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Abstract: Metallo-β-lactamase (MβLs) mediated antibiotic resistance seriously threatens the treatment
of bacterial diseases. Recently, we found that thioacetamides can be a potential MβL inhibitor
skeleton. In order to improve the information of the skeleton, twelve new thiazolethioacetamides
were designed by modifying the aromatic substituent. Biological activity assays identify the
thiazolethioacetamides can inhibit ImiS with IC50 values of 0.17 to 0.70 µM. For two of them, the IC50

values against VIM-2 were 2.2 and 19.2 µM, which is lower than in our previous report. Eight of the
thiazolethioacetamides are able to restore antibacterial activity of cefazolin against E.coli-ImiS by
2–4 fold. An analysis of the structure–activity relation and molecule docking show that the style and
position of electron withdrawing groups in aromatic substituents play a crucial role in the inhibitory
activity of thiazolethioacetamides. These results indicate that thiazolethioacetamides can serve as a
potential skeleton of MβL inhibitors.
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1. Introduction

Antibacterial resistance has now reached alarming levels worldwide. As classical antibiotics,
β-Lactam antibiotics account for over 65% in clinical settings because of their effective antibacterial
activity and selectivity [1]. Unfortunately, like other antibacterial drugs, the overuse and misuse of
β-lactam antibiotics accelerates the emergence of drug-resistant strains [2]. The main mechanisms
of β-lactam antibiotic resistance are due to the production of β-lactamases by bacteria, the resistant
strains of which can rapidly spread on a global scale [3]. The β-lactamases can hydrolyze the β-lactam
ring, which leads to a loss of antibacterial activity in antibiotics including penicillin, cephalosporins
and carbapenems [4].

Based on amino acid sequence homologies, β-lactamases have been categorized into serine
β-lactamases (SβLs) and metallo-β-lactamases (MβLs) [5]. SβLs use serine as an active site, existing
in successful clinical inhibitors such as sulbactam, tazobactam and clavulanic acid [6]. MβLs can be
further categorized into subclasses B1-B3, which utilize either one or two equivalents of Zn(II) as the
active site [7]. MβLs currently threaten almost all β-lactamase antibiotics in treating bacterial infection.
The rapid diffusion of NDM-1-producing K.pneumoniae isolates is a striking example [8]. Because of
variations in MβL structures, clinical MβL inhibitors are still lacking. Over the past several years,
the literature has provided various approaches for overcoming antibiotic resistance and a number of
MβL inhibitors have been designed including sulfonamides, dicarboxylate, β-lactams, cyclic boronates
and multivalent chelators [1,9–11]. Sulfur-containing compounds occupy an important position in the
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design of MβL inhibitors because the sulfur atom can reduce the MβLs activity by binding to the zinc
ions which are enzyme active center and replacing the bridging water molecules [12,13].

Recently, our group has reported that thioacetamide derivatives exhibit biological activity which
may inhibit MβLs [14–17]. In addition, some of the thioacetamides showed broad-spectrum inhibitory
activity against all three subclasses of MβLs. In order to develop the structure–activity relationships,
twelve new thiazolethioacetamides were synthesized and characterized. The inhibitory activity was
evaluated against MβLs VIM-2, ImiS, and L1, which are representatives of the B1, B2 and B3 subclasses
of MβLs, respectively. The ability of these thiazolethioacetamides to defend against the resistant
bacterial strain was evaluated by a minimum inhibitory concentrations (MICs) assay. Furthermore,
molecular docking was employed when studying the possible interactions between the inhibitors and
the corresponding MβLs.

2. Results

To acquire effective MβL inhibitors, twelve diaryl-substituted thiazolethioacetamides were
synthesized as shown in the Supporting Information and characterized by NMR and MS. The yields
of the compounds ranged from 56.9% to 87.4% and the structures of these compounds are shown in
Figure 1.
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Figure 1. Structures of the synthesized thiazolethioacetamides. 
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Figure 1. Structures of the synthesized thiazolethioacetamides.

To test the inhibitory activity of compounds 1–12 against MβLs, three representative MβLs, VIM-2
(B1), ImiS (B2), and L1 (B3), were chosen for evaluation. The IC50 values of the compounds against
MβLs with cefazolin as the substrate are listed in Table 1. The inhibition studies indicated that the
thiazolethioacetamides had specific inhibitory activity against ImiS and VIM-2, though none of them
showed any activity against L1 until the inhibitor concentration reached 1 mM.

Table 1. IC50 values of thiazolethioacetamides against MβLs ImiS and VIM-2.

Compds IC50(µM) Compds IC50(µM)
ImiS VIM-2 ImiS VIM-2

1 0.58 - 7 0.42 -
2 0.53 - 8 0.31 2.2
3 0.69 - 9 0.46 -
4 0.58 - 10 0.61 -
5 0.17 - 11 0.68 -
6 0.36 - 12 0.70 19.2
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It can be observed that compounds 1–12 exhibited an ability to inhibit ImiS with an IC50 value
range of 0.17–0.70 µM, while compounds 8 and 12 also showed inhibitory activity against VIM-2
with an IC50 value 2.2 and 19.2 µM. When the substituent was at the p-position of the benzene ring,
compound 8 with trifluoromethoxy had a lower IC50 value of 0.31 µM for ImiS than compound 1
containing chlorine (0.58 µM) and compound 9 containing fluorine (0.46 µM). The number and position
of chlorine atoms had little effect on the inhibitory activity of compounds 1–4 which had almost the
same IC50 value. However, with compounds 9–12, fluorine in the p-position improved the ability of
the compounds to inhibit ImiS. In addition, compounds 5–7 with chlorine and nitro inhibited ImiS with
a better IC50 value range of 0.17–0.42 µM, whilst compound 5 gave the lowest IC50 value of 0.17 µM
among all the compounds. The nitro group may bind selectively with the active site of the enzyme.

The capacity of thiazolethioacetamides to restore the antibacterial activity of cefazolin against
E.coli BL21 (DE3) cells expressing ImiS and VIM-2 was investigated by determining the minimum
inhibitory concentrations (MIC). No compounds had synergistic bacteriostatic effect on E.coli and
E.coli-VIM-2 with cefazolin, and the results to inhibit E.coli-ImiS are shown in Table 2. Compounds
5–12 resulted in a 2–4 fold reduction of MIC value for E.coli-ImiS in vivo. Inhibitors 1–4 did not change
the MIC value relative to the blank control.

Table 2. Minimum inhibitory concentrations (MIC)(µg/mL) value of cefazolin against E. coli-ImiS in
the presence of thiazolethioacetamides.

Compds E.coli-ImiS Compds E.coli-ImiS Compds E.coli-ImiS

Blank 20 5 10 10 5
1 20 6 10 11 10
2 20 7 10 12 10
3 20 8 5
4 20 9 5

In order to explore how the inhibitors bind to MβLs, compounds 8 and 12 were docked into the
active pocket of VIM-2 (PDB code 4NQ2), whilst 5 and 8 were docked into CphA (PDB code 2QDS).
CphA is an alternative of ImiS which has not been crystallized, because they share a 96% similar
sequence. Low-energy conformations (the top ranked conformations) are shown in Figure 2, with
binding energies of −6.97, −6.59, −12.64 and −8.14 kcal/mol for the VIM-2/8, VIM-2/12, CphA/5 and
CphA/8 complexes, respectively. The molecule docking result reveals the same trend in respect of the
IC50 values.

According to the bonding mode of the complexes, the docking binding energy of the
CphA/inhibitors (ImiS/inhibitors) is significantly lower. This is most likely due to a second Zn(II) ion
in VIM-2 resulting in a smaller activity pocket. The bonding energy of VIM-2/8 is lower than that of
VIM-2/12, which is probably because the different interactions with Zn(II). In the VIM-2/8 complex,
the phenolic hydroxyl group forms hydrogen bonds with Zn(II) and Asn210, with a distance of 3.04
and 2.25 Å, respectively. Moreover, the nitrogen in the thiazole ring and the second Zn(II) interacts
with Asp118, whilst the nitrogen in the amido linkage and the oxygen in the trifluoromethoxy group
interact with Tyr67 and Arg205, respectively. However, compound 12 exerts inhibitory action only
by interacting with oxygen in the amido linkage to form hydrogen bonds with the two Zn(II), with
an average distance of 2.29 Å. In complex CphA/inhibitors, the phenolic hydroxyl group of CphA/8
interacts with Zn(II) and Asp120 with a mean distance of 2.94 Å, whilst the oxygen in the amido group
forms hydrogen bonds with Asp264. In complex CphA/5, the phenolic hydroxyl group interacts with
Asp264 and Gln68. The oxygen in the nitro group forms hydrogen bonds with Zn(II), with a distance
of 1.88 Å, and His263, with a distance of 2.70 Å, whilst oxygen in the amido group forms bonds with
Lys224. The variety of bonds formed increases the affinity with MβLs, which results in the lowest
binding energy of −12.64 kcal/mol.
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Figure 2. Low energy conformations of compounds 8 (a) and 12 (b) docked into the active site of VIM-2
(PDB code 4NQ2), 5 (c) and 8 (d) docked into the active site of CphA (PDB code 2QDS).

3. Discussion

The twelve thiazolethioacetamides exhibit different abilities to inhibit ImiS and VIM-2 with the
IC50 value range of 0.17–19.2 µM. A possible reason for this is that the kind and position of the
substituents in the benzene ring greatly affected the affinity between the inhibitor molecule and MβLs.
In line with our previous research [14–17], electron-absorbing groups have a greater ability to improve
the affinity of inhibitors and MβLs. The nitro group has been proven to be an effective zinc ligand in
the complex of carboxypeptidase A/aromatic nitropropionic acid [18]. In a molecule docking assay,
the nitro group of complex CphA/5 can interact with Zn(II) at short distances. This could be the
reason why compounds 5–7 are more effective inhibitors against ImiS. Another factor to consider is
the position of these compounds, which depends on the kinds of substituents. Through the analysis
of the conformations, the o-position nitro of the benzene ring and the amide can make up a stable
virtual six-membered ring which improves the biological activity of compounds 5 and 6. In addition,
the biological activity of triazolethioacetamides is better than that of thiazolethioacetamides, but
thiazolethioacetamides have a greater potential to inhibit VIM-2. This information is valuable for the
further development of MβL inhibitors.
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4. Materials and Methods

General chemicals were purchased from TCI (Tokyo Chemical Industry, Tokyo, Japan) and were
used without further purification. All antibiotics used were purchased from Sigma-Aldrich (Burlington,
MO, USA). 1H NMR and 13C NMR spectra were recorded with a Bruker DRX 600 MHz spectrometer
(Bruker Daltonics Inc., Billerica, MA, USA) and a Bruker MicrOTOF-Q II mass spectrometer was used
to detect the HRMS data.

4.1. Synthesis and Characterization

The synthetic route and spectrum information of the twelve thiazolethioacetamides are
shown in the Supplementary Information. Briefly, N-substituted-2-chloroacetamides and
2-(5-mercapto-1,3,4-thiadiazol-2-yl)phenol were as previously reported [17]. A solution of
2-(5-mercapto-1,3,4-thiadiazol-2-yl)phenol and K2CO3 (3.6 mmol) dissolved in H2O (15 mL) was
stirred for 30 min. After N-substituted-2 -chloroacetamides (3 mmol) was added, the reaction mixture
was heated to reflux for 6 h. The reaction mixture was cooled to RT and neutralized with 5 M HCl to
a pH of approximately 7.0. The resulting white solid was collected by filtration, washed with H2O
repeatedly (3 × 80 mL) and dried in vacuo to obtain compounds 1–12.

4.2. Determination of IC50 Values

The enzyme inhibition activity assay was carried out on an Agilent-8453 UV-visible spectrometer.
Control experiments verified that the 0.1% DMSO exhibited no inhibitory activity against the MβLs,
therefore the final concentrations of DMSO were 0.1% to dissolve thiazolethioacetamides 1–12 in the
inhibition experiments and diluted with a 30 mM Tris solution. Cefazolin (Sigma-Aldrich, Burlington,
MO, USA), with a concentration of 20 to 140 µM, was taken as the substrate. The enzyme and inhibitor
were premixed with the corresponding MβL and the thiazolethioacetamides for 30 min. The IC50

values were measured at 25 ◦C with the inhibitor concentrations of 0 and 1000 µM, and analyzed
through IC50 calculation tool (AAT Bioquest Inc., sunnyvale, CA, USA).

4.3. Determination of MIC Values

According to the Clinical and Laboratory Standards Institute (CLSI) macrodilution (tube) broth
method [19], MIC values were determined by using a Thermo Scientific Microplate Reader Multiskan
FC. An amount of 1280 µg/mL antibiotics was prepared in ddH2O and the compounds 1–12 were
dissolved in DMSO to 320 µg/mL solution. MH solution (900 µL) and 100 µL inhibitor solution were
added to 2–11 holes of 96-well plates, and an additional 400 µL MH solution, 200 µL inhibitor solution
and antibiotic solution (400 µL) were added to the first hole. An amount of 100 µL mix solution was
transferred to successive holes. The 100 µL bacterial solution in MH medium was added to each
hole. The final concentration of bacterial strains was 5 × 105 CFU per mL. The 96-well plates were
incubated at 37 ◦C for 12 h, and the results were the same as those in the prescribed 16 to 20 h.4.4
Docking Calculations.

Thiazolethioacetamides 5, 8 and 12 were selected as ligand to proceed Docking studies with
CphA and VIM-2 by AutoDock 4.2 [20]. The crystal structures of protein were downloaded from the
protein database (https://www.rcsb.org) [20]. CphA protein was centered at the location of Zn(II),
while VIM-2 was centered at the middle of two Zn(II). The size of grid box was set to 80 × 80 × 80,
and the grid points space was at 0.375 Å. During the calculation, the mutation rate and the crossover
probability were 0.02 and 0.8, respectively. Meanwhile, other parameters were kept unchanged at
the default values. Through the Lamarckian genetic algorithm, each complex produces fifty docking
configurations. The lowest-energy (highest ranked) configurations will be further studied.

https://www.rcsb.org
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5. Conclusions

In summary, twelve new thiazolethioacetamides were designed and synthesized. Biological
activity assays indicate that all the compounds exhibited IC50 values ranging from 0.17 to 0.70 µM
against MβL ImiS, and two thiazolethioacetamides were able to inhibit VIM-2 with IC50 values of
2.2 and 19.2 µM. Eight thiazolethioacetamides could improve the bactericidal capacity of cefazolin
to prevent E.coli-ImiS by 2–4 fold. Through structure–activity relation and molecule docking, it was
revealed that the electron-withdrawing group and position of the substituents are important factors to
consider when determining the inhibitory capacity of thiazolethioacetamides. The information in this
work is valuable for the further development of MβL inhibitors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/3/99/s1.
The synthetic route, 1H NMR,13C NMR and HRMS spectra data of all the target compounds were provided in
supporting information.
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