followed by pumping to
a constant weight with an oil pump (<300 mTorr). 1H spectra were recorded on JEOL Eclipse Plus
500 (500 MHz) and were reported relative to CDCl3 (δ 7.26) or DMSO-d6 (δ 2.50). 1H NMR coupling
constants (J) were reported in Hertz (Hz) and multiplicities were indicated as follows—s (singlet),
d (doublet), t (triplet), quint (quintet), m (multiplet). Proton-decoupled 13C NMR spectra were recorded
on the JEOL Eclipse Plus 500 (125 MHz) and were reported relative to CDCl3 (δ 77.00) or DMSO-d6

(δ 39.52). IR spectra were recorded on an Alpha-P Bruker FT/IR spectrometer. Liquid chromatography
mass spectra (LC-MS) were recorded on Agilent technologies quadrupole LC–MS system.

3.2. Syntheses

3.2.1. General Experimental Procedure for the Synthesis of Urea Derivatives

To a solution of isocyanate (1.877 mmol) in toluene (2.5 mL) a solution of amine (1.877 mmol) in
toluene (1.0 mL) was added. The reaction mixture was heated at 40–45 ◦C for 1 h. Then, the reaction
mixture was cooled down to the room temperature. The resulting solids were filtered and washed with
toluene (2.0 mL). Additional toluene (2.5 mL) was added to the solids and stirred at room temperature
for about 30 minutes, filtered, and washed with more toluene (2.0 mL) to obtain the crude urea
derivatives. Finally, the crude urea derivatives were purified by silica gel flash column chromatography,
using hexane/ethyl acetate (9:1) as the eluents, to afford pure adducts. 1H and 13C NMR data of all the
compounds (3a–q) in Supplementary Materials.

Synthesis of (R)-1-methyl-1-(1-phenylethyl)-3-(p-tolyl)urea (3a)

Compound (3a) was synthesized from 4-methylphenyl isocyanate (0.25 g, 1.87 mmol) and
(R)-(+)-N, α-dimethylbenzylamine (0.25 g, 1.87 mmol), according to the general procedure. It was a
white solid; yield— 78% (0.39 g). 1H NMR (CDCl3, 500 MHz): δ 7.39–7.36 (m, 4H), 7.29 (d, J = 8.0 Hz,
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3H), 7.09 (d, J = 8.0 Hz, 2H), 6.53 (br, 1H), 5.70 (q, J = 6.9 Hz, 1H), 2.73 (s, 3H), 2.30 (s, 3H), 1.56
(d, J = 6.9 Hz, 3H). 13C NMR (CDCl3, 125 MHz): δ 155.5, 140.9, 136.3, 132.6, 129.3, 128.5, 127.3, 127.1,
120.0, 52.6, 29.4, 20.7, 16.6. IR (KBr): υ = 3304.2, 2923.4, 1633.9, 1595.6, 1291.7, 811.2.LC-MS for
C17H20N2O (268.35): m/z = 269.32 [M + H]+.

Synthesis of (S)-1-benzyl-1-(1-phenylethyl)-3-(p-tolyl)urea (3b)

Compound (3b) was synthesized from 4-methylphenyl isocyanate (0.25 g, 1.87 mmol) and
(S)-(-)-N-benzyl-α-methylbenzylamine (0.39 g, 1.87 mmol), according to the general procedure. It was
a white solid; yield—76% (0.49 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.26 (s, 1H), 7.38–7.33 (m, 4H),
7.30 (d, J = 8.6 Hz, 2H), 7.28–7.24 (m, 3H), 7.20–7.15 (m, 3H),7.02 (d, J = 8.0 Hz, 2H), 5.72 (q, J = 7.5 Hz,
1H), 4.68 (d, J = 17.8 Hz, 1H), 4.16 (d, J = 17.2 Hz, 1H), 2.21 (s, 3H), 1.44 (d, J = 7.5 Hz, 3H). 13C
NMR (DMSO-d6, 125 MHz): δ 155.7, 142.0, 139.9, 137.8, 130.7, 128.7, 128.4, 128.1, 127.1, 127.0, 126.5,
126.4, 120.0, 52.9, 45.4, 20.3, 17.9. IR (KBr): υ = 3353.6, 2918.3, 1633.2, 1511.5, 1239.1, 816.3. LC-MS for
C23H24N2O (344.45): m/z = 345.43 [M + H]+.

Synthesis of 1-(4-bromo-3-ethoxyphenyl)-3-(p-tolyl)urea (3c)

Compound (3c) was synthesized from 4-methylphenyl isocyanate (0.25 g, 1.87 mmol) and
4-bromo-3-ethoxyaniline (0.40 g, 1.87 mmol), according to the general procedure. It was a white solid;
yield—83% (0.54 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.76 (s, 1H), 8.58 (s, 1H), 7.41 (d, J = 8.6 Hz, 1H),
7.39 (d, J = 2.9 Hz, 1H), 7.33 (d, J = 8.6 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.87 (dd, J = 8.6, 2.3 Hz, 1H),
4.06 (q, J = 6.9 Hz, 1H), 2.24 (s, 3H), 1.36 (t, J = 7.6 Hz, 1H). 13C NMR (DMSO-d6, 125 MHz): δ 154.8,
152.5, 140.7, 136.9, 132.6, 130.9, 129.2, 118.5, 111.4, 103.6, 102.4, 64.1, 20.4, 14.6. IR (KBr): υ = 3340.0,
2983.6, 1648.7, 1321.5, 1045.4, 821.9. LC-MS for C16H17BrN2O2 (349.22): m/z = 350.21 [M + H]+.

Synthesis of 1-((3s,5s,7s)-adamantan-1-yl)-3-(p-tolyl)urea (3d)

Compound (3d) was synthesized from 4-methylphenyl isocyanate (0.25 g, 1.87 mmol) and 1-amino
adamantane (0.28 g, 1.87 mmol), according to the general procedure. It was a white solid; yield—79%
(0.42 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.11 (s, 1H), 7.21 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H),
5.80 (s, 1H), 2.20 (s, 3H), 2.02 (s, 3H), 1.95–1.90 (m, 6H), 1.62 (s, 6H). 13C NMR (DMSO-d6, 125 MHz): δ
154.1, 138.1, 129.4, 129.0, 117.4, 49.8, 41.7, 36.1, 28.9, 20.3. IR (KBr): υ = 3324.0, 2908.2, 2884.3, 1642.4,
1556.6, 1235.8, 810.3.LC-MS for C18H24N2O (284.40): m/z = 285.39 [M + H]+.

Synthesis of (R)-3-(4-chlorophenyl)-1-methyl-1-(1-phenylethyl)urea (3e)

Compound (3e) was synthesized from 4-chlorophenyl isocyanate (0.25 g, 1.62 mmol) and (R)-(+)-N,
α-dimethylbenzylamine (0.22 g, 1.62 mmol), according to the general procedure. It was a white solid;
yield—79% (0.37 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.48 (s, 3H), 7.59–7.56 (m, 2H), 7.36 (t, J = 7.5 Hz,
2H), 7.33–7.25 (m, 5H), 5.64 (q, J = 6.9 Hz, 1H), 2.67 (s, 3H), 1.48 (d, J = 6.9 Hz, 3H). 13C NMR
(DMSO-d6, 125 MHz): δ 155.5, 141.5, 139.7, 128.4, 128.1, 126.9, 126.8, 125.3, 121.3, 51.3, 28.7, 16.4. IR
(KBr): υ = 3306.3, 3028.5, 1638.3, 1518.7, 1241.5, 821.0. LC-MS for C16H17ClN2O (288.77): m/z = 289.65
[M + H]+.

Synthesis of (S)-1-benzyl-3-(4-chlorophenyl)-1-(1-phenylethyl)urea (3f)

Compound (3f) was synthesized from 4-chlorophenyl isocyanate (0.25 g, 1.62 mmol) and
(S)-(-)-N-benzyl-α-methylbenzylamine (0.34 g, 1.62 mmol), according to the general procedure. It was
a white solid; yield—77% (0.45 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.55 (s, 1H), 7.48 (d, J = 9.2 Hz,
2H), 7.38–7.33 (m, 4H), 7.28–7.33 (m, 5H), 7.18–7.15 (m, 3H), 5.71 (q, J = 7.5 Hz, 1H), 4.68 (d, J = 17.2 Hz,
1H), 4.17 (d, J = 17.2 Hz, 1H), 1.45 (d, J = 6.9 Hz, 3H). 13C NMR (DMSO-d6, 125 MHz): δ 155.5, 141.8,
139.6, 139.4, 128.4, 128.1 (2C), 127.1, 127.0, 126.4 (2C), 125.5, 121.3, 53.1, 45.5, 17.9. IR (KBr): υ =3373.7,
2972.8, 2934.0, 1636.8, 1520.7, 1232.3, 829.9. LC-MS for C22H21ClN2O (364.87): m/z = 365.83 [M + H]+.
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Synthesis of 1-(4-bromo-3-ethoxyphenyl)-3-(4-chlorophenyl)urea (3g)

Compound (3g) was synthesized from 4-chlorophenyl isocyanate (0.25 g, 1.62 mmol) and
4-bromo-3-ethoxyaniline (0.351g, 1.62 mmol), according to the general procedure. It was a white solid;
yield—81% (0.48 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.85 (s, 1H), 8.84 (s, 1H), 7.49 (d, J = 9.2 Hz,
2H), 7.43-7.38 (m, 2H), 7.32 (d, J = 9.2 Hz, 2H), 6.89 (dd, J = 8.6, 2.3 Hz, 1H), 4.06 (q, J = 6.9 Hz, 2H),
1.36 (q, J = 6.9 Hz, 3H). 13C NMR (DMSO-d6, 125 MHz): δ 154.8, 152.3, 140.4, 138.5, 132.6, 128.6, 125.6,
119.9, 111.6, 103.8, 102.8, 64.2, 14.6. IR (KBr): υ = 3295.0, 2984.5, 2887.0, 1645.0, 1555.8, 1196.8, 824.2.
LC-MS for C15H14BrClN2O2 (369.64): m/z = 370.62 [M + H]+.

Synthesis of 1-((3S,5S,7S)-adamantan-1-yl)-3-(4-chlorophenyl)urea (3h)

Compound (3h) was synthesized from 4-chlorophenyl isocyanate (0.25 g, 1.62 mmol) and 1-amino
adamantane (0.24 g, 1.62 mmol), according to the general procedure. It was a white solid; yield—77%
(0.38 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.37 (s, 1H), 7.36 (d, J = 8.6 Hz, 2H), 7.22 (d, J = 8.6 Hz,
2H), 5.88 (s, 1H), 2.01 (s, 3H), 1.95–1.90 (m, 6H), 1.62 (s, 6H). 13C NMR (DMSO-d6, 125 MHz): δ 153.8,
139.6, 128.4, 124.1, 118.8, 49.9, 41.6, 36.0, 28.9. IR (KBr): υ = 3327.3, 2905.4, 2847.8, 1644.5, 1554.0, 1231.6,
815.2.LC-MS for C17H21ClN2O (304.81): m/z = 305.78 [M + H]+.

Synthesis of (R)-3-(3,4-dichlorophenyl)-1-methyl-1-(1-phenylethyl)urea (3i)

Compound (3i) was synthesized from 3,4-dichlorophenyl isocyanate (0.25 g, 1.32 mmol) and
(R)-(+)-N, α-dimethylbenzylamine (0.17 g, 1.32 mmol), according to the general procedure. It was a
white solid; yield—78% (0.335 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.64 (s, 1H), 7.93 (d, J = 2.3 Hz,
1H), 7.54 (dd, J = 8.6, 2.3 Hz, 1H), 7.47 (d, J = 9.2 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 7.30 (d, J = 7.5 Hz,
2H), 7.26 (d, J = 6.9 Hz, 1H), 5.63 (q, J = 6.9 Hz, 1H), 2.67 (s, 3H), 1.48 (d, J = 6.9 Hz, 3H). 13C NMR
(DMSO-d6, 125 MHz): δ 155.2, 141.3, 141.0, 130.5, 130.1, 128.4, 127.0, 126.9, 122.9, 120.7, 119.5, 51.4, 28.8,
16.3. IR (KBr): υ = 3263.3, 2982.5, 1636.0, 1580.8, 1236.1, 817.8. LC-MS for C16H16Cl2N2O (323.22):
m/z = 324.15 [M + H]+.

Synthesis of (S)-1-benzyl-3-(3,4-dichlorophenyl)-1-(1-phenylethyl)urea (3j)

Compound (3j) was synthesized from 3,4-dichlorophenyl isocyanate (0.25g, 1.32 mmol) and
(S)-(-)-N-benzyl-α-methylbenzylamine (0.28g, 1.32 mmol), according to the general procedure. It was a
pale yellow liquid; yYield—77% (0.40 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.75 (s, 1H), 8.32 (s, 1H),
7.86 (s, 1H), 7.45 (d, J = 1.2 Hz, 2H), 7.38–7.32 (m, 4H), 7.29–7.24 (m, 3H), 7.16 (d, J = 8.6 Hz, 3H), 5.69
(q, J = 6.9 Hz, 1H), 4.68 (d, J = 17.2 Hz, 1H), 4.19 (d, J = 17.2 Hz, 1H), 1.45 (d, J = 7.5 Hz, 3H). 13C NMR
(DMSO-d6, 125 MHz): δ 155.2, 141.6, 140.7, 139.4, 130.6, 130.1, 128.5, 128.2, 127.2, 127.0, 126.5, 126.4,
123.1, 120.7, 119.6, 53.2, 45.6, 17.8. IR (KBr): υ = 3330.0, 2976.4, 2876.1, 1638.8, 1510.2, 1232.4, 750.7.
LC-MS for C22H20Cl2N2O (399.31): m/z = 400.27 [M + H]+.

Synthesis of 1-(4-bromo-3-ethoxyphenyl)-3-(3,4-dichlorophenyl)urea (3k)

Compound (3k) was synthesized from 3,4-dichlorophenyl isocyanate (0.25 g, 1.32 mmol) and
4-bromo-3-ethoxyaniline (0.28 g, 1.32 mmol), according to the general procedure. It was a white solid;
yield—76% (0.405 g). 1H NMR (DMSO-d6, 500 MHz): δ 9.01 (s, 1H), 8.94 (s, 1H), 7.88 (d, J = 2.3 Hz,
1H), 7.50 (d, J = 9.2 Hz, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.38 (d, J = 2.3 Hz, 1H), 7.32 (dd, J = 8.9, 2.3 Hz,
1H), 6.89 (dd, J 8.6, 2.3 Hz, 1H), 4.06 (q, J = 6.9 Hz, 2H), 1.36 (t, J = 7.5 Hz, 3H). 13C NMR (DMSO-d6,
125 MHz): δ 154.8, 152.2, 140.2, 139.8, 132.7, 131.1, 130.6, 123.3, 119.4, 118.5, 111.7, 103.9, 103.0, 64.2,
14.6. IR (KBr): υ = 3292.3, 2982.6, 2928.9, 1638.4, 1544.2, 1231.2, 800.2. LC-MS for C15H13BrCl2N2O2

(404.09): m/z = 405.10 [M + H]+.
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Synthesis of 1-((3S,5S,7S)-adamantan-1-yl)-3-(3,4-dichlorophenyl)urea (3l)

Compound (3l) was synthesized from 3,4-dichlorophenyl isocyanate (0.25 g, 1.32 mmol) and
1-amino adamantane (0.20 g, 1.32 mmol), according to the general procedure. It was a white solid;
yield—76% (0.34 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.55 (s, 1H), 7.83 (d, J = 2.3 Hz, 1H), 7.40
(d, J = 8.6 Hz, 1H), 7.11 (dd, J = 8.9, 1.7 Hz, 1H), 5.96 (s, 1H), 2.01 (s, 3H), 1.95–1.88 (m, 6H), 1.62 (s, 6H).
13C NMR (DMSO-d6, 125 MHz): δ 153.5, 140.8, 131.0, 130.4, 121.9, 118.3, 117.4, 50.1, 41.5, 36.0, 28.9.
IR (KBr): υ = 3331.1, 2905.5, 2850.5, 1646.7, 1548.3, 1226.7, 808.5. LC-MS for C17H20Cl2N2O (339.26):
m/z = 340.15 [M + H]+.

Synthesis of (R)-3-(4-fluorophenyl)-1-methyl-1-(1-phenylethyl)urea (3m)

Compound (3m) was synthesized from 4-fluorophenyl isocyanate (0.25 g, 1.82 mmol) and
(R)-(+)-N, α-dimethylbenzylamine (0.24 g, 1.82 mmol), according to the general procedure. It was a
white solid; yield—78% (0.38 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.39 (s, 1H), 7.56–7.53 (m, 2H),
7.39–7.25 (m, 5H), 7.08 (t, J = 9.2 Hz, 2H), 5.66 (q, J = 6.9 Hz, 1H), 2.67 (s, 3H), 1.48 (d, J = 6.9 Hz, 3H).
13C NMR (DMSO-d6, 125 MHz): δ 157.4 (d, 1JC,F = 238.7 Hz), 155.7, 141.6, 137.0, 128.4, 126.9, 126.8,
121.7 (d, 3JC,F = 8.4 Hz), 114.7 (d, 2JC,F = 22.8 Hz), 51.3, 28.7, 16.4. IR (KBr): υ = 3264.8, 3067.4, 1634.8,
1507.9, 1212.5, 827.7. LC-MS for C16H17FN2O (272.32): m/z = 273.30 [M + H]+.

Synthesis of (S)-1-benzyl-3-(4-fluorophenyl)-1-(1-phenylethyl)urea (3n)

Compound (3n) was synthesized from 4-fluorophenyl isocyanate (0.25 g, 1.82 mmol) and
(S)-(-)-N-benzyl-α-methylbenzylamine (0.38 g, 1.82 mmol), according to the general procedure. It was
a white solid; yield—76% (0.479 g). 1 H NMR (DMSO-d6, 500 MHz): δ 8.46 (s, 1H), 7.45 (dd, J = 8.6,
5.2 Hz, 2H), 7.36 (d, J = 4.0 Hz, 4H), 7.26 (t, J = 7.5 Hz, 3H), 7.22–7.16 (m, 3H), 7.06 (t, J = 9.2 Hz, 2H),
5.73 (q, J = 6.9 Hz, 1H), 4.70 (d, J = 17.2 Hz, 1H), 4.17 (d, J = 17.2 Hz, 1H), 1.45 (d, J = 6.9 Hz, 3H).
13C NMR (DMSO-d6, 125 MHz): δ 157.5 (d, 1JC,F = 237.5 Hz), 155.7, 141.9, 139.8, 136.7, 128.4, 128.1,
127.1, 127.0, 126.4, 126.3, 121.7 (d, 3JC,F = 7.2 Hz), 114.7 (d, 2JC,F = 22.8 Hz), 53.0, 45.5, 17.9. IR (KBr):
υ = 3306.6, 2929.4, 2875.6, 1633.9, 1507.4, 1208.3, 828.1. LC-MS for C22H21FN2O (348.41): m/z = 349.36
[M + H]+.

Synthesis of 1-(4-bromo-3-ethoxyphenyl)-3-(4-fluorophenyl)urea (3o)

Compound (3o) was synthesized from 4-fluorophenyl isocyanate (0.25 g, 1.82 mmol) and
4-bromo-3-ethoxyaniline (0.39 g, 1.82 mmol), according to the general procedure. It was a white solid;
yield—79% (0.64 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.81 (s, 1H), 8.73 (s, 1H), 7.48–7.45 (m, 2H),
7.41 (d, J = 8.6 Hz, 1H), 7.38 (d, J = 2.3 Hz, 1H), 7.14–7.09 (m, 2H), 6.89 (dd, J = 8.6, 2.3 Hz, 1H), 4.06
(q, J = 6.9 Hz, 2H), 1.36 (d, J = 6.9 Hz, 3H). 13C NMR (DMSO-d6, 125 MHz): δ 157.5 (d, 1JC,F = 238.7 Hz),
154.8, 152.5, 140.6, 135.8, 132.6, 120.2 (d, 3JC,F = 7.2 Hz), 115.3 (d, 2JC,F = 22.8 Hz), 111.5, 103.7, 102.6,
64.2, 14.6. IR (KBr): υ = 3284.9, 2983.7, 2900.8, 1626.6, 1504.4, 1212.5, 805.5. LC-MS for C15H14BrFN2O2

(353.19): m/z = 354.16 [M + H]+.

Synthesis of 1-((3S,5S,7S)-adamantan-1-yl)-3-(4-fluorophenyl)urea (3p)

Compound (3p) was synthesized from 4-fluorophenyl isocyanate (0.25 g, 1.82 mmol) and 1-amino
adamantane (0.27 g, 1.82 mmol), according to the general procedure. It was a white solid; yield—79%
(0.41 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.26 (s, 1H), 7.35–7.32 (m, 2H), 7.04–6.99 (m, 2H), 5.82 (s, 1H),
2.01 (s, 3H), 1.96–1.89 (m, 6H), 1.62 (s, 6H). 13C NMR (DMSO-d6, 125 MHz): δ 156.7 (d, 1JC,F = 237.5 Hz),
154.0, 137.0, 118.8 (d, 3JC,F = 7.2 Hz), 115.0 (d, 2JC,F = 22.8 Hz), 49.8, 41.7, 36.1, 28.9. IR (KBr): υ = 3342.7,
2906.5, 2851.6, 1646.6, 1508.2, 1208.7, 828.2. LC-MS for C17H21FN2O (288.36): m/z = 289.33 [M + H]+.
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Synthesis of 1-((3R,5S,7R)-3,5-dimethyladamantan-1-yl)-3-(4-fluorophenyl)urea (3q)

Compound (3q) was synthesized from 4-fluoro phenyl isocyanate (0.25g, 1.82 mmol) and
1-amino-3,5-dimethyladamantane (0.32 g, 1.82 mmol), according to the general procedure. It was a
white solid; yield—76% (0.43 g). 1H NMR (DMSO-d6, 500 MHz): δ 8.25 (s, 1H), 7.36–7.32 (m, 2H),
7.04–6.99 (m, 2H), 5.84 (s, 1H), 2.08–2.06 (m, 1H), 1.75 (d, J = 2.9 Hz, 2H), 1.57 (s, 4H), 1.32 (d, J = 12.6 Hz,
2H), 1.24 (d, J = 12.6 Hz, 2H), 1.10 (s, 2H), 0.81 (s, 6H). 13C NMR (DMSO-d6, 125 MHz): δ 156.7
(d, 1JC,F = 237.5 Hz), 154.1, 137.0, 118.8 (d, 3JC,F = 7.2 Hz), 115.0 (d, 2JC,F = 21.2 Hz), 51.5, 50.3, 47.8,
42.3, 40.2, 31.9, 30.1, 29.6. IR (KBr): υ = 3305.8, 2947.6, 2894.7, 1648.7, 1553.8, 1212.9, 830.2. LC-MS for
C19H25FN2O (316.41): m/z = 317.35 [M + H]+.

3.3. Antimicrobial Studies

Samples were prepared in DMSO and water to a final testing concentration of 32 µg/mL or 20 µM
(unless otherwise indicated in the datasheet), in 384-well, non-binding surface plate (NBS) for each
bacterial/fungal strain, in duplicates (n = 2); the final DMSO concentration was kept to a maximum
of 1% DMSO [29–33]. All sample preparations for the antimicrobial studies were done using liquid
handling robots.

3.3.1. Antimicrobial Assay

Primary antimicrobial screening study, by whole cell growth inhibition assays, were conducted
using the compounds (3a–q) at a single concentration, in duplicates (n = 2). The inhibition of growth
was measured against five bacteria—Escherichia coli (E. coli) ATCC 25922, Klebsiella pneumonia
(K. pneumoniae) ATCC 700603, Acinetobacter baumannii (A. Baumannii) ATCC 19606, Pseudomonas
aeruginosa (P. aeruginosa) ATCC 27853) and Staphylococcus aureus (S. aureus) ATCC 43300, and two
fungi—Candida albicans ATCC 90028 and Cryptococcus neoformans ATCC 208821 [34].

Procedure

All bacteria were cultured in Cation-adjusted Mueller Hinton broth (CAMHB) at 37 ◦C, overnight.
A sample of each culture was then diluted 40-fold in fresh broth and incubated at 37 ◦C for 1.5–3 h.
The resultant mid-log phase cultures were diluted (CFU/mL measured by OD600) and then added
to each well of the compound containing plates, giving a cell density of 5 × 105 CFU/mL and a total
volume of 50 µL. All plates were covered and incubated at 37 ◦C for 18 h without shaking.

Analysis

Inhibition of bacterial growth was determined by measuring absorbance at 600 nm (OD600),
using a Tecan M1000 Pro monochromator plate reader. The percentage of growth inhibition was
calculated for each well, using negative control (media only) and positive control (bacteria without
inhibitors) on the same plate as references. The significance of the inhibition values was determined by
modified Z-scores, calculated using the median and median absolute deviation (MAD) of the samples
(no controls) on the same plate. Samples with inhibition value above 80% and a Z-Score above 2.5 for
either replicate (n = 2 on different plates) were classed as actives. Samples with inhibition values
between 50–80% and Z-Score above 2.5 for either replicate (n = 2 on different plates) were classed as
partial actives.

3.3.2. Antifungal Assay

Procedure

Fungi strains were cultured for 3 days on Yeast Extract–Peptone–Dextrose (YPD) agar at 30 ◦C.
A yeast suspension of 1 × 106 to 5 × 106 CFU/mL (as determined by OD530) was prepared from five
colonies. The suspension was subsequently diluted and added to each well of the compound-containing
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plates, giving a final cell density of the fungi suspension of 2.5 × 103 CFU/mL and a total volume of
50 µL. All plates were covered and incubated at 35 ◦C for 24 h without shaking.

Analysis

Growth inhibition of C. albicans was determined by measuring absorbance at 530 nm (OD530),
while the growth inhibition of C. neoformans was determined measuring the difference in absorbance
between 600 and 570 nm (OD600–570), after the addition of resazurin (0.001% final concentration) and
incubation at 35 ◦C for additional 2 h. The absorbance was measured using a Biotek Synergy HTX
plate reader. The percentage of growth inhibition was calculated for each well, using a negative control
(media only) and a positive control (fungi without inhibitors) on the same plate. The significance of
the inhibition values was determined by the modified Z-scores, calculated using the median and the
MAD of the samples (no controls) on the same plate. Samples with inhibition values above 80% and a
Z-Score above 2.5 for either replicates (n = 2 on different plates) were classed as actives. Samples with
inhibition values between 50–80% and Z-Score above 2.5 for either replicates (n = 2 on different plates)
were classed as partial actives.

3.4. Docking Simulations

Molecular docking was used to clarify the binding mode of the compounds to provide straight
forward information for further structural optimization. The crystal structure of A. baumannii PBP1a in
complex with penicillin G (PDB ID 3UDI, 2.6 Å X-ray resolution) was extracted from the Brookhaven
Protein Database (PDB http://www.rcsb.org/pdb). The proteins were prepared for docking by adding
polar hydrogen atom with Gasteiger–Huckel charges and the water molecules were removed. The 3D
structure of the ligands was generated by the SKETCH module implemented in the SYBYL program
(Tripos Inc., St. Louis, USA) and its energy-minimized confirmation was obtained with the help of the
Tripos force field using Gasteiger–Huckel [35] charges. Molecular docking was performed with the
Surflex-Dock program, which was interfaced with Sybyl-X 2.0 [36], and other miscellaneous parameters
were assigned with the default values given by the software.

4. Conclusions

In conclusion, we synthesized seventeen new urea derivatives (3a–q) with a simple one-step
method in short reaction time (1 h) and with good yields (76–83%). The structures of all synthesized
compounds were confirmed by IR, 1H NMR, 13C NMR, and mass spectroscopic techniques. The newly
synthesized compounds were evaluated for their antimicrobial activity. Compounds 3c, 3e, 3f, 3i, 3j,
3l, and 3n exhibited moderate to excellent growth inhibition against the A. baumannii bacterial strain.
Among these seven compounds, compound 3l displayed the highest growth inhibition towards the
Gram-negative bacteria, A. baumannii (94.5%). Therefore, this 1-adamantyl urea could be considered as
a promising antimicrobial lead and could form the structural backbone for further design and synthesis
of other urea derivatives to be developed and screened. Furthermore, molecular docking studies of all
synthesized compounds were carried out and good docking score towards A. baumannii were observed
for all reported urea compounds.

Supplementary Materials: Supplementary data [1H and 13C NMR data of all the compounds (3a–q)].
Supplementary data to this article can be found online at http://www.mdpi.com/2079-6382/8/4/178/s1.
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