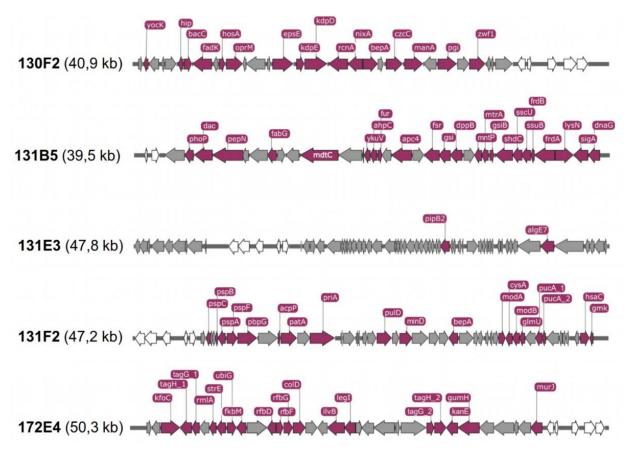
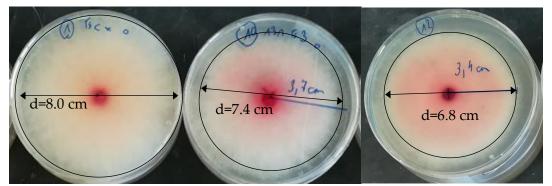


Supplementary material

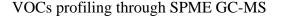
A new high-throughput screening method to detect antimicrobial volatiles from metagenomic clone libraries

Franz Stocker ^{1,2+}, Melanie M. Obermeier ^{1,2+}, Katharina Resch ^{1,2}, Gabriele Berg ^{1,2}, Christina A. Müller Bogotá ^{1,2*}


- ¹ Institute of Environmental Biotechnology, Graz University of Technology, Austria; gabriele.berg@tugraz.at
- ² Austrian Centre of Industrial Biotechnology, Austria; info@acib.at
- * Correspondence: christina.mueller@tugraz.at; Tel.: 0043 316 873 8310 (C.A.M.B.)
- + These authors contribute equally to the paper


Figure S1: Illustration of the different assays. Set-up of the high-throughput Two Clamp VOCs Assay (htTCVA) (a), the Two Clamp VOCs Assay (TCVA) (b) and the Petri Dish VOCs Assay (PDVA) (c) for the high throughput screening and the set-up of single cultivation (d), one-vial co-cultivation (e) and separated co-cultivation (f) prior to the SPME GC-MS measurements.

De novo sequencing and gene annotation


Metagenomic DNA inserts of positive tested clones were sequenced by the Göttingen Genomics Laboratory (Göttingen, Germany) as previously described [1]. In short, using the Illumina MiSeq technology (Illumina, California, USA) 300 bp reads were generated, quality filtered with Trimmomatic v0.36 [2], assembled with SPAdes v3.10.0 [3] and genes annotated with Prokka [4].

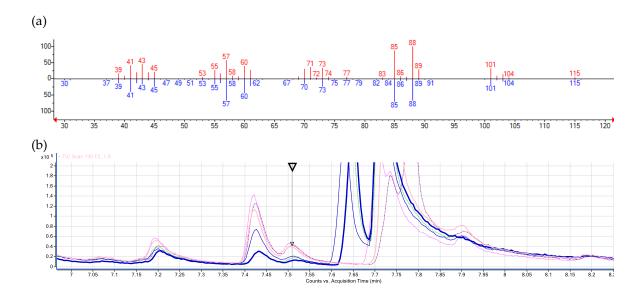


Figure S2: Insert maps of the fosmid clones. Sequences of fosmid clones displaying annotated genes (pink), unknown genes (grey) and genes from the fosmid backbone (white).

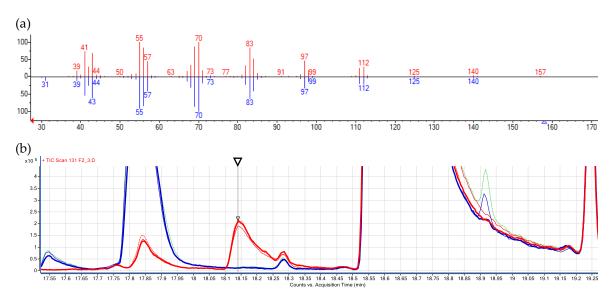
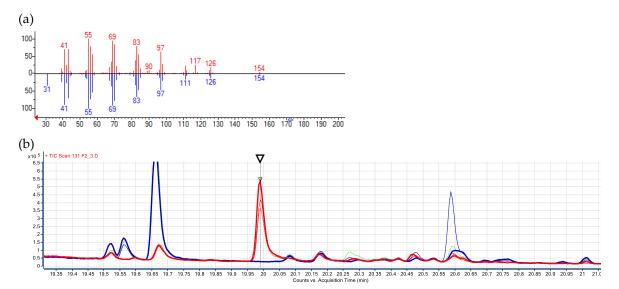
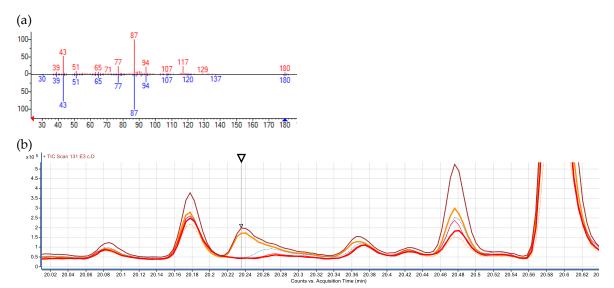
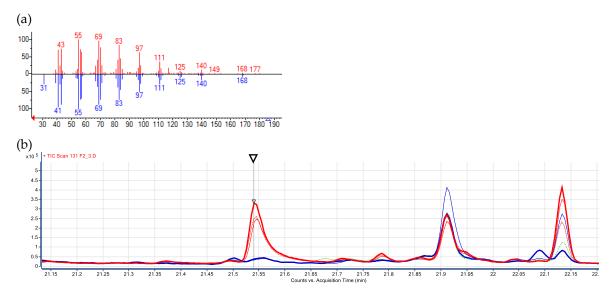
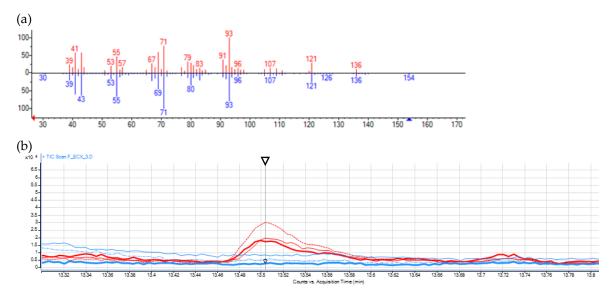


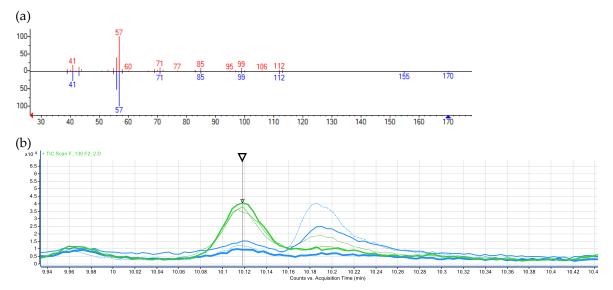
Figure S3. Volatile inhibition of *F. culmorum.* Growth inhibition of 7.5% by the metagenomic library clone *E. coli* EPI300 pCC2FOS 131 E3 (center and right) as compared to the empty vector control *E. coli* EPI300 pCC2FOS (left).

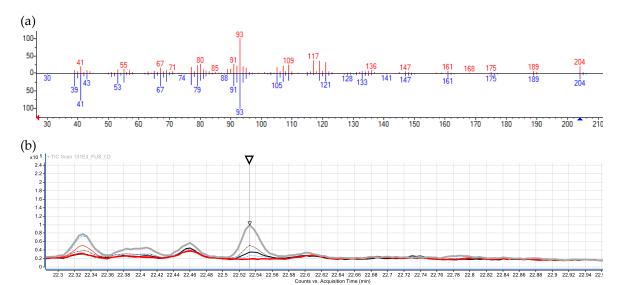



FIGURE S4. Detection of valeric acid. (a) Comparison of the recorded mass spectrum (red) and the spectrum of the NIST reference (blue) for valeric acid. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (pink) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (blue and green) with sample size n=3. The arrow at retention time 7.509 minutes marks the significantly enriched peak, later identified as valeric acid.


FIGURE S5. Detection of 1-decanol. (a) Comparison of the recorded mass spectrum (red) and the spectrum of the NIST reference (blue) for 1-decanol. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (red) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (blue and green) with sample size n=3. The arrow at retention time 18.570 minutes marks the unique peak later identified as 1-decanol.


FIGURE S6. Detection of 1-undecanol. (a) Comparison of the recorded mass spectrum (red) and the spectrum of the NIST reference (blue) for 1-undecanol. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (red) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (blue and green) with sample size n=3. The arrow at retention time 19.990 minutes marks the unique peak later identified as 1-undecanol.


FIGURE S7. Detection of 2-phenoxyethyl acetate. (a) Comparison of the recorded mass spectrum (red) and the spectrum of the NIST reference (blue) for 2-phenoxyethyl acetate. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (wine red to orange) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (blue and red) with sample size n=3. The arrow at retention time 20.235 minutes marks the unique peak later identified as 2-phenoxyethyl acetate.


FIGURE S8. Detection of 1-dodecanol. (a) Comparison of the recorded mass spectrum (red) and the spectrum of the NIST reference (blue) for 1-dodecanol. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (red) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (blue) with sample size n=3. The arrow at retention time 21.541 minutes marks the unique peak later identified as 1-dodecanol.

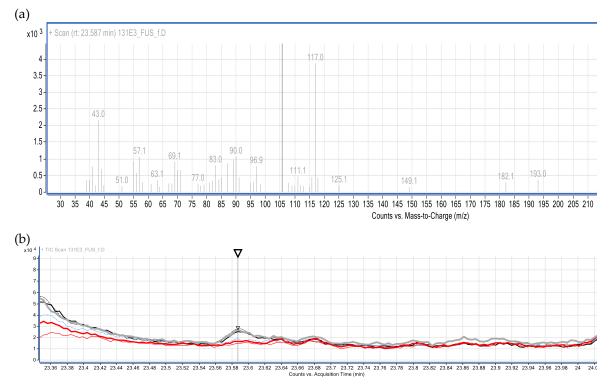

FIGURE S9. Detection of linalool. (a) Comparison of the recorded mass spectrum (red) and the spectrum of the NIST reference (blue) for linalool. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (red) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (blue) with sample size n=3. The arrow at retention time 13.504 minutes marks the unique peak later identified as linalool.

FIGURE S10. Detection of 2,2,4,6,6-pentamethylheptane. (a) Comparison of the recorded mass spectrum (red) and the spectrum of the NIST reference (blue) for 2,2,4,6,6-pentamethylheptane. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (green) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (cyan) with sample size n=3. The arrow at retention time 10.119 minutes marks the unique peak later identified as 2,2,4,6,6-pentamethylheptane.

FIGURE S11. Detection of α **-bisabolene.** (a) Comparison of the recorded mass spectrum (red) and the spectrum of the NIST reference (blue) for α -bisabolene. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (blue, grey and black) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (red) with sample size n=3. The arrow at retention time 22.533 minutes marks the unique peak later identified as α -bisabolene.

FIGURE S12. Detection of a not identified substance produced during interaction between *F. culmorum* and metagenomic library clone 131 E3. (a) The mass spectrum of the measured substance is depicted. (b) SPME GC-MS measurement displaying scans of the metagenomic clone (blue, grey and black) as compared to the empty vector strain *E. coli* EPI300 pCC2FOS (red) with sample size n=3. The arrow at retention time 23.587 minutes marks the unique peak later identified as an unknown substance.

TABLES

Table S1. Inhibition	efficacy for	different	concentrations	of the	detected	substances	against
F. culmorum.							

C. hataway	Amount of substance	Concentration	Inhibition	Standard	
Substance	(µmol)	(mM)	Rate (%)	deviation (%)	
1-Undecanol	0.1	0.7	0	0	
	1	6.7	0	0	
	25	166.7	0	0	
	50	333.3	0	0	
	100	666.7	0	0	
	250	1,666.7	0	0	
	500	3,333.3	3.1	5.4	
	716	4,773.3	48.2	5.6	
	0.1	0.7	0	0	
	1	6.7	1.8	2.5	
	25	166.7	0.8	0.7	
1 Decemel	50	333.3	0	0	
1-Decanol	100	666.7	1.2	1.2	
	250	1,666.7	1.6	1.8	
	500	3,333.3	5.1	3.8	
	770	5,133.3	51.8	4.6	
	0.1	0.7	2.4	0	
	1	6.7	0.4	0.7	
1-Dodecanol	25	166.7	1.6	1.8	
	50	333.3	2.0	3.4	
	100	666.7	3.5	6.1	
	250	1,666.7	10.2	3.6	
	500	3,333.3	12.9	1.7	
	657	4,380.0	14.3	9.3	
	0.1	0.7	4.7	2.0	
	1	6.7	0.4	0.7	
2-Phenoxyethyl acetate	25	166.7	1.6	2.7	
	50	333.3	0.4	0.7	
	100	666.7	1.2	1.2	
	250	1,666.7	2.4	2.0	
	500	3,333.3	2.4	1.2	
	933	6,220.0	25.0	7.1	
	0.1	0.7	0	0	
lpha-Bisabolol	1	6.7	0	0	
	25	166.7	0	0	
	50	333.3	0	0	
	100	666.7	0.4	0.7	
	250	1,666.7	0.6	0.8	

	500	3,333.3	11.8	6.1
	503	3,353.3	11.5	2.3
Linalool	0.1	0.7	5.1	3.6
	1	6.7	17.6	5.4
	25	166.7	38.8	7.3
	50	333.3	69.0	6.9
	100	666.7	84.7	7.1
	250	1,666.7	100	0
	500	3,333.3	100	0
	812	5,413.3	100	0
	0.1	0.7	0.4	0.7
2,2,4,6,6- Pentamethylheptane	1	6.7	0.8	1.4
	25	166.7	0	0
	50	333.3	0	0
	100	666.7	0	0
	250	1,666.7	0	0
	500	3,333.3	0	0
	647	4,313.3	11.3	2.6
	0.1	0.7	10.2	7.7
Valeric acid	1	6.7	100	0
	25	166.7	100	0
	50	333.3	100	0
	100	666.7	100	0
	250	1,666.7	100	0
	500	3,333.3	100	0

References

- [1] Obermeier, M.M.; Wicaksono, W.A.; Taffner, J.; Bergna, A.; Poehlein, A.; Cernava, T.; Lindstaedt, S.; Lovric, M.; Müller Bogotá, C.A.; Berg, G. Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance. *ISME J* (under review).
- [2] Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **2014**, *30*, 2114–20.
- [3] Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.s.; Lesin,, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; Pyshkin, A.V.; Sirotkin, A.V.; Vyahhi, N.; Tesler, G.; Alekseyev, M.A.; Pevzner, P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol* 2012, *19*, 455–77.
- [4] Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–9.