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Abstract: Candida auris is an emerging multidrug-resistant fungal pathogen reported worldwide.
Infections due to C. auris are usually nosocomial and associated with high rates of fluconazole resistance
and mortality. Echinocandins are utilized as the first-line treatment. However, echinocandins
are only available intravenously and are associated with increasingly higher rates of resistance
by C. auris. Thus, a need exists for novel treatments that demonstrate potent activity against
C. auris. Ibrexafungerp is a first-in-class triterpenoid antifungal agent. Similar to echinocandins,
ibrexafungerp inhibits (1→3)-β-D-glucan synthase, a key component of the fungal cell wall, resulting in
fungicidal activity against Candida spp. Ibrexafungerp demonstrates broad in vitro activity against
various Candida spp. including C. auris and C. auris isolates with fks mutations. Minimum inhibitory
concentration (MIC50 and MIC90) values in >400 C. auris isolates were 0.5 µg/mL and 1.0 µg/mL,
respectively. Clinical results were reported for two patients with invasive candidiasis or candidemia
due to C. auris treated during the CARES (Candidiasis Caused by Candida Auris) trial, an ongoing
open-label study. These patients experienced a complete response after treatment with ibrexafungerp.
Thus, ibrexafungerp represents a promising new antifungal agent for treating C. auris infections.
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1. Introduction

Candida auris is an emerging fungal pathogen reported on all continents except Antarctica, in at
least 39 countries worldwide [1], as well as in 20 states of the United States [2–5]. Five distinct clades of
C. auris were identified with well-defined geographic distributions (South America, Africa, South Asia,
East Asia, and West Asia), as well as antifungal resistance patterns and mechanisms that are both
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distinct and unique [1,6–8]. Infections due to C. auris are most often nosocomial, with easy transmission
from patient-to-environment and environment-to-patient [6,9]. Patients heavily colonized with
C. auris on the skin or mucosal surfaces can contaminate their surroundings, thereby contributing
to transmission of C. auris in healthcare facilities. An additional challenge with C. auris is that the
organism is exceedingly difficult to eradicate from the environment because of resistance to some
standard disinfectants [6,9,10].

Timely and accurate diagnosis of invasive candidiasis are important for early initiation of
antifungal therapy, while species identification is critical to ensure implementation of infection control
measures [1,6,10,11]. Acceptable standard diagnostic methods for C. auris identification include
matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) and VITEK2™ with the
appropriate updated databases and DNA sequencing [7,12].

Infections caused by C. auris are associated with severe illness, most often in hospitalized
patients. Risk factors for C. auris infection include prior exposure to antibiotics or antifungal
agents, diabetes mellitus, abdominal or vascular surgery, central venous or urinary catheters,
chronic kidney disease, chemotherapy, blood transfusions, immunosuppression, and intensive care
unit admission [6,7,10,11]. Invasive infections due to C. auris are associated with high mortality rates
(30–78%), and multidrug resistance may play a role in mortality [6,7,10,13].

An outbreak of infections due to C. auris was identified in New York healthcare facilities with
high rates of mortality [13]. Since 2016, more than 1000 C. auris isolates were tested at the New York
State Department of Health where rates of resistance were >99% with fluconazole, approximately 60%
with amphotericin B, and >80% with voriconazole [14,15]. The in vitro efficacy of antifungal drug
combinations was evaluated against these resistant C. auris isolates, where combinations of flucytosine
with echinocandins or amphotericin B were most active [14].

The epidemiology of C. auris was examined from isolates obtained from 54 patients collected
from six countries outside the US [16]. Patient information was available for 41 (76%) isolates. At the
time of C. auris detection, 41% of patients had diabetes mellitus, 51% had undergone recent surgery,
73% had a central venous catheter, and 41% were receiving systemic antifungal therapy. From hospital
admission to confirmed infection with C. auris the median time was 19 days, 61% of patients had
bloodstream infection, and 59% of patients died. Although breakpoints are not established for C. auris
against any antifungal drugs, tentative breakpoints were established by the CDC (Centers for Disease
Control) based on minimum inhibitory concentration (MIC) distribution, molecular mechanisms of
resistance, and PK/PD (Pharmacokinetic/Pharmacodynamic) values in a mouse model of infection.
Based on these preliminary breakpoints, the authors determined that 93% of the isolates were resistant
to fluconazole, 35% to amphotericin B, and 7% to echinocandins; 22 (41%) isolates were resistant to
at least two antifungal classes, including two (4%) that were resistant to fluconazole, voriconazole,
echinocandins, and amphotericin B.

As suggested in the IDSA (Infectious Diseases Society of America) guidelines for the treatment of
Candida infections and given the high frequency of resistance to fluconazole and polyenes, echinocandins
are typically utilized as the first-line treatment for patients with C. auris infections. Although resistance
is clone and clade specific, recent reports indicate that global resistance of C. auris to fluconazole may
approach 90%; this is increasing with other antifungal agents, including echinocandins [7,9–11,17].
Antifungal resistance with C. auris is acquired rather than intrinsic, and the primary mechanisms of
resistance were characterized for echinocandins and azoles [8]. Multidrug-resistant and pan-resistant
isolates of C. auris were also identified from clinical isolates [15,16,18]. Thus, a need exists for novel
antifungal agents that demonstrate high levels of activity against C. auris and address these treatment
gaps. There is also need for effective infection control practices as well as treatment strategies that
minimize the risk of nosocomial transmission associated with persistent C. auris colonization to control
its spread.
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2. Ibrexafungerp

2.1. Mechanism of Action

Ibrexafungerp (formerly SCY-078) is the first compound of the enfumafungin-derived triterpenoid
class of (1→3)-β-D-glucan synthase inhibitors (GSIs) (Figure 1). Glucan synthase inhibitors were
first introduced for the treatment of invasive Candida infections in 2001, with caspofungin the first
echinocandin to be approved [19]. This mechanism of action, i.e., blockade of the biosynthesis of
ß-(1,3)-D-glucan in the fungal cell wall, was associated with potent and broad-spectrum antifungal
activity and clinical efficacy for the treatment of fungal infections. Two additional echinocandins were
later introduced, micafungin and anidulafungin. However, echinocandins lack clinically meaningful
oral bioavailability, triggering the search for new molecules that shared the glucan synthase inhibition
mechanism of action with echinocandins and could also be administered orally. Natural screening
efforts led to the identification of enfumafungin derivatives as candidates, and subsequent synthetic
modifications to these molecules resulted in increased oral bioavailability, potency, and stability,
thereby leading to the discovery of ibrexafungerp.
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Figure 1. Structure of ibrexafungerp.

Ibrexafungerp is being developed as the first oral and IV GSI (Intravenous glucan synthase
inhibitor) for the treatment and prevention of fungal infections, including serious and life-threatening
infections due to Candida spp., Aspergillus spp., and Pneumocystis jirovecii, with the potential to provide
the therapeutic advantages of both IV and oral formulations [20]. Ibrexafungerp causes a decrease in
(1→3)-β-D-glucan polymers and a weakening of the fungal cell wall [21]. Ibrexafungerp is structurally
distinct from echinocandins and interacts differently with the target enzyme (Figure 2) [22]. Although the
binding site on (1→3)-β-D-glucan synthase for ibrexafungerp partially overlaps with a binding site for
echinocandins, it appears to be nonidentical, resulting in a lower rate of resistance to ibrexafungerp [22].
In in vitro studies, ibrexafungerp activity against wild-type and echinocandin-resistant strains of
Candida spp. in the presence of fks mutations was minimally affected [23]. Thus, ibrexafungerp has
limited potential for cross-resistance with echinocandins.
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Figure 2. Mechanism of action for ibrexafungerp.

2.2. In Vitro and In Vivo Activity

Ibrexafungerp demonstrates broad in vitro activity against a range of Aspergillus spp. isolates
and Candida isolates, including C. glabrata and C. auris, which exhibit fks1 and fks2 point mutations
associated with resistance to echinocandin antifungals [23–31]. Among Candida species with reduced
fluconazole susceptibility, including C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis, MIC50 ranges
with ibrexafungerp were 0.125–1 µg/mL, 0.5–1 µg/mL, <0.03–1 µg/mL, and 0.25–1 µg/mL, respectively.
Additionally, as reported by Zhu [32] using isolates obtained from New York patients, the in vitro activity
against C. auris of ibrexafungerp (ranging from 0.05 to 0.5 µg/mL) was superior to that of fluconazole
(ranging from 2 to >256 µg/mL), and comparable or superior to that of echinocandins (ranging from
0.015 to 16 µg/mL). This observation was confirmed by other studies using global strains [28,33,34].
Ibrexafungerp showed a wild-type MIC distribution against ~80% of echinocandin-resistant Candida
spp. isolates tested, suggesting that fks mutations have less of an effect on the in vitro activity of
ibrexafungerp [23,35].

Ibrexafungerp demonstrates potent fungicidal activity against Candida spp. [31,36–38]. In a
time-kill study, ibrexafungerp demonstrated a ≥3-log reduction in colony forming units (CFUs)/mL)
at 24 h. Caspofungin demonstrated fungicidal activity similar to ibrexafungerp, but fluconazole and
voriconazole were fungistatic [31]. Ibrexafungerp was shown to have activity against biofilms from
different Candida species [28]. Consistent with clinical trials in treatment of vulvovaginal candidiasis,
ibrexafungerp showed potent in vitro activity in the lower pH environment of vulvovaginitis [39].
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2.3. Pharmacokinetics

After oral administration in dog, mouse, and rat, ibrexafungerp is absorbed rapidly from the
gastrointestinal (GI) tract, with bioavailability of approximately 35–50% [40]. In animals, ibrexafungerp
is widely distributed in tissues with a steady-state volume of distribution (Vdss) of >5 L/kg [41],
which is several-fold greater than fluconazole and echinocandins [38]. Higher Vdss results in higher
tissue-to-plasma concentration ratios could be beneficial for specific fungal infections, such as those
located in the skin, liver, spleen, mucosa, bone, and lung, to mention some. Ibrexafungerp undergoes
extensive metabolism by cytochrome P450 3A4 isoenzymes in the liver, and <2% of a dose is
recovered unchanged in urine [42]. After single oral doses of 10 mg to 1600 mg in healthy subjects,
peak ibrexafungerp plasma concentrations were reached after four to six hours, with a mean terminal
half-life of approximately 20 to 30 h [43]. Mean area under the concentration-time curve (AUC0-∞)
and peak concentration (Cmax) were dose-proportional across this dosage range. The proarrhythmic
potential of ibrexafungerp was evaluated in animal models and healthy volunteers using cardiodynamic
assessments [44]. Ibrexafungerp exhibited no clinically relevant effects on heart rate or PR and QRS
intervals. No clinically meaningful effect of ibrexafungerp on the QTcF interval was observed at plasma
concentrations up to 4000 ng/mL after IV administration in healthy subjects.

Results from in vitro studies indicated that ibrexafungerp is a substrate of CYP3A4 and a potential
inhibitor of cytochrome (CYP) 2C8 [42,45]. In healthy subjects, the interaction potentials of ketoconazole
and diltiazem (CYP3A4 inhibitors), rosiglitazone (CYP2C8 substrate), and tacrolimus (CYP3A4
substrate) were evaluated after single or multiple doses co-administered with ibrexafungerp [46].
No clinically relevant effects of ibrexafungerp on CYP2C8 inhibition or CYP3A4 substrates were
observed, although a dosage adjustment for ibrexafungerp may be needed when co-administering
with potent CYP3A4 inhibitors. Thus, ibrexafungerp shows low potential for CYP-mediated drug
interactions at therapeutic exposures.

2.4. Clinical Development

Nineteen Phase 1, three Phase 2, and two Phase 3 clinical studies were completed with
ibrexafungerp, the latter two (VANISH-303 and VANISH-306), in women with vulvovaginal candidiasis
(VVC) (https://clinicaltrials.gov: NCT03734991 and NCT03987620). In both Phase 3 studies, the rate
of clinical cure (complete resolution of all vaginal signs and symptoms at Day 10) and mycological
eradication were significantly greater with ibrexafungerp than placebo. The most common adverse
events reported with ibrexafungerp were mild gastrointestinal disturbances when administered to
>1200 patients and healthy subjects.

Currently, ibrexafungerp is undergoing further clinical development in ongoing studies,
including CANDLE-304 (clinicaltrials.gov: NCT04029116), a Phase 3 study in women with recurrent
VVC, SCYNERGIA, a Phase 2 study of ibrexafungerp combined with voriconazole in patients with
invasive aspergillosis (clinicaltrials.gov: NCT03672292), FURI, an open-label study in patients with
refractory invasive fungal infections (clinicaltrials.gov: NCT02244606), and CARES (clinicaltrials.gov:
NCT03363841), an open-label, emergency protocol study of patients with invasive infections due to
C. auris.

3. Ibrexafungerp for Candida auris

3.1. In Vitro Activity

The in vitro activity of ibrexafungerp was tested against 16 C. auris clinical isolates obtained from
Germany, Japan, India, and South Korea [27]. The MIC90 for ibrexafungerp was 1 µg/mL. Fluconazole
and amphotericin B exhibited less in vitro activity against C. auris with MIC90 values of >64 and
4 µg/mL, respectively, while the MIC90 values for anidulafungin, caspofungin, and micafungin were
0.25 µg/mL, 1 µg/mL, and 1 µg/mL, respectively.

https://clinicaltrials.gov
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The in vitro activity of ibrexafungerp was evaluated against a global collection of 100 isolates of
C. auris representing each of the four clades of C. auris known at that time [24]. MICs for ibrexafungerp
ranged from 0.0625 to 2 µg/mL, with an MIC50 of 0.5 µg/mL and MIC90 1 µg/mL. MIC values for
anidulafungin, caspofungin, and micafungin ranged from 0.03 up to >16 µg/mL. Among seven C. auris
isolates exhibiting elevated MIC values for echinocandins, the ibrexafungerp MIC ranged from 0.5 to
1.0 µg/mL.

Ibrexafungerp and six comparator antifungal agents were evaluated against 122 C. auris isolates [33].
The MIC range for ibrexafungerp was 0.06 to 2.0 µg/mL. A wide distribution of MIC values was
reported for anidulafungin and micafungin, ranging from 0.016 to >32 and 0.03 to >32 µg/mL,
respectively (Table 1). All but one C. auris isolate were resistant to fluconazole. Out of 122 isolates,
8 displayed high MIC values for echinocandins associated with fks mutations (S639F Fks1 alteration).
The MIC for ibrexafungerp for these eight resistant isolates ranged from 0.25 to 0.5 µg/mL.

Table 1. In vitro activity of ibrexafungerp and comparators against C. auris isolates [33].

Drug (No. of Isolates) MIC50
a Modal MIC MIC Range

Ibrexafungerp (n = 122) 0.5 0.5 0.06–2
Anidulafungin 0.125 0.06 0.016–>32

Micafungin 0.125 0.125 0.03–>32
Amphotericin B 1 1 0.5–1

Fluconazole ≥64 ≥64 0.5–≥64
Voriconazole 0.5 Bimodal ≤0.004–4

Isavuconazole 0.125 Trimodal ≤0.004–2
a µg/mL; Ibrexafungerp minimum inhibitory concentration (MIC) values for eight isolates with S639F fks1 mutations
ranged from 0.25 to 0.5 µg/mL.

Among 102 C. auris isolates with variable resistance to amphotericin B, flucytosine, azoles,
and echinocandins, the ibrexafungerp MIC50 for 97 isolates ranged from 0.06–0.5 µg/mL, and the
median and mode MIC were both 0.5 µg/mL [32]. Ibrexafungerp also showed activity against five
C. auris isolates considered to be pan-resistant, with a low MIC50 range of 0.12 to 1 µg/mL.

Data were compiled from four studies reporting the in vitro activity of ibrexafungerp against
445 C. auris clinical isolates [47]. Most isolates were obtained from the United States and India
and included 32 isolates with increased MIC values to echinocandins. The MIC50 and MIC90

for ibrexafungerp across all isolates tested were 0.5 µg/mL and 1.0 µg/mL, respectively (Table 2).
Among 32 C. auris isolates with echinocandin resistance, MIC values for ibrexafungerp ranged from
0.5 µg/mL to 1.0 µg/mL. One isolate displayed high MIC values for echinocandins and showed reduced
sensitivity (>2 dilutions vs. the mode) to ibrexafungerp, and this isolate exhibited elevated MIC values
to anidulafungin, caspofungin, and micafungin (MIC = 1 µg/mL), luconazole (MIC > 256 µg/mL),
and amphotericin B (MIC = 1 µg/mL). Thus, ibrexafungerp exhibits in vitro activity against a broad
collection of C. auris isolates, including most echinocandin-resistant isolates.

Table 2. In vitro activity of ibrexafungerp against a compilation of 445 C. auris isolates [47].

Reference No. of Isolates
MIC, µg/mL

MIC50 MIC90 Mode MIC Range

Berkow et al., 2017 [24] 107 1 1 1 0.0625–2
Larkin et al., 2017 [27] 16 1 1 1 0.5–1

Zhu et al., 2020 [32] 200 0.5 1 0.5 0.0625–8
Arendrup et al., 2020 [33] 122 0.5 1 0.5 0.0625–2

Overall 445 0.5 1 0.5 0.625–8

The ability of Candida species to form biofilms is associated with catheter and device-related
infections and may play a role in C. auris infections considering that many affected individuals are
in intensive care units with intravascular lines. In this regard, 97% of patients infected with C. auris
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had central venous catheters (Sayeed et al., 2019) [48], and a retrospective analysis demonstrated
significantly higher use of central venous catheters in patients infected with this multidrug- resistant
Candida [49]. The activity of ibrexafungerp against C. auris biofilms was evaluated [27]. Following 48 h
of incubation, metabolic activities of biofilms were measured. Images and thicknesses of biofilms
growing in the presence or absence of a drug were captured using confocal scanning laser microscopy.
Quantitation of the metabolic activity of C. auris biofilms was performed using a biochemical assay,
the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide
(XTT) reduction assay, as described previously [27,50]. Ibrexafungerp demonstrated activity against
C. auris biofilms by reducing biofilm thickness and metabolic activity.

The effects of ibrexafungerp and caspofungin on the morphology of C. albicans, C. auris,
and C. glabrata were studied using scanning and transmission electron microscopy [51]. When evaluated
at respective MIC50 levels, ibrexafungerp exhibited a profound effect on cellular morphology in
caspofungin-resistant organisms, possibly indicative of a difference in target engagement between
ibrexafungerp and echinocandins (Figure 3). Untreated control C. auris cells showed well-defined,
oval-shaped yeast morphology, as well as several budding yeasts. In contrast, cells exposed to
ibrexafungerp (at a concentration of 1 µL MIC) exhibited a severely distorted yeast cell topography,
including cell collapse, deformed cellular appearance, irregular budding, and cells that were fused
together and unable to undergo cell division [27].
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Figure 3. SEM of CA UC (A), SCY treated CA (B), CAS treated CA (C), CAu UC (D), SCY treated
CAu (E), CAS treated CAu (F), CG UC (G), SCY treated CG (H), CAS treated CG (I), and TEM of
CA UC (J), SCY treated CA (K), CAS treated CA (L), CAu UC (M), SCY treated CAu (N), CAS treated
CAu (O), CG UC (P), SCY treated CG (Q), and CAS treated CG (R). (Hager et al., 2018) [51].

3.2. In Vivo Activity

The in vivo efficacy of ibrexafungerp for C. auris was evaluated in a disseminated murine mouse
model [37]. Immunocompromised mice were randomized to ibrexafungerp 10, 20, or 30 mg/kg twice
daily (BID) vs. a vehicle given by oral gavage. At Day 7, the fungal burden in kidney tissue was
reduced by all doses of ibrexafungerp, with a significant difference for the 30 mg/kg dose vs. vehicle.
At Day 14, survival rates were 60–70% with ibrexafungerp vs. 20% with vehicle control. Exposures in
mice dosed with ibrexafungerp 10, 20, or 30 mg/kg BID were consistent with steady-state plasma
exposure (AUC0–24) of 8.4, 24.3, and 40.2 ug*h/mL, respectively. These results demonstrate potent
antifungal activity of ibrexafungerp against C. auris.

C. auris colonization is a major problem in hospitals and long-term care facilities. In order
to understand the ability of ibrexafungerp to potentially decolonize the skin of C. auris, a study
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was performed looking at the in vivo efficacy of ibrexafungerp in a cutaneous infection model in
Guinea pigs [36]. Animals were treated with ibrexafungerp 10, 20, or 30 mg/kg BID by oral gavage,
micafungin 5 mg/kg once daily IP, or vehicle by oral gavage, and prednisone 30 mg/kg SC was given one
day before and three days after infection. Tissue burden at Day 7 was lower with all active treatments
vs. vehicle. Animals dosed with ibrexafungerp 10, 20, or 30 mg/kg BID showed systemic exposures
(AUC0–24) of 2.8, 5.6, and 15 ug*h/mL. Examination of Periodic Acid-Schiff (PAS)-stained skin sections
revealed that sections obtained from untreated control animals showed yeast cells, demonstrating that
the skin was infected with C. auris. In contrast, examination of multiple skin sections obtained from
animals treated with either ibrexafungerp or micafungin did not reveal yeast cells at any of the dose
levels tested, indicating that the C. auris infection was cleared. There was no significant difference
in clinical scores between the treatment groups [36]. Thus, no fungal elements were observed with
ibrexafungerp or micafungin from histological examination.

3.3. Clinical Experience

CARES is an open-label study of oral ibrexafungerp in patients with documented candidiasis or
candidemia due to C. auris who were treatment naïve or refractory to or intolerant of standard-of-care
antifungal agents (clinicaltrials.gov: NCT03363841). Patients were treated with oral ibrexafungerp
750 mg twice daily for two days, then 750 mg once daily for up to 90 days.

In the first two patients from CARES with candidemia due to C. auris, a complete response after 17
and 22 days of treatment was reported with ibrexafungerp [52]. The first patient was a 58-year-old male
admitted to the ICU with pneumonia and septic shock. Antibiotics were given together with empiric
IV fluconazole. When C. auris was isolated from blood cultures, antifungal therapy was switched to IV
micafungin. However, blood cultures remained positive for C. auris after five days, and the patient was
switched to ibrexafungerp for 17 days. Subsequent blood cultures at Day 3 of ibrexafungerp therapy
were negative for C. auris, and the patient was considered to have a complete response at the end of
therapy. Ibrexafungerp-related adverse events were mild loose stools from days two through four
of therapy.

The second patient was a 64-year-old female admitted to the hospital with pneumonia,
fever, and hypotension. When C. auris was isolated from blood cultures, ibrexafungerp was initiated.
A blood culture collected on Day 3 of ibrexafungerp therapy remained positive for C. auris and
subsequent cultures at Days 9 and 21 were reported negative. The patient improved clinically,
received ibrexafungerp for 22 days and was considered a complete response at the end of therapy.
No ibrexafungerp-related adverse events were reported.

3.4. Echinocandin Resistance and C. auris

For echinocandins, the primary mechanism of resistance in C. auris species comprises the fks1
and fks2 genes, where mutations of the S639F, S639P, and S639Y amino acid sequences were identified
as the cause of elevated MICs to echinocandins [9]. Among 350 C. auris isolates from India, 2% were
echinocandin-resistant due to the fks1 mutation expressing the S639F sequence [53]. A similar finding
was reported from Kuwait, where 3 (1.0%) of 314 C. auris isolates were echinocandin-resistant due to
the fks1 mutation expressing the S639F sequence [54]. Four additional C. auris isolates from a total
of 106 isolates were resistant to all tested echinocandins (MIC ≥ 4 µg/mL) and contained an S639F
mutation in fks1 [55].

Biagi et al. [56] reported a patient with recurrent candidemia due to C. auris that was
echinocandin-resistant but azole-sensitive, who expressed the fks1 mutation for the S639P sequence.
A single C. auris isolate was identified in the UK that displayed 5-flucytosine and echinocandin
resistance; echinocandin resistance was due to fks1 mutation for the S639Y sequence [57].

Among C. auris isolates from India, 8 of 122 with the S639F sequence were echinocandin-resistant
with MICs of 4–32 µg/mL; the ibrexafungerp MIC values for these same isolates ranged from
0.25–0.5 µg/mL [33].



Antibiotics 2020, 9, 539 9 of 13

Ostrowski and colleagues [18] described three cases of C. auris among 801 patients in New York
state with confirmed C. auris that were pan-resistant, i.e., resistant to fluconazole, amphotericin B,
and echinocandins. All three patients with pan-resistance were on mechanical ventilators; two died
within two to four weeks from isolation of a pan-resistant C. auris, and the third died at 10 months.
MICs for fluconazole were >256 µg/mL, 2 µg/mL for amphotericin B, and 2–16 µg/mL for echinocandins.
From the same laboratory, an analysis of the susceptibility of five pan-resistant C. auris isolates, defined as
in vitro resistance to more than two azoles, all echinocandins, and amphotericin B, reported MIC
values to fluconazole (>256 µg/mL), amphotericin B (2 µg/mL), and echinocandins (ranging from 2 to
>16 µg/mL) [15]. However, all these pan-resistant isolates exhibited MICs for ibrexafungerp ranging
from 0.12 to 1 µg/mL, which were within the wild-type MIC range reported for C. auris.

4. Summary and Conclusions

In the past decade, C. auris has emerged as a critical public health concern because of its
persistence in the environment, contagious nature, and high morbidity and mortality. Unfortunately,
rates of resistance to antifungal drugs among C. auris isolates continue to increase with almost
universal resistance to fluconazole and growing resistance to other azoles and antifungals,
including echinocandins. New antifungal agents in clinical development may provide more effective
treatment options to address the growing impact of C. auris. Ibrexafungerp offers the advantages
of oral administration, a favorable PK profile, a well-characterized safety/tolerability profile in
>1200 patients/subjects, a low risk for cross-resistance to echinocandins, and consistently potent in vitro
activity against C. auris, including echinocandin-resistant isolates. Animal studies looking at the
tissue distribution of ibrexafungerp achieved high concentrations in the skin, an attribute that may
be of importance to limit C. auris skin colonization, with a potential impact of limiting transmission.
Ibrexafungerp demonstrates activity across a range of invasive fungal diseases as a monotherapy
but also in combination [58,59]. Early clinical evidence from an emergency-use Phase 3 study of
ibrexafungerp for invasive candidiasis due to C. auris is promising. Additional preclinical and clinical
evidence are awaited to confirm the role of ibrexafungerp in treating infections due to C. auris, as well
as other causes of invasive fungal disease.
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