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Abstract: In the present study, seven 2’,4’-dihydroxydihydrochalcone derivatives (compounds 3–9)
were synthesized and their capacity as anti-Saprolegnia agents were evaluated against Saprolegnia
parasitica, S. australis, S. diclina. Derivative 9 showed the best activity against the different strains,
with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC)
values between 100–175 µg/mL and 100–200 µg/mL, respectively, compared with bronopol and
fluconazole as positive controls. In addition, compound 9 caused damage and disintegration cell
membrane of all Saprolegnia strains over the action of commercial controls.

Keywords: 2’,4’-dihydroxydihydrochalcone; oxyalkylated derivatives; anti-Saprolegnia activity;
lipophilicity

1. Introduction

Over the last decades, the production of fish, crustaceans, shellfish and amphibians through
aquaculture has become the fastest growing food sector in the world. Today, aquaculture supplies
an estimated 50% of all fish consumed by humans globally [1]. However, the growing business of
aquaculture often suffers from heavy financial losses due to the development of infections caused by
microbial pathogens—particularly by oomycetes of the genus Saprolegnia [2]. These are thought to
be endemic to all fresh water habitats around the world. The mycosis caused by these pathogens is
known as saprolegniasis, and is a major cause of the decline in natural and industrial populations of
salmonids and other freshwater fish [3], resulting in heavy losses in production.

Prior to 2002, Saprolegnia infections in fish hatcheries were kept under control through the use
of malachite green. Since this chemical was banned (due to potential carcinogenic effects) [4], it has
been replaced by formalin, hydrogen peroxide, sodium chloride and bronopol [5–8]. However, there is
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growing concern regarding the use of these chemicals in industry, as it has been suggested that they may
generate high toxicity in fish—and potentially harmful effects on human health and the environment.

An alternative solution to the use of chemicals is the use of biopesticides—substances of natural
origin that control pests, yet are relatively nontoxic to animals, humans and the environment. In this
context, dihydrochalcones, biosynthetic products of the shikimate pathway and belonging to the
flavonoid family, are the precursors to open-chain flavonoids and isoflavonoids [9]. These molecules
have been isolated from the plant species of many families [10]; in the last decade, there has been an
accelerated growth in the study of these natural products due to their powerful biologic properties [11].
Among this group of phytochemicals, prenylated dihydrochalcones, i.e., those featuring isoprenoid
substituents, are attracting increasing attention from the scientific community, due to the wide variety
of pharmacological activities [12–16].

Previous reports attribute the introduction of an alkyl chain in a dihydrochalcone to an
increase in the molecule’s lipophilicity, facilitating its passage through the cell membrane, and in
turn, causing an increase in anti-oomycete activity [17]. Thus, in this study, a series of
seven 2’,4’-dihydroxydihydrochalcone derivatives (compounds 3–9) with various alkyl chain were
synthesized and their anti-Saprolegnia activity was evaluated against three Saprolegnia strains.

2. Results

2.1. Chemistry

The synthesis of 2’,4’-dihydroxyhydrochalcone (2) and its synthetic analogs 3–9 followed the
pathway outlined in Scheme 1.

The first step of synthesis is the key to developing the new oxyalkylated analogs, due to the fact
that from its natural source compound 2 is found in very low quantities, unlike its unsaturated analog.
The reduction of 1 was carried out by making a slight modification to the synthesis protocol developed
previously [18], by using a sodium borohydride-Pd/C system in methanol at a working temperature of
5 to 10 ◦C. The process becomes more efficient by not exceeding the proposed temperature and by
adding the reducing agent in small quantities constantly during the time the reaction is carried out,
in order to affect the carbonyl group. In addition. this method of synthesis allows to obtain compound
2 with a good yield and in a short period of time; which for us has been excellent, because the reported
yields do not exceed 4% both of natural origin or biotransformation product [19–21].

Analysis of NMR data showed the absence of typical trans-olefinic protons of a chalcone,
confirming of the compound 2 is a 2’,4’-dihydroxydihydrochalcone. The spectroscopic data of
compound 2 coincided with the molecule isolated from Acacia neovernicosa and Empetrum nigrum subsp.
asiaticum [17,18].

Using methodology designed by our research group [17] with some modifications in
temperature and reaction time, we obtained five new oxyalkylhydrochalcones 4–6, 8 and 9 and
two known dihydrochalcones identified as 2’-Hydroxy-4’-methoxydihydrochalcone (3) [22] and
dihydrocordoin (7) [23].

On the basis of NMR and Mass spectroscopy the structures of all synthesized molecules were
determined (Spectra S1). In the 1H spectrum of synthetic compounds 3–9 were observed signals
indicate a molecule with no substituent on the B ring; two methylene signals high-field region
and two meta-substituted groups on the A ring and corresponding to the basic structure of a
dihydrochalcone. In particular, the compound 3 was obtained as an white solid, proved to be identical
to 2’-Hydroxy-4’-methoxydihydrochalcone, previously obtained as a biotransformation product of
7-methoxyflavanone by Stenotrophomonas maltophilia [21]. Moreover, compound 7 was obtained as
a pale yellow solid in accordance with the data obtained previously for the molecule isolated from
Lonchocarpus neuroscapha [24].
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 Scheme 1. Synthesis of 2 and 3–9. Reagents and conditions: (a) NaBH4, Pd/C, MeOH, 30
min, at 5–10 ◦C; (i) K2CO3, dry acetone, reflux at 65 ◦C for 6 h.; (b) methyl iodide; (c) allyl
bromide; (d) 2-methyl-1-propenyl bromide; (e) crotyl bromide; (f) prenyl bromide; (g) geranyl
bromide; (h) farnesyl bromide.

However, for both known and new molecules 3–9, the spectroscopic data revealed signals with
chemical shifts in the range of 4.46–4.62 ppm (d, 2H) and 65.1–71.9 ppm for 1H and 13C spectra,
respectively, attributed to the O-CH2- group corresponding to the bond between the alkyl chain and
the hydroxyl group in the carbon 4’ of the A-ring. These data were corroborated for all the molecules
using the Heteronuclear Multiple Bond Correlation (HMBC) Spectra. In general, the H-1” of the
4’-O-alkyl-2’-hydroxydihydrochalcones showed heteronuclear couplings at 2 J and 3 J with the carbon
2” and the carbons 4’ and 3”, respectively. An example of these interactions can be seen in compound
9 (Figure 1).
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2.2. Anti-Saprolegnia Activity

The dihydrochalcones 2–9 were tested for their growth inhibitory activity against
Saprolegnia parasitica, S. australis and S. diclina. Their minimum inhibitory concentrations (MICs)
and minimum oomyceticidal concentration (MOCs) were determined by the microdilution method [17]
with bronopol and fluconazole as the positive controls (Table 1).

Table 1. Minimum inhibitory concentration (MIC) and minimum oomycetidal concentration (MOC) of
the synthetic compounds 2–9.

Compound
MIC a (µg/mL) MOC b (µg/mL)

S. parasitica S. australis S. diclina S. parasitica S. australis S. diclina

2 225 200 150 225 175 175
3 >250 250 250 >250 >250 >250
4 >250 250 225 >250 >250 >250
5 >250 225 200 >250 250 225
6 >250 250 225 >250 >250 250
7 >250 225 175 >250 250 200
8 200 175 125 225 175 150
9 175 150 100 200 150 100

Bronopol 225 200 150 250 200 150
Fluconazole >250 250 200 >250 >250 250

a,b each value represents the mean of three experiments, performed in quadruplicate.

The results showed that 8 and 9 were the most active compounds compared to the controls against
the three strains tested. However, the MIC values of compound 8 for growth inhibition of S. parasitica,
S. australis and S. diclina were 200, 175 and 125 µg/mL, respectively, while for compound 9, which
differs by one isoprene unit in the alkyl chain with 8, these values decreased to 175, 150 and 100 µg/mL
for the three strains, respectively. These data confirm what has been suggested in previous studies
about the importance that exists between the length of the alkyl chain of dihydrochalcone derivatives
and the anti-Saprolegnia activity [17,25]. It also confirms the difference between a chalcone and a
dihydrochalcone with the same structure, where the activity on a given microorganism due to the
presence of α, β-unsaturated carbonyl system of the chalcones [26].

The rest of the oxyalkylated derivatives exhibited anti-Saprolegnia activity at very high
concentrations (>200 µg/mL) and only compound 7 showed moderate activity above fluconazole,
but below bronopol against S. diclina. This could be related to the alkylation of the hydroxyl group by
short chains led to a decrease of the anti-Saprolegnia activity of compound 2 as it happens with other
microorganisms [27].

Therefore, with the purpose of establishing the possible death pathway of Saprolegnia strains the
experiment of damage to the membrane was carried out. In this assay the effect of the compounds is
compared to 2% sodium dodecyl sulfate (SDS), an anionic surfactant that produces 100% cell lysis.
Percentage of membrane lysis of Saprolegnia strains values are summarized in Table 2.

This type of test is based on the direct action of the compounds on the formation of sterol in
the cells of the oomycetes membranes. In this sense, compound 9 caused the most damage to the
membrane of the three oomycetes strains tested, followed by compound 8, bronopol and compound 2.
As in the previous assay, compound 7 only caused damage to S. diclina.

The damage of the membrane exerted by compounds 8 and 9 corroborates the importance of
the length of the alkyl chain in the increase of the anti-oomycete activity due to the increase in the
lipophilicity of these molecules [26–28]. The effect of length of the alkyl chain on lipophilicity of
compounds are demonstrated by comparison of predicted log P-values of compounds 2–9 (Table S1);
where compound 9 has a P-value of more than two orders of magnitude with respect to compound
2 (log P 10.28 and log P 3.91, respectively), causing a significant increase in its biologic activity.
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Table 2. Percentage of membrane lysis of the synthetic compounds 2–9.

Compound (150 µg/mL)
% Membrane Lysis a

S. parasitica S. australis S. diclina

2 21.0 ± 0.1 25.0 ± 0.3 35.0 ± 0.2
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 16.0 ± 0.1
8 23.0 ± 0.3 27.0 ± 0.5 30.0 ± 0.2
9 30.0 ± 0.2 35.0 ± 0.4 43.0 ± 0.3

Bronopol 20.0 ± 0.4 25.0 ± 0.3 28.0 ± 0.2
Fluconazole 0 0 0

SDS 100 100 100
a assay was performed in triplicate.

3. Materials and Methods

3.1. General

The alkyl halides and the others chemicals used were of reagent grade and were obtained from
Aldrich (St. Louis, MO, USA). Structures of synthesized products were confirmed by spectroscopic
methods and have been given elsewhere [17]. 2’,4’-dihydroxychalcone 1 was isolated and characterized
as previously reported [26]. The percent purity of compounds 2–9 (2 (99%), 3 (97%), 4 (93%), 5 (94%),
6 (93%), 7 (96%), 8 (98%) and 9 (98%)) were confirmed by analytical HPLC.

3.2. Synthesis of 2’,4’-Dihydroxydihydrochalcone (2)

The reduction of compound 1 was carried out according to previous reports [16] with some minor
modifications. A solution of 1 (1.0 mmol) in methanol (10 mL) in the presence of Pd/C (1.0 mmol),
sodium borohydride (4.0 mmol) was added in small portions and carefully. The reaction mixture was
stirred at 5–10 ◦C for 45 min. After workup in the reduction of double bond, the resulting residue was
recrystallized from hexane to give a tan solid identified as 2’,4’-dihydroxydihydrochalcone (2) (188.8 mg,
68.4%). NMR data for 2 was consistent with those previously reported [19,20].

3.3. Synthesis of Oxyalkylated Derivatives (3–9)

The compounds 3–9 were synthesized by a direct coupling reaction between a compound 2 and
alkyl halide, using acetone as solvent, K2CO3 as a catalyst, under reflux at 65–70 ◦C, and with a reaction
time ranging from 4 to 6 h [17].

1-(2-hydroxy-4-methoxyphenyl)-3-phenylpropan-1-one (3). White solid. Yield: 89.3%. NMR data for 3
was consistent with those previously reported [22].

1-[4-(allyloxy)-2-hydroxyphenyl]-3-phenylpropan-1-one (4). Yellow oil. Yield: 76.3%. 1H NMR
(400 MHz, CDCl3): δ 12.78 (s, 1H, 2’-OH); 7.64 (m, 1H, H-6’); 7.31 (m, 2H, H-2 and H-6); 7.25 (m, 3H,
H-3, H-4 and H-5); 6.42 (m, 2H, H-3’ and H-5’); 5.87 (m, 2H, H-2 and H-3”α); 5.72 (m, 1H, H-3”β);
4.48 (d, J = 6.0 Hz, 2H, H-1”); 3.23 (m, 2H, H-8); 3.05(m, 2H, H-7). 13C NMR (100 MHz, CDCl3):
δ 203.3 (C-9); 165.3 (C-2’); 165.1 (C-4’); 140.9 (C-1); 131.5 (C-2”); 131.4 (C-6’); 128.6 (C-2 and C-6);
128.5 (C-3 and C-5); 126.3 (C-4); 118.4 (C-3”); 113.4 (C-1’); 108.5 (C-5’); 101.7 (C-3’); 69.0 (C-1”); 40.2 (C-8);
30.3 (C-7). HRMS: M+H ion m/z 283.3418 (C18H18O3: 282.3339).

1-{2-hydroxy-4-[(2-methylprop-2-en-1-yl)oxy] phenyl}-3-phenylpropan-1-one (5). Yellow oil. Yield:
74.0%. 1H NMR (400 MHz, CDCl3): δ 12.76 (s, 1H, 2’-OH); 7.63 (m, 1H, H-6’); 7.31 (m, 2H, H-2 and
H-6); 7.23 (m, 3H, H-3, H-4 and H-5); 5.08 (m, 1H, H-3”β); 5.01 (m, 1H, H-3”α); 4.46 (s, 2H, H-1”);
3.24 (m, 2H, H-8); 3.05 (m, 2H, H-7); 1.82 (s, 3H, H-4”). 13C NMR (100 MHz, CDCl3): δ 203.5 (C-9);
165.3 (C-2’); 165.2 (C-4’); 140.9 (C-1); 139.8 (C-2”); 131.4 (C-6’); 128.6 (C-2 and C-6); 128.4 (C-3 and
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C-5); 126.3 (C-4); 113.5 (C-1’); 113.3 (C-3”); 108.1 (C-5’); 101.9 (C-3’); 71.9 (C-1”); 39.7 (C-8); 30.3 (C-7);
19.3 (C-4”). HRMS: M+H ion m/z 297.3585 (C19H20O3: 296.3506).

1-{4-[(2E)-but-2-en-1-yloxy]-2-hydroxyphenyl}-3-phenylpropan-1-one (6). Brown oil. Yield: 73.4%.
1H NMR (400 MHz, CDCl3): δ 12.78 (s, 1H, 2’-OH); 7.63 (m, 1H, H-6’); 7.30 (m, 2H, H-2 and H-6);
7.23 (m, 3H, H-3, H-4 and H-5); 6.42 (m, 2H, H-3’ and H-5’); 5.85 (m, 1H, H-2”); 5.71 (m, 1H, H-3”);
4.48 (d, J = 6.1 Hz, 2H, H-1”); 3.24 (m, 2H, H-8); 3.05(m, 2H, H-7); 1.77 (s, 3H, H-4”). 13C NMR (100 MHz,
CDCl3): δ 203.5 (C-9); 165.3 (C-2’); 165.2 (C-4’); 140.9 (C-1); 131.5 (C-2”); 131.4 (C-6’); 128.6 (C-2 and
C-6); 128.4 (C-3 and C-5); 126.3 (C-4); 125.0 (C-1’); 113.4 (C-3”); 108.1 (C-5’); 101.7 (C-3’); 69.0 (C-1”);
39.6 (C-8); 30.3 (C-7); 17.9 (C-4”). HRMS: M+H ion m/z 297.3682 (C19H20O3: 296.3603).

1-{2-hydroxy-4-[(3-methylbut-2-en-1-yl)oxy] phenyl}-3-phenylpropan-1-one (7). Solid yellow. Yield:
71.1% m.p.: 89–91◦C. 1H NMR (400 MHz, CDCl3): δ 12.78 (s, 1H, 2’-OH); 7.63 (d, J = 9.4 Hz, 1H,
H-6’); 7.31 (m, 2H, H-2 and H-6); 7.23 (m, 3H, H-3, H-4 and H-5); 6.42 (m, 2H, H-3’ and H-5’); 5.47 (m,
1H, H-2”); 4,54 (d, J = 6.7 Hz, 2H, H-1”); 3.23 (m, 2H, H-8), 3.05(m, 2H, H-7); 1.80 (s, 3H, H-4”);
1.74 (s, 3H, H-5”). 13C NMR (100 MHz, CDCl3): δ 203.4 (C-9); 166.9 (C-2’); 165.8 (C-4’); 144.3 (C-1);
138.0 (C-3”); 130.6 (C-6’); 129.0 (C-2 and C-6); 128.5 (C-3 and C-5); 126.3 (C-4); 120.4 (C-2”); 114.0 (C-1’);
108.3 (C-5’); 101.7 (C-3’); 65.2 (C-1”); 40.9 (C-8); 29.4 (C-7); 25.8 (C-5”); 18.2 (C-4”). The NMR data for 7
was consistent with those previously reported [24].

1-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl] oxy}-2-hydroxyphenyl)-3-phenylpropan-1-one (8). Pale yellow
oil. Yield: 46.6%. 1H NMR (400 MHz, CDCl3): δ 12.79 (s, 1H, 2’-OH); 7.63 (d, J = 9.6 Hz, 1H, H-6’);
7.30 (m, 2H, H-2 and H-6); 7.25 (m, 3H, H-3, H-4 and H-5); 6.42 (m, 2H, H-3’ and H-5’); 5.45 (m, 1H,
H-2”); 5,07 (m, 1H, H-7”); 4.56 (d, J = 6.6 Hz, 2H, H-1”); 3.23 (m, 2H, H-8), 3.05(m, 2H, H-7); 2.09 (m, 4H,
H-5” and H-6”); 1.73 (s, 3H, H-4”); 1.67 (s, 3H, H-9”); 1.60 (s, 3H, H-10”). 13C NMR (100 MHz, CDCl3):
δ 203.5 (C-9); 165.4 (C-2’ and C-4’); 142.2 (C-1); 140.9 (C-3”); 131.9 (C-8”); 131.4 (C-6’); 128.6 (C-2 and
C-6); 128.4 (C-3 and C-5); 126.3 (C-4); 123.7 (C-7”); 118.2 (C-2”); 113.3 (C-1’); 108.2 (C-5’); 101.7 (C-3’);
65.2 (C-1”); 39.6 (C-8); 39.5 (C-5”); 30.4 (C-7); 26.2 (C-6”); 25.6 (C-10”); 17.7 (C-9”); 16.7 (C-4”). HRMS:
M+H ion m/z 379.5118 (C25H30O3: 378.5039).

1-(2-hydroxy-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl] oxy}phenyl)-3-phenylpropan-1-one (9).
Pale yellow oil. Yield: 33.3%. 1H NMR (400 MHz, CDCl3): δ 7.87 (d, J=8.8 Hz, 1H, H-6’); 7.48 (m,
2H, H-2 and H-6); 7.38 (m, 3H, H-3, H-4 and H-5); 6.62 (d, J = 8.8 Hz, 2H, H-5’ and H-3’); 5.44 (m,
1H, H-2”); 5.09 (m, 2H, H-7” and H-12”); 4.62 (d, J = 6.3 Hz, 2H, H-1”); 3.00 (m, 2H, H-8); 2.86 (m,
2H, H-7); 2.11 (m, 4H, H-5” and H-6”); 2.06 (m, 4H, H-10” and H-11”); 1.79 (s, 3H, H-4”); 1.73 (s,
3H, H-10”); 1.67 (s, 6H, H-9” and H-14”). 13C NMR (100 MHz, CDCl3): δ 201.5 (C-9); 163.7 (C-2’);
160.1 (C-4’); 142.0 (C-4”); 141.3 (C-1); 135.8 (C-8”); 131.3 (C-13”); 129.7 (C-6’); 128.7 (C-2 and C-6);
128.2 (C-3 and C-5); 127.7 (C-4); 124.3 (C-7”); 123.5 (C-12”); 118.9 (C-2”); 118.7 (C-1’); 114.1 (C-1’);
106.1 (C-5’); 100.3 (C-3’); 65.1 (C-1”); 39.6 (C-8); 39.5 (C-5” and C-10”); 30.2 (C-7); 26.7 (C-11”); 26.2 (C-6”);
25.7 (C-15”); 17.7 (C-14”); 16.8 (C-4”); 16.0 (C-9”). HRMS: M+H ion m/z 447.6288 (C30 H36O3: 446.6209).

3.4. Determination of MIC and MOC

Compounds for which mycelium presence was recorded as negative for at the concentration of
250 µg/mL were tested for MIC values ranging from 12.5 to 250 µg/mL using the above method [17].
Control plates were treated with bronopol and fluconazole. MIC was read visually at 72 h and was
defined as the concentration of compounds that inhibited growth by at least 80% or more relative to
growth control. MOC was defined as the lowest concentration of the chemicals that prevented visible
growth or germination of mycelium.

3.5. Membrane Damage

Saprolegnia strains were cultured by shaking at 20 ◦C and then washed twice and diluted
to approximately (3 × 104 zoospores/mL with cold MOPS buffer, pH 6.0. Cells were aliquoted to
tubes, and 2–9 was added at a final concentration of 150 µg/mL. SDS (2%) was used as reference
compound, which produces 100% cellular oomycete leakage. Saprolegnia were incubated at 20 ◦C,
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and samples were taken at time intervals (6, 12, 24 and 48 h) and spun at 3500 rpm for 7 min in
microcentrifugetubes. The supernatants were collected for absorbance analysis at 260 nm in a Beckman
DU-600 spectrophotometer [25]. Results are the means of values from at least two independent assays.

3.6. Statistical Data

All in vitro assays were performed in triplicate and the results were analyzed using the standard
method [23].

4. Conclusions

Oxyalkyl chain-containing dihydrochalcones were shown to be easy to synthesize and attractive
potential anti-Saprolegnia agents due to its high lipophilicity mainly in molecules with alkyl chains over
10 carbon atoms, as is the case with compounds 8 and 9, C10 and C15, respectively. In comparison to
bronopol and fluconazole, the compound 9 was more effective inhibiting Saprolegnia strains. Moreover,
compounds 3–9 may also be potential scaffold molecules for other new potent anti-oomycete agents,
due to its synthesis yield and the insaturations in its structure.

Supplementary Materials: The following are available online: http://www.mdpi.com/2079-6382/9/6/317/s1.
Table S1. Log P-values predicted; Spectra S1. 1H, 13C NMR of know compounds 2, 3 and 7 and new compounds 4,
5, 6, 8 and 9 and HRMS of compounds 4, 5, 6, 8 and 9.
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