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Abstract: Nowadays, tissue engineering is described as an interdisciplinary field that combines
engineering principles and life sciences to generate implantable devices to repair, restore and/or
improve functions of injured tissues. Such devices are designed to induce the interaction and
integration of tissue and cells within the implantable matrices and are manufactured to meet the
appropriate physical, mechanical and physiological local demands. Biodegradable constructs based
on polymeric fibers are desirable for tissue engineering due to their large surface area, interconnectivity,
open pore structure, and controlled mechanical strength. Additionally, biodegradable constructs are
also very sought-out for biomolecule delivery systems with a target-directed action. In the present
review, we explore the properties of some of the most common biodegradable polymers used in tissue
engineering applications and biomolecule delivery systems and highlight their most important uses.

Keywords: regenerative medicine; tissue engineering; micro- and nanofibers; soft and hard tissue
substitution; local and systemic biomolecule delivery

1. Introduction

For many years, the use of artificial fibrous structures was restricted to applications in clothing
and decoration. In the past century though, fiber constructs made breakthroughs in engineering with
applications in filtration, composite fabrication, energy systems and microfluids [1]. More recently,
fibers manufactured as mono- or multi-filaments entered the field of medicine.

Biotextiles based on natural and synthetic fibers are very common in tissue engineering. They are
defined as “structures composed of textile fibers and designed for uses in a specific biological
environment (e.g., surgical implant), where their performance depends on their interactions with cells
and biological fluids as measured in terms of biocompatibility and biostability” [2]. The applications
of biotextiles cover a large spectrum; they have been used in heart valve swing rings, vascular
grafts, hernia repair meshes, percutaneous access devices, wound dressings, delivery systems, etc. [3].
In many of these cases, biotextiles are processed in the form of fibrous structures with a large surface
area and adequate chemistry, high and uniform porosity and pore interconnectivity, resembling the
fibrous architecture of the extracellular matrix and, in this way, enabling cell adhesion and migration,
vascularization and nutrients transport [4,5].

Manufacture of biocomposites can be achieved by several processing techniques, which allow
biotextiles, presented in the form of loose fibers, nonwoven mats, aligned yarns or woven fabrics,
to attain specific mechanical properties in the final product. Other factors influencing their properties
are the type of natural or synthetic fiber, the chemical compatibility between the fiber and matrix
phases, the corresponding surface energies and the properties of the interface. Furthermore, fiber
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separation and extraction processes play a determinant role in the quality, yield and structure of the
final product [5].

Polymer fibers used in tissue engineering applications and biomolecule delivery systems can be
fashioned using a variety of additive manufacturing techniques, such as 3D printing. However,
the most common are the spinning methods: wet spinning, dry spinning, melt spinning, gel
spinning and electrospinning (co-spinning and co-axial spinning being the most recurrent for delivery
systems) [1,6]. All of these are based on the extrusion of polymer melts or solutions through a spinneret
under controlled operating, solution and environment conditions. During fiber processing, using
biodegradable polymers, additional monitoring is required to prevent polymers from undergoing
degradation. This is particularly important during melt processing due to the high temperatures [7].
Constructs based on biotextiles should be capable of restoring the local biomechanical functions
while maintaining a controlled degradation rate that matches the tissue healing or regeneration
processes [3]. Thus, fabrication of fibrous devices that support and instigate tissue regeneration using
biodegradable polymers endowed with biocompatibility and biostability properties is recommended
for successful outcomes. For regeneration purposes, it is also necessary to select the appropriate cell
sources. Mesenchymal stem cells are frequently selected due to their unique capacity of differentiation
into one or several types of specialized cells [8]. In biomolecule delivery systems, the compatibility of
the drug (antibiotic, growth factors, antimicrobial peptide, essential oil, plant extract, etc.) with the
polymer is crucial for a successful outcome [5,9,10]. Still, challenges remain on this front due to the
degradation or denaturation of the biological molecules when combined with organic solvents.

Previous publications focused on the advances in the manufacturing of biofunctional fibers [11]
and on the development of nanofibrous scaffolds by electrospinning [12], natural-fiber reinforced
biocomposites [5] and cellulose-based electrospun scaffolds for wound healing [13], as well as possible
tridimensional fibrous structures for flat bone regeneration [14] and even the use of electrochemically
aligned collagen threads in the form of scaffolds to repair critical infraspinatus tendon defects [15].
The present work addresses these issues and the applications and advantages introduced by biotextiles
in tissue engineering and controlled drug release. In fact, here, the properties of the most commonly used
natural and synthetic biodegradable polymers in tissue engineering and biomolecule delivery systems
and their processing technologies are enumerated. Development and optimization of biodegradable
fibers and the respective processing conditions are discussed in light of their final application, and
important outcomes introduced by such systems are reviewed. Finally, examples of biodegradable
biotextiles applied in soft and hard tissue repair and substitution and in biomolecule-controlled delivery
applications are also highlighted.

2. Biodegradable Polymers

For many years now, biodegradable polymers (hydrolytically and enzymatically degraded) have
been used for biomedical applications with an emphasis on tissue engineering and biomolecule delivery
systems for regenerative medicine. It is predicted that in the next few years, they will gain an even
more important status by replacing biostable temporary therapeutic devices used only for substitution.
In light of the ethical and technical issues that surround the latter, which most of the time require
revision surgeries, the use of biodegradable polymers, capable of stimulating the body to repair and
regenerate damaged tissues, is desirable [16,17].

In regenerative medicine, biodegradable polymers are required to exhibit specific properties:
(1) they do not instigate or induce a toxic response upon implantation; (2) they present an acceptable
shelf-life; (3) they degrade at a rate that matches the healing or regeneration processes; (4) they possess
appropriated mechanical properties that vary with degradation in a proportion compatible with the
healing or regeneration processes; (5) they do not produce toxic degradation by-products; and (6) they
are permeable and easily processed for the intended application [18]. It should also be noticed that the
chemical, physical, mechanical and biological properties of biodegradable polymers may alter during
degradation and thus should be monitored over time [16].
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Degradation of synthetic and natural polymers requires cleavage of bonds sensitive to hydrolytic
or enzymatic action. Synthetic polymers are characterized by predictable properties and a certain
uniformity in site-to-site and patient-to-patient outcomes. They can be processed with specific properties
that respond to local demands or application requirements and are most of the time hydrolytically
degraded. Compared to polymers susceptible to enzymatic degradation, those hydrolytically degraded
are preferred due to the predictability in body response after implantation [16]. Table 1 provides a list
of some of the most common synthetic biodegradable polymers used in tissue engineering and their
inherent properties, including average degradation rates (time to complete resorption).
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Table 1. Synthetic biodegradable polymers used in tissue engineering: Physical, mechanical and degradation properties.

Polymer Melting Point (◦C) Glass Transition
Temperature (◦C)

Tensile Modulus
(Gpa) Elongation (%) Degradation Time

(months) Reference

Polycaprolactone (PCL) 58–63 (−65)–(−60) 0.2–0.4 300–1000 >24 [19]

Poly(glycolic acid)
(PGA) 220–233 35–40 6.0–7.0 1.5–20 6–12 [19]

Poly(lactic-co-glycolic
acid) (PLGA) Amorphous 45–55 1.4–2.8 3–10 1–12 (adjustable) [20]

Poly(lactic acid) (PLA) 150–162 45–60 0.4–3.5 2.5–6 >24 [21]

Poly (L/D-lactide)
(PLLA or PDLA) 170–200 55–65 2.7–4.1 3–10 >24 [21]

Poly (DL-lactide)
(PDLLA) Amorphous 50–60 1–3.5 2–10 12–16 [21]

Polydioxanone (PDO) N/A −10–0 1.5 N/A 6–12 [19]
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2.1. Synthetic-Origin Polymers

Several synthetic polymers have been fabricated and explored over the years, mostly by
polymerization techniques. The majority provide unique and important physical and chemical
properties, and some of them are applied in the design of scaffolds for drug delivery systems and
tissue engineering purposes. There are different kinds of synthetic biodegradable polymers, such as
polylactic acid (PLA), polyglycolic acid (PGA), poly(ε-caprolactone) (PCL), which have demonstrated
exceptional biocompatible features such as degrading in vivo into non-toxic components at controlled
rates and to displaying good mechanical properties [22].

2.1.1. PCL

PCL is a hydrophobic, semi-crystalline, linear resorbable aliphatic polyester obtained by either
ring-opening polymerization of caprolactone or via free-radical ring-opening polymerization of
2-methylene-1-3-dioxepane [23]. Its biodegradation is associated with its aliphatic ester linkage
susceptibility to hydrolysis. The good solubility, low melting point and compatibility with other
polymers make PCL exceptionally great for biomedical applications [24].

2.1.2. PGA

Poly(glycolic acid) (PGA) is a highly crystalline, biocompatible polyester with good mechanical
features and degradation profile, low solubility in organic solvents and excellent fiber-forming ability
due to its high tensile modulus [25,26]. PGA was used in the production of the first synthetic, absorbable
surgical suture [27]. However, because of its hydrophilic nature and quick water uptake, its mechanical
strength may be lost after a period of 2 to 4 weeks post-implantation. Since then, PGA has been used
for a variety of purposes, including bone fixation devices, biomolecule carriers and scaffolds matrices
for tissue regeneration [19,25,26].

2.1.3. PLA

PLA is a biodegradable, aliphatic polyester derived from lactic acid. It is a versatile polymer
made of renewable materials, i.e., corn starch or sugar cane, that can be fermented into lactic acid and
prepared via cyclic dilactone, lactide, ring-opening polymerization. During this process, PLA enhances
its thermal stability, stiffness and strength and reduces residual monomer content [28]. PLA is more
hydrophobic than PGA due to the presence of an extra methyl group in lactic acid [29].

2.1.4. PLGA

By varying the ratios between its copolymers PGA and PLA, the poly(lactic-co-glycolic acid)
(PLGA) co-polymer offers a wide range of degradation rates. Its degradation kinetics is governed
by both the hydrophobic/hydrophilic balance and crystallinity, which makes PLGA particularly
desirable for tissue engineering applications due to its excellent biocompatibility and biodegradable
properties [20,30].

2.1.5. PDLA, PLLA and PDLLA

PLA exists in two stereoisomeric forms, giving rise to PDLA and PLLA, two stereoregular
polymers, and PDLLA, a racemic polymer obtained from the mixture of D- and L-lactic acid (Figure 1).
PDLLA is an amorphous polymer commonly used for drug delivery due to its ability to disperse
homogeneously the active species within a monophasic matrix. As semi-crystalline polymers, both
PDLA and PLLA are favored for applications in orthopedics where high mechanical strength and
toughness are necessary [21,31,32].
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Figure 1. Chemical structure of PGA, PLA, PLGA and the enantiomers D- and L-lactide.

2.1.6. PDO

Unlike the above, the biodegradable aliphatic polyester polydioxanone (PDO) has received limited
interest until recently. It was first used in 1981 as a monofilament suture [33] but only now has been
applied to other uses, including stents, rings for pediatric mitral and tricuspid heart valve repair and
as plates for orbital floor reconstruction [34]. PDO presents a good safety profile with low toxicity
in vivo and is capable of completely degrading between 6 and 12 months, depending on its degree
of crystallinity, which also affects the polymer absorption rate. Compared to PGA, PLA and their
derivatives, PDO displays a lower tensile modulus with limited mechanical performance. However,
is still suitable for a wide range of tissue engineering applications like cartilage, ligament and vascular
tissue engineering [35,36].

2.2. Natural-Origin Polymers

Regarding natural polymers, the majority degrade very quickly via enzymatic degradation.
The rate of degradation depends on the implantation site, accessibility to and concentration of enzymes
and possible chemical alterations made to their structure. They are also susceptible to cell-triggered
proteolytic degradation [16]. Natural polymers have been used for many years in tissue engineering.
They are classified as polysaccharides, polymeric carbohydrate molecules formed of glycosidic-bound
monosaccharide units such as alginate, hyaluronic acid, cellulose and chitosan, and as polypeptides,
peptide bound amino acid chains that include collagen and gelatin, for instance [37–39].

2.2.1. Alginate

Alginate is a polyanion, typically obtained from brown seaweed, that possesses solubility in water,
great biocompatibility and low toxicity and is biodegradable and of relatively low cost. Most alginates
can be processed in the form of hydrogels, porous scaffolds, microparticles and nanoparticles [40].
Alginates are readily degraded by naturally occurring enzymes, i.e., lysases. Their physical and
mechanical properties are dependent on the length, molecular weight and proportion of the guluronate
block within the polymeric chain [41,42]. Alginates can be prepared by various cross-linking methods
in a similar way to the extracellular matrix of living tissue, making them desirable for applications in
wound healing, drug delivery, and cell transplantation [40,43].

2.2.2. Hyaluronic Acid

Hyaluronic acid is a glycosaminoglycan made up of repeating disaccharide units of D-glucuronic
acid and β-1,3-N-acetyl-D-glucosamine. It is commonly found in conjunctive tissues of any vertebrate
and can be rapidly biodegraded by the human body [44]. Hyaluronic acid is also a polyanion that can
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self-associate and bind to water molecules, giving it a stiff, viscous quality similar to gelatin [45]. Because
of its unique rheological properties and complete biocompatibility, hyaluronic acid has been used quite
extensively in biomedical applications, playing a significant role as an antifouling agent protecting
blood-contacting devices, in wound healing, biomolecule delivery and tissue regeneration [46,47].

2.2.3. Cellulose

Cellulose is an abundant polysaccharide based on glucose and is present in plants, bacteria, fungi,
algae and animals. Cellulose can also be biosynthesized by bacteria in the form of bacterial cellulose.
It exhibits a unique nanostructure, remarkable physical-chemical properties and biocompatibility
and is resistant to hydrolysis, strong alkali and oxidizing agents [48,49]. Cellulose on its own cannot
be electrospun. However, each repeated unit of cellulose possesses three hydroxyl groups on its
structure, which can be replaced by other chemical groups, such as methyl, acetyl, and carboxymethyl,
and thus, several derivative compounds can be synthesized [50]. The acetate ester of cellulose, also
known as cellulose acetate, is the most commonly used. Due to its unique properties such as high
tensile and impact strength, good antistatic properties, good transparency, excellent scratch resistance,
high moisture absorption, and permeability, cellulose esters have found numerous applications in
biomedicine [13,26,51,52].

2.2.4. Chitosan

Chitosan is the most widely used natural polymer in drug delivery due to its ability to blend with
a variety of synthetic polymers and facile surface modification. Derived from partially deacetylated
chitin found in the shell of crustacean, cuticles of insects and cell walls of fungi microorganisms, it is
composed of D-glucosamine and N-acetylglucosamine repeat units, forming the only pseudonatural
cationic polymer. By varying the degree of deacetylation, viscosity and molecular weight, a series
of chitosan polymers may be generated [53,54]. The degree of deacetylation of typical commercial
chitosan is usually between 70% and 95%, and the molecular weight can range from 10 to 1000 kDa.
These three factors (degree of deacetylation, viscosity and molecular weight) are also determinant
to the polymers’ physical and chemical properties. Regardless, all chitosan polymers are known for
their biocompatibility, biodegradability, antimicrobial activity, wound healing abilities and antitumor
effect [55]. Chitosan solubility in aqueous solutions makes it processing into gels, films or fibers
possible [56–58].

2.2.5. Collagen

Collagen is the most abundant mammalian protein, accounting for around 30% of all body proteins,
and is a major component of ligaments, tendons, skin and bone [59,60]. In its native environment,
collagen interacts with cells in connective tissues and transduces essential signals for the regulation of
cell anchorage, migration, proliferation, differentiation and survival. It is composed of polypeptide
strands bearing triamino acid blocks of glycine-X-Y, where X and Y can be any of a number of amino acids,
that organize themselves into left-handed triple helix microfibrils [61]. Collagen is a good surface-active
agent and is capable of penetrating within lipid-free interfaces. It is desirable in many biomedical
applications because of its biodegradability, high mechanical strength, weak antigenicity and superior
biocompatibility compared with other natural polymers, i.e., gelatin [60,62–64]. Electrospinning of
soluble collagen is a suitable method to prepare scaffolds with high porosity and surface area for tissue
engineering [58].

2.2.6. Gelatin

Gelatin is a natural polymer derived from the controlled structural and chemical degradation
of collagen and contains a large number of glycine, proline and 4-hydroxyproline residues. Gelatin
comprises many functional groups and cell-binding sites in its structure, increasing its cell-binding
ability and making it desirable for tissue engineering applications. It is also commonly used to produce
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biocompatible and biodegradable biomolecule delivery systems and wound dressings. In fact, targeted
tissues include bone, cartilage and skin, but others such as adipose tissue have also applied gelatin as a
carrier for the delivery of active biomolecules using the process of encapsulation to improve temporary
cell functions [58,65,66].

2.3. Bio-Synthetic Hybrid Polymers

As seen, the most relevant properties of natural polymers are their bioactivity (biological
recognition), biocompatibility, antigenicity and non-toxicity (which reduces undesirable host responses),
tunable degradation kinetics and, in many cases, presence of cell-recognition sites. However, these
materials may also display limitations that include weak mechanical strength, rapid or unregulated
degradation rate and inconsistency in composition (lack of reproducibility of properties between
batches) due to their natural source. In turn, synthetic polymers are easily processed at a large scale,
are relatively low cost and display controlled properties, including molecular weight and functionality.
Despite these important advantages, one main drawback haunts synthetic polymers and restricts their
application in biomedicine, namely the inability to be recognized by cells and consequently induce
their adhesion and proliferation [67].

The rationale behind preparing hybrid polymers instead of using single-component polymers is to
combine the positive functionalities of both natural and synthetic to generate a construct that exceeds
the individual properties of each individual polymer composing the hybrid [68]. Synthetic polymers
with good mechanical properties but lacking motifs for cell recognition, attachment or proliferation
can be combined with small amounts of natural-origin polymers to enhance these properties and,
this way, generate a material with easier processability. Even though these modifications may
lead to better-performing materials for applications in tissue engineering or drug delivery systems,
synthesizing hybrid materials can be very challenging, especially when different fabrication techniques
must be employed. Therefore, a balance between the complexity of the production and fabrication
processes and the benefits presented by the hybrid materials must be maintained [69,70].

Tissue-engineered scaffolds are being developed as treatment options for malfunctioning tissues
throughout the body. Therefore, it is essential for the scaffold to closely mimic the native tissue
with regards to both mechanical and biological functionalities. For instance, the use of synthetic
polymers modified with collagen increases the scaffold mechanical strength. Moreover, loading
bioactive molecules, such as growth factors, into collagen-based scaffolds and gels enhances their
regeneration and restorative effects. The main challenge in drug delivery systems made of hybrid
polymers remains the liberation of selected biomolecules at specific targets. The dominant route for
drug administration is through oral routes or intravenous injections, but these methods have limited
access over the drug release rate in the body as they show a tendency for immediate burst release.
To overcome this issue, hybrid polymers engineered with chemically modified chitosan or cellulose are
finding applications in multiple areas, including cell encapsulation, wound dressings and implants,
with effective outcomes [13,58,71,72].

3. Biotextiles Production: Fiber Technologies

The history of fiber production by humankind can be traced back to prehistoric times. Fragments
of cotton articles dating back to 5000 BC have been excavated, and silkworm cultivation began in 2700
BC to produce silk fibers and textiles. Around 1300, the spindle was invented to fabricate fibers from
wool and cotton used in fabrics and clothes, and this practice slowly evolved into the textile industry in
the 1880s. About 50 years later, production of synthetic fibers initiated and with that the development
of chemistry and polymer sciences [73].

Nowadays, several fabrication methods can be applied to convert polymers into fibers.
The resulting fibers can either be continuous monofilament yarns or multifilament yarns or, alternatively,
they can be divided into short-length staple fibers and blended with natural fibers such as cotton or
wool or used by itself in the manufacture of scaffolds. To this aim, 3D printing and fiber spinning
technologies can be regarded as the most prominent techniques in this field [74,75].
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3.1. Fiber Extrusion Spinning

Great progress in spinning polymer fibers for biotextiles has been achieved over the past few
decades [76]. Spinning is a specialized form of extrusion that uses a spinneret to form mono or multiple
continuous filaments and is considered an interdisciplinary technique that applies the principles
of engineering and material science. The three principal spinning methods conventionally used to
manufacture fibers are wet-spinning, dry-spinning and melt-spinning [77,78].

The first step to producing fibers by spinning techniques is to convert the polymer into a
processable and spinnable state. Thermoplastic polymers can be converted into a fluid state and
melt-spun [79]. Other polymers may be dissolved in a solvent or chemically treated to form soluble or
thermoplastic derivatives and subsequently spun via dry-spinning, wet-spinning or electrospinning,
a most recent approach to spinning at the nanoscale. The main traditional spinning approaches used
in the fabrication of biotextiles are introduced in the following sections.

3.1.1. Melt-Spinning

Melt-spinning is the most economical spinning process as it does not require solvents to process
the polymers. For that reason, it is the preferred method for manufacturing polymeric fibers, being
extensively used in the textile industry. However, this technique presents limitations to its use in the
production of biostructures, including decomposition at temperatures below the melting point, poor
control over the exact temperature of the polymer melt during spinning, thermo-mechanical history of
the melt and final fiber structure/morphology [80].

In the melt-spinning process, dried polymer granules or chips are melted inside the extruder in
order to obtain the spinning dope. This viscous melt is then extruded through a spinneret, and the
obtained filament is quenched and solidified by cooling in a fast fiber solidifying process [81]. Despite
its limitations, melt-spinning of biopolymers from different sources has been extensively explored in
bio-applications (Table 2) [82]. The use of bio-based reinforcements is reported as an alternative to
solve the problems associated with the synthesis of biotextiles via melt-spinning [83].

Table 2. Some of the representative spinning systems studied for biomedical applications.

Polymeric Matrix Processing Method Bio-Application Reference

PLA/CNW Melt-spinning - [83]

PHBV/PLA Melt-spinning Textile implants [82]

PLGA Dry/wet and
Wet-spinning Scaffolds production [84]

CS Dry-spinning Tissue regeneration [85]

PCL Wet-spinning Regeneration of smooth muscle cells [86]

GN Wet-spinning Tissue regeneration [87]

GN/SA Wet-spinning Enzyme immobilization [88]

PCL Wet-spinning Regeneration of smooth muscle cells [86]

Collagen Wet-spinning - [89]

CA Wet-spinning Drug delivery systems [90]

PCL Electrospinning Tendon graft [91]

GN Electrospinning Wound healing [92]

CS/SF Electrospinning Wound healing [93]

Abbreviations—CNW: nanocrystalline cellulose; PHBV: poly[(3-hydroxybu-tyrate)-co-(3-hydroxyvalerate)];
CS: chitosan; GN: gelatin; SA: sodium alginate; CA: cellulose acetate; SF: silk fibroin.
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3.1.2. Dry-Spinning

Dry-spinning is one of the oldest spinning methods in use. Contrary to melt-spinning, in dry
spinning, the polymer is dissolved in an appropriate solvent. The polymer solution is then extruded
through a spinneret, subsequently passing through a heating column, where the solvent evaporates,
leaving behind dry fibers (in this case, highly volatile solvents are required). In the heating column,
steam of hot air or inert gas is used to solidify the fibers and remove the solvent. This technique is
suitable for polymers vulnerable to thermal degradation and cannot form viscous melts, and for when
specific surface characteristics are required from fibers. Several polymer fibers have been traditionally
processed using dry-spinning techniques, including acetate and triacetate, some modifications of
acrylics and modacrylics, aramid fibers and spandex fibers [77,78]. Apart from the recovery process,
the mass transfer mechanisms involved in the solvent evaporation and filament formation make
dry-spinning more complex and expensive than melt-spinning [79].

3.1.3. Wet-Spinning

The first fiber to be spun by wet-spinning was rayon, with an alcoholic solution of cellulose nitrate
extruded from a nozzle dipped in cold water. Since then, many natural and synthetic polymers have
been produced via wet-spinning [94]. Like dry-spinning, in the wet-spinning technique, the polymer
needs to be dissolved in a suitable solvent in order to be spun. However, here, the solvent does not
need to be volatile [95].

Wet-spinning is based on the principle of precipitation, in which a phase inversion occurs during
the extrusion of the polymeric solution through a spinneret directly into a coagulation bath composed
of a non-solvent liquid [75]. Natural-origin polymers such as gelatin, alginate, collagen, cellulose and
many of their composites have been processed in the form of fibers using wet-spinning for a variety
of tissue engineering uses (Table 2). This technique allows the production of fibers with relatively
large diameters (in the nano-to-micrometer ranges) and the construction of architectures with high
porosity and interconnected open pore structure, which are desirable for cell penetration, adhesion
and proliferation [96].

3.1.4. Electrospinning

Electrospinning is a unique spinning approach that resorts to electrostatic forces to produce fine
fibers (from nanometer to micrometer) from polymer solutions or melts with a larger surface area than
those obtained from conventional spinning processes [97].

Electrospinning has attracted much attention in biomedical research because of the inherent
properties of the resultant nanofibers, such as large surface areas, high porosity and a continuous
three-dimensional web structure [6,39,98]. The process involves the ejection of a polymer solution
through a needle, termed the spinneret, that under an electric field is attracted towards a collector
plate. A high potential difference is applied between the two, resulting in the conversion of the initial
solution into nanofibers [39,99,100].

Nanofibrous scaffolds have shown great potential and usefulness for assisting the regeneration and
reconstruction of different types of human tissues and organs, ranging from bone, skin and blood vessels
to organs like liver and kidneys [101]. Early research revealed that electrospun nanofibrous scaffolds of
biodegradable polymers could closely mimic the hierarchical architecture of native extracellular matrix
and facilitate good attachment and proliferation of cells. Later, the potential of highly biocompatible
electrospun scaffolds for engineering many types of human body tissues with relatively simple
structures was shown and is now frequently realized [102].

3.2. 3D-Printing

Printing methods have raised great attention in recent years as fast and inexpensive ways of
manufacturing several materials. The 3D printing technique, which is an additive manufacturing
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technique, was initially conceived in the 1980s. Since then, this technique has impacted many fields,
entering just recently the biomedical area [103]. 3D printing of complex biomedical devices designed
using patient data is an expanding field of research, and applications can range from the reconstruction
of complex organs with intricate 3D microarchitecture (e.g., liver, lymphoid organs) to scaffolds for
stem cell differentiation [104].

In general, 3D printing includes different printing technologies to generate 3D structures
by adding layers upon layers of materials, such as ceramics, metals or polymers (synthetic or
natural) [105]. The standard for 3D printing technologies (ASTM F2792) is applied to several
rapid prototyping processes such as vat photopolymerization, material jetting, material extrusion,
powder bed fusion, binder jetting, sheet lamination and directed energy deposition. The vat
photopolymerization 3D printing method has a container with a photopolymer resin hardened
by means of a power source (e.g., ultraviolet light). Here, the most common technique employed
is the stereolithography (SL) [106,107]. In bioprinting, SL can generate multiple cycles to form a
3D structure by photopolymerization/cross-linking of polymers [103]. The main disadvantage of
using such technology for biomedical purposes is the need for intense ultraviolet radiation during
cross-linking. Other limitations are the lengthy post-processing time requirement and the lack of
diversity of biomaterials that can be applied as “biomaterial inks” (bioinks) [108]. Gelatin- and
alginate-derived bioinks, for instance, suffer from poor shape fidelity and poor printing resolution and
form very soft gels at physiologic temperatures [109]. Strategies to improve these limitations have
been employed, such as introducing new functional groups via crosslinking and forming composites
of natural and synthetic bioinks. These efforts have been rewarded with an improved printing fidelity,
resolution and mechanical integrity that does not interfere with the inherent biocompatibility of natural
bioinks [110].

Another potential application of 3D bioprinting is in tissue replacement and restoration using
seeded stem cells. One of the major advantages of bioprinting compared to conventional tissue
engineering strategies is the ability to influence stem cell differentiation at multiple stages. The choice
of stem cell source, bioprinting method, scaffold architecture, additives used and mechanical forces
applied can influence stem cell differentiation towards a specific target tissue [103].

4. Tissue Engineering

In tissue engineering, principles from biology, chemistry and engineering sciences are combined
towards the common goal of regeneration. Engineering living systems for regeneration purposes
requires appropriate cell sources, optimal culture conditions, and biodegradable implantable devices.
In the first two cases, consensus has been reached by recommending the use of specialized cells or
mesenchymal stem cells capable of differentiation, and bioreactors to provide optimal and controlled
culture conditions. Regarding the biodegradable implants, the construct is expected to guide cell
growth and tissue formation with time in three dimensions. As described in Section 2, there are many
polymers capable of such a task [6,39,111]. Fibers and biotextiles have been successfully used in close
contact with complex biological environments for a variety of applications, both by itself or loaded
with specific biomolecules, due to their similarity with the tubular and fibrous architecture of many
tissues, including muscle, tendon, ligament, bone and teeth [112]. In the following sections, examples
of soft and hard tissue applications of fiber-based constructs in tissue engineering are provided.

4.1. Stents

Stents are small, expandable reticulated tubes with two main functions, the treatment of dissection
and prevention of restenosis. Biodegradable stents are expected to provide a temporary opening of a
narrowed arterial vessel until remodeling occurs and to disappear progressively thereafter. Indeed,
an ideal biodegradable stent should be able to compromise its degradation rate and mechanical
integrity during implantation and after it, during the 6 to 12 months expected for the remodeling
process to be completed [113].
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The first biodegradable stent was developed in 1988 by Stack et al. using PLLA and was almost
completely degraded after 9 months. Clinical research on animal models revealed minimal presence
of thrombosis, moderate neointimal growth and limited inflammatory response [114]. Later, it was
demonstrated that low-molecular-mass PLLA was associated with intense inflammation, while the
inverse was also true [115]. This was tested on different animal models: in dogs, minimal tissue growth
was observed [116], while in pigs, marked cell proliferation occurred [117]. Yamawaki et al. were the
first to incorporate an anti-proliferative agent on high-molecular-weight PLLA stents and to verify
that neointimal formation was significantly reduced in the presence of the loaded tube. Nguyen et al.
evaluated the hemocompatibility profile of PLLA stent fibers loaded with anti-inflammatory and
anti-proliferative drugs, curcumin and paclitaxel by employing a closed-loop circulation system filled
with human blood. Data revealed curcumin as more effective than paclitaxel, the activity of which
may have been inhibited during melt extrusion, in reducing leukocyte and platelet adhesion and
activation to the stent fibers [118]. More recently, Quin et al. used PDO monofilaments coated with
small intestine submucosa to braid mesh stents. After 24 weeks implantation in dog animal models,
the stents were completely degraded [119]. It has been shown that PDO filaments can lose up to
60% of their initial strength after 6 weeks of degradation in phosphate buffer saline solution, while
preserving the stent well radial strength [120]. This was corroborated by Wang et al., whose PDO
monofilaments braided in the form of a stent were capable of retaining half of their original strength
after 6 weeks of degradation but lost it completely after 10 weeks. In the end, the stents demonstrated
good compression performance up to 12 weeks and therefore could become a good alternative for
short-term applications [121].

Genistein-conjugated PLLA has been synthesized by direct coupling with a unique influence on
coagulation, plasma protein adsorption and subsequent platelet adhesion and activation. Genistein is a
potential flavonoid endowed with anti-thrombotic and anti-proliferative properties, capable of inducing
human platelet aggregation in a dose-dependent manner via nitric acid-dependent signal-transducing
pathways. This fibrous system was designed for potential applications in coronary stents [122]. Drug
loaded PLLA has also been conjugated with the two ends of the matrix metalloproteinase-9 (MMP-9)
for a selective drug release, beneficial for stent endothelialization, thereby decreasing the risk of
restenosis and thrombosis [123]. Tyrosine kinase inhibitor (ST638) was encapsulated onto prototype
Igaki–Tamai stents and implanted in porcine coronary arteries. Data revealed the progressive, gradual
release of the ST638 decreasing neointimal hyperplasia [117]. More recently, using a conventional
emulsion solvent evaporation method, sirolimus-encapsulated PDLLA nanoparticles were produced
and coated onto stents for a sustained biomolecule release. Cell culture studies demonstrated the ability
of the fashioned stents to inhibit smooth muscle cell proliferation while accelerating endothelial cells,
therefore unveiling the potential of these stents to decrease both the occurrence of in-stent restenosis
and acute thrombosis [124].

4.2. Skin

Skin is the largest organ in the body, formed mainly of two layers, the epidermis and the dermis,
and primarily serves as a protective barrier against the environment. Skin wounds normally heal in a
predictable amount of time by forming an epithelialized scar tissue. However, whenever burns, trauma,
irreversible damaged skin or chronic wounds occur, the need for substitutes or more efficient protective
barriers is raised (Figure 2) [39]. Engineered skin tissue and high-performance wound dressings would
be an excellent solution. Although allografts and autografts have been the most obvious choice in the
past, lately, temporary three-dimensional tissue engineering constructs mimicking the skin architecture
and loaded with fibroblasts, keratinocytes and endothelial cells have gained more attention [10,125].
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Figure 2. Depiction of acute and chronic wound scenarios with dysregulated matrix metalloproteinases
(MMPs) and infiltration of bacteria (used with permission from [126]).

Biodegradable fiber-based structures have been proposed for the healing of dermal and epidermal
injuries. In fact, PLGA fibrous dressings have been already successfully used in clinical patients
diagnosed with diabetic foot ulcers (i.e., Dermagraft and Dermagraft-TC) [127]. Thin biodegradable
hybrid meshes of PLGA and collagen have also been produced for culture of human skin fibroblasts.
Results indicated the web-like collagen formations distributed along the PLGA knitted fibers increased
the fibroblasts seeding and distribution and facilitated rapid formation of dermal tissue with uniform
thickness [128]. Recently, Norouzi et al. produced nanofibers of PLGA and gelatin via electrospinning
and demonstrated desirable bioactivity and hemostasis of the fibrous scaffolds with controlled release
of the protein [129]. Electrospun PLGA nanofibers have also been encapsulated with epidermal
growth factors (EGF), resulting in desirable biocompatible and bioactive scaffolds with EGF controlled
release [130].

Collagen-based scaffolds have been the most popular for skin regeneration, both alone and in
combination with other polymeric matrices or molecules (growth factors, proteins, etc.). For instance,
dermal substitutes composed of type I collagen and elastin hydrolysate, applied in combination
with split-skin mesh grafts, contributed to the healing of full-thickness wounds [131] and improved
dermal regeneration [132]. It has also been shown that preparations of collagen type I and PCL result
in optimal degradation kinetics and mechanical performance while supporting dermal fibroblasts
attachment and proliferation. Developing a porous structure expedited the healing process, assisted
in re-epithelialization and follicle regeneration, and promoted the formation of dermal tissue with a
matrix architecture resembling normal, unwounded skin [133]. Additionally, they revealed that these
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microporous electrospun constructs pre-seeded with fibroblasts promoted greater wound healing than
acellular scaffolds [134].

Nada et al. combined cellulose acetate with capsaicin, a pain-relieving drug, and sodium
diclofenac, a nonsteroidal anti-inflammatory drug that reduces the action of substances responsible
for causing pain and discomfort, in an electrospun mat and generated a controlled released system
that accelerated patient relief [135]. To confer biocidal properties to cellulose acetate-based nanofibers,
Jiang et al. modified their surface with 4,4’-diphenylmethane diisocyanate (MDI), with a complete death
of bacteria colonizing the wound after a 30 min contact [136]. The improved synergistic effect of the
oregano essential oil with cellulose acetate-based nanofibers against Staphylococcus aureus, Escherichia
coli and the yeast Candida albicans infecting wounds has also been demonstrated and explained on
the basis of the potent antimicrobial character of oregano oil’s molecular components carvacrol and
thymol [137]. Cinnamon, lemongrass and peppermint essential oils loaded onto cellulose acetate
electrospun mats have also shown similar outcomes. However, even though fibroblasts and human
keratinocytes could attach and spread on the fibers’ surface, cell viability seemed to decrease with
exposure time [138]. The anti-proliferative effect of essential oils against eukaryotic cells remains a
challenge in tissue-engineering applications and biomolecule delivery systems.

As seen, synthetic biodegradable polymers such as PLA, PGA, PLGA and PCL have all been
used as matrices for skin regeneration, both individually and in combination with other natural-origin
polymers. They have been processed in the form of nanofiber matrices with large surface area, high
wound exudates absorbency capacity, and high oxygen permeability. In addition, the small pore size
has been regarded as an extra barrier to prevent bacterial penetration [39].

4.3. Nervous System

The nervous system is a complex organization of neurons or glial cells that regulate and coordinate
body activities. Degeneration of these cells results in changes in the extracellular matrix of the neural
tissue that trigger a variety of clinical disorders. Since neurons cannot regenerate by themselves,
restoration of their functions by means of biological and synthetic tools, processed in the form of
fibrous scaffolds or biomolecule delivery systems, is a priority [139,140].

Cells live in a complex mixture of pores, ridges and fibers in the extracellular matrix. Mimicking
those conditions via porous, interconnected nanostructured constructs with large surface areas is
recommended for the cells’ successful in-growth [39,141]. In fact, nerve stem cell differentiation
and neurite outgrowth have been successfully supported by PLLA nanostructured porous scaffolds,
demonstrating their potential cell carrier in nerve tissue engineering. Here, scaffolds are produced
using advanced techniques in the form of complex guidance channels, which precisely mimic the
natural repairing process in the human body [142]. The efficacy of PLLA nano- and microfibrous
scaffolds produced via electrospinning was also examined under optimal conditions of fiber alignment
and tailored diameters by culturing neural stem cells. Results showed the neural stem cells elongation
and neurite outgrowth to be parallel to the direction of the PLLA fibers. The rate of differentiation was
also higher on nanofibers than on microfibers [143]. Prabhakaran et al. developed PCL nanofibrous
constructs and modified their surface by a simple plasma treatment. The goal was to improve Schwann
cell adhesion, proliferation and interactions along the nanofibers for nerve tissue formation. After 8
days of culture, cells attached and proliferated on the surface-modified scaffold, expressing bipolar
elongations and retaining their normal morphology. In addition, data showed this treatment to be more
cost-effective than the production of PCL/collagen scaffolds, adding evidence to their potential to serve
in peripheral nerve regeneration [144]. Reports on PCL/gelatin nanofibrous scaffolds have also shown
to enhance nerve differentiation and proliferation and to support neurite outgrowth. Once again,
the nerve cell elongation followed the alignment of the nanofibers and established this biocomposite
suitability for nerve regeneration [145]. More recently, both PCL and gelatin were used for neural
differentiation of human-induced pluripotent stem cells in the form of bi-electrospun nanofibers. The
nanofibers supported the stem cells’ differentiation into neural cells and were able to improve the entire
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process [146]. The selection of PLLA, PLGA and PCL as base polymers to produce fibrous scaffolds for
nerve tissue engineering is based on their mechanical stability, exceptional biocompatibility and, most
importantly, their slow biodegradability. This allows for cells to adhere and differentiate into neural
cells with no danger of losing their supporting matrix before the entire local neural network is restored.

Core-shell PLGA nanofibrous nerve guidance conduits loaded with nerve growth factors
were fabricated via co-axial electrospinning and used to construct nerve guidance conduits for
a 13 mm rat sciatic nerve defect. After 12 weeks of implantation, the aligned core-shell nanofibers
promoted a superior functional recovery, with more nerve fibers being regenerated and displaying
a more mature morphology than in the control group (bare PLGA) [147]. Co-axial nanofibers with
poly(L-lactide-co-ε-caprolactone) (PLLACL, derived from the merge of PLLA and PCL) at the shell and
bovine serum albumin combined with nerve growth factors at the core were produced with a sustained
release that promoted the differentiation of rat pheochromocytoma cells (PC12). In co-axial systems,
the biomolecules’ release profile can be finely tailored by modulating the morphology, porosity and
composition of the nanofibers. Besides, diameters at nanoscale provide short diffusion passage length
and a high surface area very effective for controlled mass transfer [148]. Nerve growth factors have
also been loaded onto PLLACL/silk fibroin solutions to produce co-axial fibers with a sustained release
that lasted over 60 days. Here too, nerve guidance conduits were fabricated by reeling the aligned
PLLACL/silk fibroin nanofibers and implanting these structures onto sciatic nerve defects in rats for
12 weeks. In the end, data demonstrate the ability of these structures to promote peripheral nerve
regeneration by the local, controlled release of nerve growth factors [149]. PLLACL/silk solutions have
been modified with Vitamin B5 to produce aligned nanofiber meshes; 80% of the Vitamin B5 content
was released within 24 h, demonstrating this drug delivery system strategy’s potential to increase
cell survival and proliferation and, ultimately, for applications in nerve repair or regeneration [150].
In another strategy, PCL and chitosan were blended to form nanofibrous scaffolds, via electrospinning,
with excellent mechanical and surface properties. The surface of the scaffolds was functionalized with
laminin via carbodiimide-based cross-linking. Data reported the successful growth and proliferation of
Schwann cells within the laminin-loaded polymeric matrix and its versatility for in vivo cell delivery
for nerve tissue engineering [151]. The important role played by PCL and PLLACL in nervous system
research has been extensively confirmed. In fact, its use as a suitable platform for neuronal cell growth
and proliferation is here extensively demonstrated. However, on its own, these polymers are barely
effective, requiring growth factors and other biomolecules to be loaded onto their structure to stimulate
the development and growth of the neural cells.

4.4. Vascular Grafts

Cardiovascular diseases are the number one cause of death globally. They are commonly associated
with the narrowing blockage of blood vessels leading to reduced blood flow and inadequate nutrient
supply. Synthetic vascular grafts have become a recurrent alternative to replace or bypass a damaged
or occluded vessel [152]. In the first attempts to develop vascular grafts, non-biodegradable polymeric
fiber structures made of Dacron and Teflon were employed [153]. Only later, arterial regeneration was
demonstrated over woven PGA biodegradable constructs in rabbit models [154] or on microporous,
compliant, non-thrombogenic L-polylactide-polyurethane (PLLA-PU) [155]. From then on, many
different studies were conducted to improve the properties of biodegradable scaffolds and develop
blood vessel substitutes. The goal was to engineer biodegradable grafts to serve only as skeleton
constructs to induce and support tissue overgrowing and ingrowing. For instance, Sell et al. designed
a PDO and elastin vascular graft via electrospinning, conducive to tissue regeneration, with mechanical
properties that closely matched the native arterial tissue. They determined that a 50/50 ratio between the
two biodegradable polymers was preferred to mimic the compliance of the native femoral artery and
established elastin-containing grafts as bioactive, promoting cell migration [156]. Jeong et al. created a
novel tubular scaffold from marine collagen and PLGA fibers that improved the mechanical strength
of the collagen-based synthetic grafts in both dry and wet states. The proliferation and phenotype
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expression of smooth muscle cells and endothelial cells was followed on static and dynamic conditions.
It was observed that under a pulsatile perfusion system, both cell proliferation and alignment along
the PLGA fibers was improved and that cells were capable of retaining their differentiated cell
phenotype [157]. A bi-layer of type I collagen was also tested in vivo as a small diameter vascular
graft to promote the complete regeneration of rats’ inferior vena cava. After 12 weeks of implantation,
a thin continuous layer of endothelial cells and smooth muscle cells was lined with the vascular lumen
and tunic media, proving that the engineered vascular substitute not only possessed sufficient tensile
strength and good biocompatibility but also advanced vascular regeneration [158]. More recently,
PCL micro- and nanofibrous vascular grafts were engineered via electrospinning, and their long-term
performance was investigated in vivo. PCL grafts were implanted in rat models at the abdominal
aorta region up to 18 months, and their compliance, tissue regeneration and degradation rate were
followed. Results showed excellent structural integrity, with no aneurysmal dilation, and perfect
patency with no thrombosis and limited intimal hyperplasia. Cell migration and neovascularization
increased quickly throughout time. Degradation data was inclusive [159]. In another in vivo study,
PCL scaffolds were prepared with thicker fibers and larger pore structure and implanted in the
abdominal aorta of rat models for 100 days. The macroporous vascular grafts enhanced cell infiltration
and extracellular matrix secretion. At the end of the implantation period, endothelium coverage
was complete, and the regenerated smooth muscle layer was correctly organized. More importantly,
the regenerated arteries demonstrated a contractile response to adrenaline and acetylcholine-induced
relaxation. These thicker-fiber electrospun scaffolds were also seen to attract and mediate macrophage
polarization into the immunomodulatory and tissue remodeling phenotype [160]. To balance the
degradation rate of PCL, fibrous grafts have also been prepared from blends of PCL and PDO. Pan et al.
produced small-diameter hybrid grafts by co-spinning and followed their regeneration abilities in rat
abdominal aorta replacement models up to 3 months of implantation. Degradation of PDO provided
extra space within the graft, which facilitated vascular smooth muscle regeneration within PCL/PDO
grafts. Coverage by endothelial cells was superior on PCL/PDO than on PCL grafts due to the increase
in the construct’s hydrophilic nature. Heparin-loaded PCL nanofibers have also been prepared via
co-axial electrospinning. An initial burst release of heparin (50%) was observed, followed by a more
gradual release of up to 72% of its content within the following 2 to 14 days. Evaluation with a
canine artery model revealed the potentialities of this system to greatly enhance the patency rate of
small-diameter grafts [161]. Heparin has been combined with vascular endothelial growth factors
(VEGFs) and loaded onto PLLACL (or PLCL), electrospun nanofibers for anticoagulation and rapid
endothelization purposes. After adding Span-8 to the mixture, the synergistic action of heparin and the
VEGFs was enhanced with a sustained release for 29 days that improved the scaffold anticoagulation
capacity and accelerated endothelial progenitor cell growth (Figure 3) [162]. Salvianolic acid B (SAB),
a traditional Chinese medicinal plant known to promote proliferation and migration of endothelial cells
was combined with heparin to form a core solution in a PCL/collagen shell. A sustained release of 56%
of SAB and 68% of heparin within the first 30 days was observed. In a rat subcutaneous embedding
model, the biocompatibility of the engineered scaffold was confirmed, uncovering this strategy as
promising for preventing acute thrombosis and for promoting rapid endothelialization [163].
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Figure 3. (a) Endothelial progenitor cell growth from 1 to 7 days (PLCL-W, control without biomolecules;
15Hep, 15 wt% heparin; 10, 20 and 30 vascular endothelial growth factors (VEGF) represent 10, 20
and 30 µg/mL of VEGF) and visual detection of the cells via (b) immunofluorescent microscopy
(scale 200 µm) and (c) scanning electron microscopy (SEM, scale 100 µm) (adapted with permission
from [162]).

4.5. Bone

Bone is a mineralized connective tissue with functions of support and protection in the human
body that, despite its inert appearance, is highly dynamic, being continuously resorbed by osteoclasts
and neoformed by osteoblasts [164]. It is a very complex system with a large amount of extracellular
matrix and a limited cell population [127]. A variety of materials have been used in the production of
such biodegradable fibrous constructs for replacement and repair of damaged or traumatized bone
tissues. Typically, engineering bone requires an artificial extracellular matrix or fibrous and highly
porous scaffold, osteoblasts or cells that can differentiate into osteoblasts, and regulating factors or
bioactive molecules to instigate cell recruitment, differentiation and mineralization to form new bone
tissue [165,166].

Lisignoli et al. developed a non-woven hyaluronic-acid-based polymer scaffold combined
with bone marrow stromal cells and fibroblast growth factors and followed the osteogenesis of
large segmental radius defects in rat models, up to 200 days of implantation. It was seen that bone
mineralization was significantly induced by the presence of the growth factors, detected by the
improved expression of important bone markers (i.e., alkaline phosphatase, bone sialoprotein, collagen
type I, etc.). Further, new bone growth and lamellar bone percentage were highly correlated [167].
Mineralization and type I collagen production were also improved using microporous, non-woven,
electrospun PCL scaffolds cultured with mesenchymal stem cells derived from the bone marrow of
neonatal rats. After 4 weeks of culture, cells were seen to penetrate the scaffolds and to give rise to
an abundant extracellular matrix [168]. Using an equal combination of scaffold and cells, Shin et al.
supplemented these constructs with osteogenic factors using a rotating bioreactor and then implanted
them in the omenta of rats for 4 weeks to assess new bone formation in vivo. It was observed that
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the constructs maintained their size, shape and bone-like appearance at the end of the 4 weeks and
that cells and extracellular matrix covered the entire fibrous construct. Moreover, mineralization and
type I collagen were also detected [169]. PCL has also been blended with PLA to produce nanofibrous,
highly porous scaffolds with interconnected open porous structure with improved mechanical stiffness
and bioactivity. Results showed that this combination not only enhanced cell viability of human
mesenchymal stem cells but also promoted osteogenic differentiation. In addition, PCL/PLA scaffolds
were seen to facilitate new bone formation in a critical-sized cranial bone defect mouse model [170].
Ye et al. engineered a scaffold of nano-hydroxyapatite/PLA/gelatin with a nanofibrous porous structure
by combining homogenization, freeze-drying, and thermal treatment approaches. A derived peptide
from the bone morphogenetic protein 2 (BMP-2-derived peptide) was then immobilized onto the
surface of the fibrous scaffold via polydopamine. In vitro studies demonstrated the capacity of the
altered scaffolds to instigate the alkaline phosphatase activity of bone mesenchymal stem cells and the
gene expression related to osteogenic differentiation. In vivo examinations using a rat cranial bone
defect model confirmed this scaffold ability to induce bone formation within the defects (Figure 4) [171].
Blends of PLLA and gelatin have been tested as well to produce fibrous scaffolds with β-cyclodextrin
grafted with nano-hydroxyapatite and loaded with simvastatin, a known instigator of osteoblasts
viability and differentiation. Data collected showed these nanostructured scaffolds to significantly
increase the production of alkaline phosphatase, mineralization, osteogenic gene expression and bone
regeneration, providing definitive proof of the potential of fibrous, porous biodegradable constructs
for bone substitution/repair [172].
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Figure 4. Masson’s trichrome-stained images of the newly formed bone within the repaired tissue eight
weeks after surgery, using scaffolds made of PLA/gelatin (GEL), nano-hydroxyapatite (nHA)/PLA/GEL
and nHA/PLA/GEL/BMP-2 peptide (-PEP). Red arrows indicate new bone, green arrows indicate
host bone and black arrows indicate residual scaffolds. Residual scaffolds were all clearly filled with
intercellular collagen fibers stained blue, and the newly formed bone tissue was dark blue because of
the existence of abundant and compact collagen. New bone regenerated in the nHA/PLA/GEL-PEP
group existed both in the middle and limbic of the defects (used with permission from [171]).
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4.6. Cartilage

The articular cartilage can tolerate intensive and repetitive physical stress with great ease. However,
it possesses a limited capacity to heal even the most minor injuries. This happens because of the
reduced availability of chondrocytes, which are embedded in the dense extracellular matrix of the
articular surface restricting their mobility, and absence of progenitor cells in the proximities of the
wounded sites. In addition, the articular cartilage is an avascular, aneural, alymphatic tissue that only
contains chondrocytes, which reduces its self-healing capacity [173]. The use of three-dimensional
biodegradable scaffolds engineered with chondrocytes or progenitor cells has been seen, for many
years, as an alternative to the limited success of the multiple surgical techniques available. In fact,
Freed et al. demonstrated just that, by engineering cartilage implants from PGA fibrous scaffolds
seeded with rabbit articular chondrocytes. These constructs were implanted as allografts on adult
rabbits to repair knee joint defects. Cartilaginous repair was observed after six months of implantation.
Compared to PGA alone, the cell-seeded PGA scaffolds improved the chondrocytes columnar alignment,
the reconstitution of the subchondral plate, the spatial uniform distribution of glycosaminoglycans,
and the bonding of the repair tissue to the underlying bone [174]. In a similar study, Li et al. evaluated
the cell-seeded nanofibrous PCL scaffold regenerative properties in swine models. PCL constructs were
seeded with allogeneic chondrocytes or xenogeneic human mesenchymal stem cells to repair iatrogenic,
full-thickness cartilage defects during a six-month implantation period. In the end, the scaffolds
seeded with mesenchymal stem cells were shown to regenerate hyaline cartilage-like tissue and
to restore a smooth cartilage surface whilst maintaining the highest equilibrium of compressive
stress, while the chondrocyte-seeded constructs produced mostly fibrocartilage-like tissue with a
discontinuous superficial cartilage contour [175]. More recently, co-cultures of articular chondrocytes
and mesenchymal stem cells were seeded onto electrospun PCL scaffolds with the purpose of repairing
osteochondral defects in the trochlear groove of Lewis rats. After twelve weeks of implantation,
hyaline-like cartilage tissue was found on the co-cultured scaffolds, while the bare PCL formed
fibrocartilage, which cannot support the original cartilage function and deteriorates rapidly. It was
also shown that both chondrocyte samples and co-cultures generated an equal level of cartilage repair,
demonstrating their potential in vivo [176]. Still, the repaired tissue revealed inferior mechanical
properties. Considering this, Kim et al. proposed the production of PCL/hyaluronic acid fibrous
scaffolds loaded with transforming growth factor-β3 for cartilage repair of microfractures in a large
animal model such as the minipig. After twelve weeks of implantation in vivo, the loaded scaffolds
improved histological scores and increased type 2 collagen content and the overall mechanical
performance [177]. Core-shell nanofibrous scaffolds were fabricated to encapsulate bovine serum
albumin and the recombinant human transforming growth factor-β3 (rhTGF-β3) for tracheal cartilage
regeneration. PLLACL was combined with collagen to generate the shell portion of the fibers.
In vitro testing revealed that rhTGF-β3 could be released at a sustained and steady pattern without
losing its biological activity. The rhTGF-β3-loaded scaffolds were seen to promote the chondrogenic
differentiation of mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord
(Figure 5) [178]. Chitosan-based composite nanofibers containing graphene oxide (GO) have also been
produced and their potential for cartilage regeneration evaluated. Due to its transport properties,
allied with its flexibility and the one-atomic-thickness two-dimensional structure, GO has been
pointed out as exhibiting very good biocompatibility because of the presence of abundant oxygen
functionalities [179]. Tensile strength experiments revealed that the incorporation of GO increased the
mechanical properties of nanofibers. At concentrations of 6 wt%, GO appears to generate a highly
biocompatible environment conducive with ATDC5 cells (an excellent in vitro cell line model for
skeletal development) proliferation [180]. Surface modification of gelatin can provide a new generation
of biopolymers and fibrous biotextiles with chemical, mechanical and biological properties desirable
for cartilage tissue engineering. Agheb et al. proposed functionalizing gelatin with tyrosine protein
and 1,2,3-triazole ring. In vitro cell culture studies demonstrated the electrospun engineered protein
scaffold to support attachment and growth of cells while maintaining their viability. The results also
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showed that cross-linked nanofibers could be considered excellent matrices for chondrocyte adhesion
and proliferation in cartilage tissue-engineering applications [181]. The former in vitro and in vivo
studies verified that spinning strategies may allow novel layered scaffolds to be constructed that
simultaneously and effectively deliver growth factors and fulfill cell migration in a controlled manner
to promote tissue regeneration.
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Figure 5. Chondrogenic differentiation of mesenchymal stem cells derived from Wharton’s jelly of
human umbilical cord on two different nanofibrous scaffolds, the PLLACL and collagen, here referred
to as PC; and the PLLACL, collagen and rhTGF-β3, here named PC@rhTGF. (a) Real time-qPCR analysis
of chondrogenic markers SRY-box transcription factor 9 (So × 9) and collagen type II (COL2) after
culturing for 14 days (n = 3, * P < 0.05). (b) Histological staining of glycosaminoglycans synthesized by
the mesenchymal stem cells derived from Wharton’s jelly of human umbilical cord with Toluidine and
Safranin O after culturing for 21 days (used with permission from [178]).

4.7. Ligament

Ligaments are short bands made of strong, flexible, dense connective fibrous tissue found in
between bones and responsible for joint movement, stability and load transfer. They are mainly formed
of oriented bundles of collagen fibers. Depending on our daily activities, the ligaments of some joints
may be subjected to greater strain than others, making them more prone to injury. It is clear that the
ligaments from knees or legs are subjected to added strain due to body weight and may suffer more
serious consequences. In fact, one of the most common ligament ruptures occurs at the anterior cruciate
ligament (ACL), which connects the femur to the tibia and acts as a main stabilizer of the knee [182].
Rupture of the ACL results in abnormal joint kinematics and often leads to irreversible damage, as it
does not heal naturally and requires surgical intervention [183]. Spinning techniques associated with
tissue engineering tools offer new alternatives for ACL treatment by means of biodegradable, fibrous
scaffolds with or without seeded cells. The ideal scaffold must provide high mechanical strength at the
initial moments of implantation and gradually lose it, degrading as new tissue is formed [184].

Ouyang et al. prepared seven different biodegradable scaffolds, using a solvent spin-casting
technique, from PCL, PDLA, PLLA, PLGA and mixtures of PLA/PCL and studied the adhesion,
proliferation and morphology of rabbit ACL cells and bone marrow stromal cells. Data revealed that
high-molecular-weight PLGA scaffolds were more likely to allow cells to attach and proliferate and to
promote cell expansion [185]. On the contrary, Lu et al., using the same polymers PGA, PLLA and
PLGA engineered as three-dimensional braided, fibrous, interconnected scaffolds, established PLLA as
the most suitable substrate (between the tested samples) for ACL tissue engineering. They observed
the PLLA scaffolds pre-treated with fibronectin to maintain their structural integrity and mechanical
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performance over time. Primary rabbit ACL cells were also able to attach efficiently on these substrates
and, thus, enhance the long-term matrix production [186]. Recent studies have also shown electrospun
PCL scaffolds as good candidates for in vivo ACL reconstruction of a rodent model. After two, six and
twelve weeks of implantation, Petrigliano et al. demonstrated gradual infiltration of collagen in both
the bone tunnel and intra-articular regions of the scaffold, together with the increase in failure load
and stiffness over time [187]. In turn, Leong et al., by incorporating fibroblast growth factors and
human foreskin fibroblasts within the PCL grafts matrix, provided evidence of the fibrous constructs’
excellent healing and regenerative potential. Indeed, after 16 weeks of implantation on athymic rat
models, infiltration of the grafts with cells and aligned collagen deposition with minimal inflammatory
reaction were observed. Here too, the mechanical performance was improved over time [188]. PLCL
and silk fibroin have been processed by electrospinning in three ways—random nanofibers, aligned
nanofibers and aligned nanoarrays—and studied for their mechanical performance in light of ligament
requirements. The Young’s modulus of the aligned nanoarrays was inferior to the other configurations;
however, it provided larger pores and enough space for cell infiltration, which yielded improved cell
proliferation for up to 28 days of culture. The aligned nanoarrays achieved a balance between porosity
and mechanical properties highly desirable in tissue engineering [189].

For many years, the natural choice for ACL reconstruction fell on collagen-based fiber scaffolds.
However, their mechanical strength and degradation rates were not easily controlled [190]. Lately,
silk and collagen blends have been prepared to mimic the components of the ligament and thereby
accelerate regeneration. Implantation in rabbits demonstrated that cell infiltration increased over time
on these constructs and that more fibroblast-like cells were found in their core. Compared to autografts,
silk/collagen fibrous scaffolds enhanced the most tendon-bone healing and instigated trabecular bone
growth into the scaffold. In the end, their potential for clinical applications was established [191].
A hybrid scaffold composed of degummed knitted silk microfibers coated with bioactive basic fibroblast
growth factor (bFGF)-releasing electrospun PLGA fibers was produced by Sahoo et al. In vitro testing
demonstrated the ability of rabbit bone marrow mesenchymal stem cells to grow on these scaffolds
and the bFGF to stimulate cell proliferation and gene expression, increasing collagen production and,
hence, the fibrous construct mechanical properties [192].

5. Drug Delivery Systems

In the quest for efficient drug delivery systems, by means of systemic and topical routes,
biotextile structures have been fashioned in a variety of formats, resembling interconnective tissues,
the extracellular matrix and even organs. In fact, over the last fifty years, potential administration routes
via biotextiles have gone from wounds, burns and dermatosis, the most common, to systemic diseases,
implantable devices and nanoencapsulation [193]. Drug delivery systems based on biotextiles can now
sustain local release, control deliverance, target cell/microorganism strains or biomolecules, and even
boost smart release via local stimuli by means of topical, transdermal and implantable administration.
In recent years, electrospun fibers designed to entrap biologically active molecules have proven
efficient in protecting affected areas against pathogens this way, preventing microbial colonization
and accelerating healing. The main requirement for a drug delivery system to be considered as an
effective tool is its capacity to maintain the pharmacologically effective therapeutic drug levels for
prolonged periods of time while still allowing “dosing-on demand” [194]. Innovative manufacturing
techniques are emerging to design fibrous scaffolds with proper textured fiber meshes to achieve specific
performances in different biomedical environments. Indeed, different strategies have been optimized
to incorporate molecular species into polymer-based solutions either by direct (e.g., co-axial spinning)
or indirect (e.g., co-spinning) encapsulation [1,195]. Drug-release profiles are mainly dependent on
the physical–chemical properties of the polymer. As such, hybrid architectures made of natural and
synthetic materials are also being engineered with the purpose of offering delivery platforms with
controlled degradation rates, responsive to local stimuli, for targeted biomolecule release. Examples of
biotextile-based drug delivery systems are explored in the following sections.
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5.1. Topical

Topical administration of specialized therapeutic agents, such as antibiotics, plant extracts,
antimicrobial peptides or proteins and nanoparticles, is a favored route for a localized action. This
strategy is preferred in many cutaneous, eye and vaginal disorders because of its convenience, easy
application, affordability, minimum toxicity, superior physiological and pharmacological responses,
enhanced drug bioavailability and, since it requires non-invasive procedures, painlessness for the
users. Topical systems are highly desirable as potential substitutes for systemically administered drug
therapies, by minimizing side effects associated with drug dosage and off-target action. The most
challenging aspect of designing such a therapeutic system relates to the delivery platform from which
an optimal biomolecule concentration can remain active while being delivered for an appropriate time
period [196,197]. Even though they are not as challenging as in systemic routes, topical administration
still must overcome barriers that may limit the bioavailability of drugs and its deliverance at the
effective site. Local infections masking the affected area are known to inhibit the action of therapeutic
agents used to stimulate anti-inflammatory responses or cell growth and proliferation [198].

Nanofibrous biotextiles have been described to possess a large surface area capable of efficiently
binding and delivering hydrophilic and hydrophobic drugs. Furthermore, their release rate can be
tuned to meet the specific clinical demands of the affected area by modulating the fibers’ diameter,
morphology, structural organization, porosity, drug protection (direct or indirect loading, namely
co-axial or co-spinning) and content ratio between polymers and drug. Biomolecules can also be
functionalized at the surface of the nanofibers by physical or covalent binding for a faster delivery [39].

Highly infected and chronic wounds are some of the clinical pathologies where topical
administration of drugs via biotextile platforms are the most frequent and viable. Here, topical
delivery vehicles can provide therapeutic action directly to the wound bed or the affected area, using
one- or multiple-agent systems, potentially reducing unwanted side effects. Dual release electrospun
scaffolds containing an anesthetic, lidocaine, and an antibiotic, mupirocin, were produced from
PLLA using a dual-spinneret electrospinning apparatus. Their release rate was followed, revealing
discrepancies between biomolecules: while lidocaine displayed an initial burst of 80% of its weight in
the first hour, mupirocin only released 5%, therefore experiencing a more sustained release for effective
antibacterial action. By comparing with single-spinneret electrospun mats, drug release kinetics was
seen to alter due to the competitive behavior between molecules and the different polymer interactions
generated [199]. Topical administration of levothyroxine, a synthetic hormone that stimulates lipid
metabolism and induces lipolysis, has been reported to reduce deposits of adipose tissue in the skin.
At high concentrations, however, potential systemic effects may be unleashed. To overcome this,
nanofibrous textiles of blends of PVA and poly-N-isopropylacrylamide (PNIPAM) were proposed for
sustained topical delivery of this hormone. Data reported the ability of the polymeric biotextile to
sustain the release and penetration of levothyroxine within the skin while maintaining its effectiveness
for longer periods and minimizing systemic adsorption [200]. PVA has also been combined with
poly(vinyl acetate) (PVAc) to form nanofibers loaded with ciprofloxacin hydrochloride (CipHCl),
a quinolone antibiotic used to treat a variety of bacterial infections. Here, too, both the kind of polymer
and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst
and rate of drug release. Pristine PVAc fibers were capable of sustaining release of 50% of the drug
for 80 days, whereas the PVA nanofiber mats released the drug within 3 days. Blending the two
polymers allowed for a convenient rate and period of drug release to be attained, optimal to fight skin
infections [201]. Antimicrobial fusidic-acid-loaded electrospun PLGA ultrafine fibers have also been
examined for their potential in treating infected wounds under dynamic conditions. It was seen that
the engineered constructs allowed a progressively faster release of bioactive fusidic acid, eradicating
planktonic bacteria and considerably suppressing biofilm formation. However, findings point out the
risk of wound reinfection and microbial resistance from using non-medicated or inadequately medicated
bioresorbable fibrous dressings [202]. The same recommendations were made by Alhusein et al. while
reporting the release of tetracycline hydrochloride (tetHCl) from a triple-layered electrospun matrix,
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made of poly(ethylene-co-vinyl acetate) (PEVA) at the center, sandwiched between two layers of
PCL [203]. The engineered topical scaffold was found very effective in entrapping the antibiotic and
promoting their efficient timely local release, inhibiting the growth of a panel of bacteria, including
clinical isolates. PCL and hyaluronic acid have been conjugated with epidermal growth factors via
emulsion electrospinning, revealing significant synergistic effects that contributed to cell proliferation
and infiltration, ultimately leading to an enhanced regeneration that culminated in fully functional skin.
Moreover, an up-regulation of wound-healing-related genes like collagen I, collagen III and TGF-βwas
also reported [204]. Even though blend emulsion electrospinning has been an option in many studies,
there are others that defend this strategy to destroy the bioactivity of proteins or to make the electrospun
dope highly unstable [205]. Using bovine serum albumin as a carrier protein, Peh et al. proposed
a simultaneous blend-spun of Vitamin C, Vitamin D3, steroid hormone hydrocortisone, insulin,
thyroid hormone triiodothyronine, and epidermal growth factors into PLGA-collagen nanofibers.
The engineered strategy allowed for a target-release of each biomolecule, with Vitamin C facilitating
collagen I secretion by fibroblasts, insulin potentiating adipogenic differentiation and Vitamin D3,
steroid hormone hydrocortisone, insulin, thyroid hormone triiodothyronine and the epidermal growth
factors stimulating skin fibroblast and keratinocytes proliferation [206]. Aside from infected wounds,
topical skin administration of biomolecules has also been employed in the treatment of other disorders,
namely keloids. These are fibroproliferative lesions that occur at areas of cutaneous injury. They are
benign but often cause pain, tenderness, pruritus and paresthesias. Li et al. proposed a new strategy to
treat these conditions by co-delivering dexamethasone and green tea polyphenols at the affected area
using PLGA nanofibers. The engineered biotextile was characterized as multi-functional by including
capacities to maintain a moist environment, resisting bacterial infection and controlling drug release.
After a three-month period of treatment, these PLGA/dexamethasone/green tea polyphenols fiber
meshes were found to significantly increase the degradation of collagen fibers in keloids compared to
the traditional methods [207]. Another benign skin condition of long duration that affects most people
during adolescence is acne. Current strategies to treat acne resort to antibiotics and biomolecules
delivered to the skin in the form of pills, ointments, gels or soaps. Most recently, Khoshbakht et al.
proposed the fabrication of tretinoin-loaded PCL nanofibrous mats as a potential anti-acne patch.
Electrospun nanofibers showed a prolonged release of tretinoin, which was then reflected in a superior
antibacterial action. Additionally, the drug-loaded construct showed inherent stability under various
storage conditions at room and fridge-preserving temperatures, anticipating that the easy fabrication,
low costs and dosing frequency of this strategy may offer a new therapeutic platform for treating acne
disorders [208].

Electrospun nanofibers have also been applied in eye diseases. One of the most challenging
issues in treating eye diseases is the very short residence time of the drug. Most drugs are eliminated
within a few seconds due to the poor capability of the eye to accommodate additional liquids. As such,
alternative drug delivery systems have been engineered in the form of fibers and gels. Voriconazole,
a triazole antifungal agent with low aqueous solubility, good oral bioavailability, acceptable tolerability
and promising activity against resistant fungal species and fungal isolates associated with keratitis,
has been incorporated into polyvinyl alcohol (PVA)/hydroxypropyl-β-cyclodextrin (HPβCD)-blended
nanofibers for efficient ophthalmic delivery. Drug loading was significantly enhanced by the presence
of HPβCD. Compared with a voriconazole free state solution, the nanofibers significantly prolonged
the antibiotic half-life and increased its bioavailability in rabbit tears. Further, no obvious signs of
irritation were detected after application in the conjunctival sac [209]. Dendrimer-based nanofibers
made of polyamidoamine have also been examined as topical delivery vehicles for the glaucoma
drug brimonidine tartrate. These systems were considered non-toxic and did not cause ocular
irritation in animal tests using a normotensive rat model. Intraocular pressure response also improved
with daily dosing [210]. Recently, Göttel et al. proposed a system based on gellan gum/pullulan
electrospun nanofibers shaped into curved geometries and capable of turning into a gel upon
administration. A clear prolongation of the fluorescein residence time compared to conventional
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eye drops was confirmed using the developed in situ gelling system [211]. Grimaudo et al. also
showed the ability of hyaluronic acid nanofibers to work as a dual delivery system for ferulic acid,
an antioxidant, anti-aging, anti-inflammatory, neuroprotective and hemato-protective agent, and
ε-polylysine, a water-soluble, biodegradable antimicrobial peptide active against bacteria, fungi and
yeast. The engineered multi-action system demonstrated a controlled release of the biomolecules within
the first hour of contact without inducing a cytotoxic response, and with an effective action against
relevant microbial species prevalent in chronic ocular diseases [212]. Once again, the value is proven of
nanofiber-based delivery systems as alternatives to aqueous drug-based solutions to treat ocular-related
disorders. Still, topical formulations are less effective in treating retinal inflammatory diseases. As such,
Singla et al. proposed the development of preservative-free fluocinolone acetonide-loaded PCL
nanofibers. This corticosteroid is used in dermatology to reduce inflammation and relieve itching.
Here, both plasma and ocular kinetics supported the therapeutic utility and target-site deliverance
of the fluocinolone acetonide, without systemic distribution. This single application maintains the
therapeutic window for longer periods, thus ensuring higher patient adherence and compliance. PCL
was once again highlighted as a promising drug carrier. Apart from the already-mentioned features,
PCL gained popularity as a potential alternative for human amniotic membrane by promoting adhesion,
supporting cell proliferation and infiltration to form a three-dimensional corneal epithelium [213].

A great number of vaginal disorders arise from sexually transmitted infections. For that reason,
multipurpose prevention technologies (MPTs) that simultaneously prevent sexual diseases and
unintended pregnancy remain a global health priority. Combining chemical and physical barriers in
one potential therapeutic formulation has been a great challenge. Ball et al., using FDA-approved
polymers, polyethylene oxide (PEO) and PLLA, produced nanofiber meshes with tunable fiber size and
controlled degradation kinetics to enable the topical release of multiple agents against HIV-1, HSV-2,
and sperm at the vaginal mucosa. Data reported the capacity of these electrospun biotextiles to inhibit
HIV-1 infection and to physically obstruct sperm penetration, providing a physical coverage for both the
vaginal epithelium and cervix. Here, multiple non-hormonal chemical contraceptive alternatives were
screened, uncovering the potential of glycerol monolaurate to inhibit sperm motility and viability in a
dose-dependent manner [214]. Formulations to co-deliver more than one therapeutic agent in vaginal
disorders or as contraceptive agents are very frequent. Biotextiles made of PVA-based nanofibers
have been fashioned and loaded with tenofovir and levonorgestrel (a contraceptive progestin) using a
production-scale electrospinning equipment. The engineered fabrics showed good drug association
efficiencies and a reasonably high drug loading, the release rate of which could be modulated by
changing the fiber architecture’s polymer/drug ratio. In vitro studies demonstrated this system low
cytotoxicity and the ability to sustain the anti-HIV activity of tenofovir [215]. Huang et al. formulated a
therapy in which the polymeric drug delivery platform would release specialized antiretroviral drugs
responsible for fighting sexually transmitted diseases only upon contact with sperm. Cellulose acetate
phthalate (CAP)-based nanofibers were produced by electrospinning and loaded with etravirine and
tenofovir disoproxil fumarate agents. Because of the CAP pH sensitivity, fibers were insoluble in
simulated vaginal fluid at pH 4.2 but dissolved quickly upon contact with human semen at pH 7.0–8.5,
thus releasing the drugs. CAP also possesses anti-HIV activity, which may include additional effects to
this therapeutic topical strategy [216]. Current approaches also include the combination of nanofiber
biotextiles functionalized with nanocarriers containing therapeutic biomolecules. These strategies have
been recently proposed due to the poor retention and extensive leakage of nanocarriers (in the form
of nanoparticles or nanocapsules) in topical vaginal administration. Such an example is the research
of Krogstad et al., in which a nanoparticle-releasing nanofiber delivery platform was developed by
combining mucoadhesive fibers for better retention in the vaginal tract, and PEGylated nanoparticles
loaded with etravirine, a topical microbicide for HIV prevention, that diffused quickly through the
mucus. This composite formulation was seen to provide 30-fold greater retention of nanoparticles in
the reproductive tract compared to aqueous suspensions. Further, the functionalized nanoparticles
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displayed sustained and higher etravirine concentrations up to 7 days of culture, demonstrating the
efficacy of single-dose topical therapies [217].

5.2. Transdermal

Transdermal applications of bioactive dressings aim at transporting drugs into the bloodstream by
penetrating the skin barrier. In the past, only a few drugs were approved as transdermal patches, like
steroid hormone and nicotine, due to their bioavailability [218,219]. In recent years, there has been an
increased interest in transdermal delivery systems as a new approach for drug administration. Contrary
to systemic products, transdermal patches can provide a sustained release of a drug from the device
into the skin, are non-invasive systems, avoid gastric irritation and bypassing the first-pass metabolism,
and are relatively low toxic. Another benefit of using biotextile transdermal delivery systems is the
ability to very easily and quickly stop a therapeutic treatment in case of adverse effects [220,221].

Different transdermal delivery systems have been designed following the evolution of polymer
science [222]. Natural, synthetic and hybrid polymers are the backbone of transdermal delivery systems
as they allow to control the release of drugs through the intact skin [223]. Frequently, polymers are
processed in the form of nanofibers and used as delivery platforms to treat difficult wounds, both
mechanically and chemically [224]. Aside from entrapping bioactive molecules necessary to induce
healing or fight infections, they also absorb excess exudates and facilitate oxygen permeability via
their large surface area and interconnected open pore structure, respectively. Further, the nanofibrous
constructs morphology and chemical composition may also condition the loading capacity and release
profile of the drugs. Currently, there are even smart strategies that release drugs in response to the
environment ion or enzyme concentrations and pH levels [221].

The absence of several types of vitamins in the human body can lead to severe health problems
ranging from megaloblastic anemia to Parkinson’s disease [225,226]. In an attempt to improve
transdermal delivery of Vitamin B12, Vitamin E and Vitamin A and surpassing more effectively the
skin barrier, Madhaiyan et al. [219] and Taepaiboon et al. [227] explored alternative routes based on
nanofibrous constructs made of PCL and cellulose acetate, respectively. Vitamin B12 (cobalamin)
is a water-soluble vitamin necessary for red blood cell formation, neurological function and DNA
synthesis and is naturally present in some foods [226]. In turn, Vitamin E and Vitamin A acid are
lipid-soluble substances that prevent skin disorders and have antioxidant properties [227]. Vitamin
B12-loaded PCL electrospun fibers were surface-modified by plasma treatment to increase the period
of fiber degradation, loading capability and hydrophilicity, thereby enhancing the vitamin release
rate above untreated PCL. The plasma-treated PCL transdermal patch allowed a release of 34% of
vitamin B12 per day, equivalent to 340 mcgs, the daily requirement in cases of vitamin deficiency.
The increased hydrophilic nature of the patch facilitated release because of water-sorption-mediated
drug desorption [219]. Similarly, mats made of electrospun cellulose acetate loaded with vitamin E
(5 wt%) and vitamin A acid (0, 5 wt%) were produced by eletrospinning. As expected, due to the low
stability of Vitamin A acid, cellulose acetate fibers could incorporate more Vitamin E (≈83%) than
Vitamin A acid (≈45%). Still, in both cases, their encapsulation efficiency was confirmed. Subsequent
studies of drug releasing in a acetate buffer solution showed that fibers were stable and capable of
maximum release of Vitamin E and Vitamin A acid within 24 and 6 h, respectively, highlighting this
biotextile as an effective transdermal drug delivery system [227].

The local delivery of drugs is preferred to systematic administration in wounds as it accelerates
healing by speeding the healing phases in acute injuries and by administrating more effectively
antimicrobial agents capable of preventing or fighting infections. Drug-loaded biotextiles containing
antibiotics, anti-inflammatory substances and biomolecules are an excellent alternative to produce
functionalized biological and biochemical dressings for wound therapies. Both synthetic and
natural-origin polymers, like PVA and chitosan, combined with antibiotics or biomolecules have
shown great performance in accelerating the rate of healing and controlling drug release, making
them suitable for transdermal drug systems [228,229]. Kataria et al. produced biodegradable PVA and
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sodium alginate modified by active loading with ciprofloxacin, a fluroquinolone antibiotic (agents
commonly applied against microorganisms present in skin infections) to prevent wound infections.
Data reported the nanofiber transdermal patch to follow the Higuchi and Korsmeyer–Peppas model for
drug release, with a controlled, sustained delivery with time. Once again, loaded patches were more
effective in controlling infections, accelerating healing and promoting re-epithelialization (in vivo)
than the free state antibiotics or unloaded patches [228]. The same was reported by Mendes et al. when
mixing chitosan with phospholipids to generate electrospun hybrid nanofibers and posteriorly loading
the structure with a variety of substances, including curcumin (an antioxidant, anti-inflammatory
agent and an inhibitor of tumorigenesis and metastasis), diclofenac (anti-inflammatory agent) and
Vitamin B12. Here too, the hybrid biotextile presented great stability in physiological environment
due to chemical interactions established between the natural polymer and the biomolecules, suitable
biocompatibility and a controlled, sustained release of all tested substances [229].

Curcumin is a naturally occurring poly-phenolic compound with innate antimicrobial action and
a broad range of biological functions, including anticancer, antioxidant, anti-infective, angiogenic and
anti-inflammatory activities. However, its in vivo low bioavailability and fragile stability demands
suitable carrier vehicles to be used to sustain its action and continuous release towards affected
areas. In that sense, Ranjbar-Mohammadi et al., by producing curcumin-loaded PCL/gum targacanth
nanofibers for wound healing disclosed their ability for applications in diabetic conditions. Indeed,
after 15 days of culture, pathological studies demonstrated the markedly fast wound closure promoted
by the engineered biotextiles, with well-formed granulation tissue dominated by fibroblast proliferation,
collagen deposition, complete early regenerated epithelial layer and formation of sweat glands and
hair follicles (Figure 6) [230]. Ravikumar et al., using a CAP nonwoven template, achieved similar
results, confirming the liberation of curcumin in a controlled manner via transdermal delivery [231].
The same was observed by Rramaswamy et al. using tetrahydro curcumin loaded onto PCL/PEG
hybrid formulations processed in the form of electrospun hybridized transdermal patches. They also
concluded that drug diffusion in such systems follows Higuchi’s model diffusion mechanism [232].

In recent years, the world population has been facing a dominant problem that prevails in most
developed countries and affects millions of people, namely obesity [233]. Ariamoghaddam et al., using
a blend of PVA/gelatin loaded with curcumin, verified this natural extract as a potent anti-obesity
agent and engineered a transdermal delivery patch to decrease the sub-cutaneous volume of adipose
tissue in obese rats. Curcumin-loaded patches were applied in the abdomen region of obese rats for
6 weeks. Afterward, the rats were exposed to magnetic resonance imaging and compared to control
groups consisting of normal-diet and high-calorie-diet rats. Results confirmed that these modified
PVA/gelatin-based biotextiles effectively deliver curcumin biomolecules through the skin and that
these patches were efficient in decreasing the volume of adipose tissue within the tested subjects by
4% to 7%. Once again, the capacity of bio-synthetic hybrid polymers was demonstrated to generate
sustainable drug-loading nanofiber systems, with optimal transdermal delivery, as alternatives to
conventional systemic therapies [234].
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5.3. Implantable

Implantable drug delivery systems are designed to store and deliver small, precise doses of
therapeutic drugs or medicines into the bloodstream or directly to specific tissue sites. The major
advantages of these systems include targeted local delivery of the drug at a constant and predetermined
rate, thereby minimizing dose required and potential side effects while improving therapeutic
efficacy [194].

Implantable drug delivery systems essentially consist of a micropump that contains a reservoir
in which the pharmaceutical drug in gaseous or liquid form is stored, an actuator release or pump
mechanism, inlet and outlet valves, and in some cases a catheter to directly deliver the drug to a
target site. Alternatively, the drug can be blended with the implantable materials and then, by using
compression- or injection-molding techniques, generate a device with a pre-defined architecture.
However, controlling of the structure and the internal architecture of the system has proven a real
challenge. Further, in many instances, the drug becomes inaccessible or loses its activity. Biotextiles
have been proposed as novel strategies for the development of implantable drug delivery systems
with applications in long-term diseases, including cardiovascular, tuberculosis, diabetes, cystic fibrosis,
glaucoma, cancer, etc. [235]. Indeed, in Section 4, some of those implantable systems have already
been analyzed and examples of bioactive molecules or antibiotics released from biotextiles have been
explored. Still, one of the most important applications of fibrous implantable drug delivery systems
remains to be disclosed, namely the detection and treatment of cancer.

Polymer-based systems have raised much attention in the last few decades as a means of achieving
high therapeutic concentrations of chemotherapy to the site of malignant diseases in cancer patients by
implanting drug-loaded systems intra-tumorally or in areas adjacent to the cancerous tissue. Most of
these devices are fashioned from biodegradable polymers to circumvent a second surgery for device
removal, in already debilitated patients, and to avoid a chronic foreign-body immune response.
The development of such devices is guided by the desire to improve overall survival and quality of life
by patients [236].

Gao et al. proposed the incorporation of 5-fluorouracil, a hydrophilic anticancer drug more effective
when administered at lower doses for longer periods, onto PLLA fibers. The fabrication process selected
was wet-spinning. The drug release rate was regulated by optimizing the processing parameters, such
as drug content, polymer concentration, nonsolvent composition and extrusion flow rate. Most of the
drug was encapsulated into the PLLA bulk fibers, achieving good-term release profiles with small
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initial burst, desired for cancer treatments [237]. This drug, together with oxaliplatin, is currently a
mainstay of adjuvant chemotherapy in colorectal cancer patients. However, systemic delivery exposes
not just tumor cells but other body organs to their toxicity. Moreover, oxaliplatin-induced peripheral
neuropathy remains a main concern to the use of this drug. As such, these two drugs have been
loaded onto PLLA electrospun nanofibers and their effects examined when directly exposed to human
colorectal cancer HCT8 cells (in vitro) and colorectal CT26 tumor-bearing mice (in vivo). In both
situations, the drug-loaded PLLA fibers displayed antitumor efficacy in a time-dependent manner,
sustaining drug release for longer, and suppression of tumor growth, which prolonged the animal’s
survival [238]. Oxaliplatin has also been tested in combination with dichloroacetate, a metabolic
modulator, using a dual drug-loaded multilayered PLLA system. This strategy was proven to be
effective in sustaining the local release and action of the drugs in a time-programmed manner. Moreover,
the synergistic effect between the two drugs was demonstrated to prevent local cancer recurrence
following surgery [239].

Doxorubicin (DOX) is an anthracycline antibiotic with antineoplastic activity, commonly applied
as chemotherapy medication to treat a variety of cancers (breast, bladder, lymphomas, leukemia, etc.).
Systemic administration of this drug is associated with severe toxicity in healthy tissues, limited
distribution, low resection rates and, overall, poor patient survival. To overcome these limitations,
Yang et al. developed a localized, implantable drug delivery device made from hydrophobic
DOX-encapsulated active-targeting micelles assembled from a folate-conjugated PCL-PEG copolymer.
These micelles were then incorporated in a PVA matrix, forming the core of co-axial electrospun
nanofibers surrounded by gelatin. The engineered nanocarrier delivering system was seen to reduce
drug dose requirements, frequency of administration and chemotherapeutic-related side effects while
maintaining an effective therapeutic action against artificial solid tumors [240]. Similar observations
were made by loading DOX onto mesoporous silica (MSNs) nanocarriers and then by incorporating
those structures into PLLA nanofibers. Loaded scaffolds were successfully fashioned, exhibiting good
nanocarrier distribution and improved thermal stability. More importantly, they allowed for high doses
of DOX to be loaded, sustaining its release for longer periods than MSNs- or DOX-free counterparts,
thus increasing their in vitro antitumor efficacy without compromising the viability of surrounding
healthy cells [241]. In a following study, Liu et al. produced a biotextile in which the DOX was loaded
directly onto PLLA without using a ceramic nanocarrier. Secondary hepatic carcinoma mice models
were prepared by injecting murine mammary carcinoma EMT6 cells into the left hepatic lobe and
into the portal vein of Balb/c mice. DOX-loaded PLLA mats were then used to cover the affected
areas. The growth of the nodular secondary hepatic carcinomas was significantly inhibited by the
prolonged, controlled release of DOX, whereas the median survival time of the mice bearing diffuse
secondary hepatic carcinomas was increased from 14 to 38 days. Throughout that time, neither injury
to neighboring liver tissues nor systemic adverse reactions were observed [242]. To establish an even
greater optimal control of drug targeting, Li et al. proposed the use of DOX-loaded photoluminescent
MSNs modified with a pH-sensitive polydopamine “gatekeeper” for quick release and faster uptake
by cancer cells. These photoluminescent nanocarriers were functionalized at the surface of PCL/gelatin
electrospun nanofibers modified with photothermal carbon nanoparticles, forming a highly specialized
implantable biotextile. Compared to drug administrations in the free form, the implant was seen to
significantly enable a superior cell uptake effect, thus increasing the drug efficacy against tumor cells
by responding to under-near-infrared irradiation. The photothermal effect of the carbon nanotubes
weakened the electrostatic interaction between the photoluminescent nanocarriers and the PCL/gelatin
nanofibers, resulting in the controlled release and, subsequently, internalization of DOX for a more
effective cancer cell killing action [243].

6. Conclusions and Future Perspectives

The ideal design for tissue engineering devices falls within the features of fibrous constructs
obtained via spinning techniques. It is generally agreed that biocompatible, biostable, biodegradable,
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porous devices are the most appropriate for both hard and soft tissue repair and substitution. They
are designed with a fiber-based, highly porous and interconnected architecture that resembles the
extracellular matrix, creating in this way an environment conducive with cell penetration, adhesion,
proliferation and ultimately tissue regeneration. In many cases, the association with biomolecules,
such as drugs, plant extracts, growth factors, proteins, peptides or essential oils may facilitate this task,
giving rise to controlled biomolecule delivery systems that not only promote tissue regeneration but
fight infections as well.

Among the spinning techniques available for fibrous architecture production for tissue engineering
or biomolecule delivery applications, electrospinning can be highlighted by the ease of process but most
importantly by the ability to control in great detail each processing parameter to obtain large surface
area fibrous structures at the nanometer scale. Biodegradable polymers have gained an important
status over the years by replacing biostable temporary therapeutic devices, used only for substitution,
with systems capable of stimulating the body to repair and regenerate while degrading at an equal rate.
These biodegradable fiber-based constructs are fashioned with desirable mechanical strength, structural
integrity, large surface area and open pore structure to successfully respond to local demands. Loading
with biomolecules may ease this process and make the integration of the antimicrobial biomaterials
quicker and less harmful for the patient.

Nowadays, biotextiles developed from spinning techniques are in great demand. They combine
textile technologies with antimicrobial biomaterials to generate vascularized therapeutic devices for a
variety of applications. Indeed, there are surgical meshes, wound dressings, ligaments and soft tissue
substitutes currently being tested in clinical trials that are based on the concepts revised in the present
review. The main challenges related to the application of biotextiles in tissue engineering consist
of the combination of textile machinery with biomaterials and the advances necessary to generate
tissues and organs automatically. For instance, the manufacturing process of fibers developed from
synthetic materials hampers the capacity of cell encapsulation inside the fibers, establishing the need
for more advanced fiber fabrication techniques; therefore, it is likely that the field of tissue engineering
will advance towards that direction. Another obstacle relies on the inability of implantable fabrics
to capture the in vivo mechanic and biological properties of the organs and tissues. Indeed, clinical
applications of such constructs have demonstrated that in vitro and ex vivo analysis results in quite
different outcomes than actual real-life conditions. An alternative to address this challenge would
require the use of fibers from biomaterials with adjustable properties that enable the delivery of growth
factors or by the application of textile-based tissues on the development of in vivo disease models
and drug testing platforms. Furthermore, new smart fiber-forming polymers are being developed
with unique properties, and as soon as they are spun, they may function as biosensors, actuators
and drug delivery systems responsive to pH, temperature and drug concentration. Moreover, with
computational capabilities advances, computational approaches can be used to better understand
the resorption properties and mechanisms by controlling the processing parameters and the different
chemical compositions.
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