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Abstract: Nitrogen-doped TiO2 films were prepared by reactive ion-beam sputtering deposition
(IBSD) in a mixed atmosphere of NH3 and O2 at a substrate temperature of 400 ◦C. X-ray photoelectron
spectra revealed the presence of six ions, i.e., N3−, N2−, N1−, N+, N2+, and N3+, respectively, in the
films. The amorphous films had complex, randomly oriented chemical bonds. The Tauc–Lorentz
model was employed to determine the bandgap energy of the amorphous films prepared using
different NH3/O2 gas mixing ratios by ellipsometry. In addition, the optical constants of the films
were measured. With the increase in the NH3/O2 gas mixture ratio to 3.0, the bandgap of N-doped
TiO2 narrowed to ~2.54 eV.

Keywords: nitrogen-doped TiO2; Tauc–Lorentz model; NH3/O2 gas mixture; bandgap narrowing

1. Introduction

TiO2 films doped with metal and non-metal species are extremely interesting materials due to
their potential for use in heterogeneous photocatalysis. Among all nonmetal-doped TiO2 materials,
N-doped TiO2 is the most investigated material due to the fact that its nanomaterials exhibit superior
photocatalytic activity with respect to pure TiO2 due to band-gap narrowing under visible-light
irradiation. There are three major views with respect to the modification mechanism of N-doped TiO2,
namely, bandgap narrowing, impurity energy level, and oxygen vacancies [1]. The N2p state undergoes
hybridization with the O2p states in N-doped TiO2 due to their similar energies. Thus, the narrow
bandgap can absorb visible light [2]. As N atoms replace O sites of TiO2, isolated impurity levels above
the valence band (VB) are formed as shallow acceptor states, with visible-light illumination leading to
electron excitation [3,4]. Oxygen-deficient sites that form in the grain boundaries of N-doped TiO2

films are key to the emerging visible-light activity. The N-doped part of an oxygen-deficient site is
crucial to block reoxidation [5].

Kusano et al. concluded that N atoms were incorporated into TiO2 lattices as interstitial nitrogen
(Ni) and substitutional nitrogen (Ns) [6]. Density functional theory revealed that N preferred to replace
Ti atoms rather than O atoms [7]. Asahi et al. made a theoretical comparison between Ns, Ni, and
both types of dopants in the anatase TiO2. The dopants give rise to the bonding states below the
O2p valence bands and antibonding states deep in the bandgap. However, these states were well
screened and hardly interacted with the band states of TiO2 [2]. They also emphasized the importance
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of substitutional site N doping and clearly observed an increase of photocatalytic activity by increasing
the component of N, with an X-ray photoelectron spectroscopy (XPS) peak at 396 eV. Although several
theoretical and experimental studies have been conducted on N-doped TiO2, some issues, such as the
photocatalytic activity origin of structural defects under visible light and the chemical and electronic
states of the constituent elements (Ti, O, N), are still worthy of further study. Generally, photocatalytic
activity and chemical and electronic states were investigated by UV-visible absorption experiments
and X-ray photoelectron spectroscopy (XPS) analysis, respectively. N-doped TiO2 can be prepared
by physical or chemical methods, such as the sol-gel method [6], microwave plasma synthesis [8],
sputtering [9], laser pyrolysis [10], plasma-enhanced chemical vapor deposition [11], hydrothermal
processing [12], or annealing of TiO2 films in gaseous NH3 [13]. In this study, N-doped TiO2 films were
fabricated using different NH3/O2 gas mixture ratios with reactive ion-beam sputtering deposition
(IBSD) to achieve nitridization or oxidation of the film at a high substrate temperature of 400 ◦C under
high vacuum conditions of ~10−4 Torr. During the process, the above-mentioned debate was expected
to be solved via the reaction control of pure titanium atoms generated by ion-beam sputtering with
the nitrogen atoms produced by the ionization of the NH3 ambient gas due to its low bond energy of
3.5 eV [14].

2. Materials and Methods

Figure 1 shows a schematic representation of the experimental procedure.
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Figure 1. Schematic representation of the experimental procedure.

2.1. Preparation of Coated Surfaces

Optical properties and compositions of titanium oxynitride films prepared by IBSD were
investigated. IBSD technology exhibits characteristics of a stable deposition speed, low pollution, and
precise composition control [15]. Titanium oxynitride films were deposited onto fused silica substrates
at a substrate temperature of 400 ◦C via sputtering of a metal titanium target (99.99% purity) mounted
on a water-cooled copper block at an angle of 45◦ in the ion-beam direction. A homemade vacuum
chamber with a diameter of 40 cm was evacuated using a cryogenic pump at a base pressure of less than
5 × 10−6 Torr and was arranged in a 3-cm Kaufman ion source with a mass-flow meter to supply Ar
working gas. NH3 and O2 gases were fed into the chamber by controlling mass-flow meters. The total
pressure was 2 × 10−4 Torr during the deposition. An energetic ion beam at a voltage of 1000 V and
a current of 30 mA cleared the titanium target surface for 15 min before deposition. When opening
the substrate shutter, the films were deposited at a rate of 0.02–0.03 nm/s, and their thicknesses were
controlled at ~400 nm by using a quartz crystal monitor. During the deposition, the partial NH3

pressure was controlled at 0.5 × 10−4, 0.75 × 10−4, 1.0 × 10−4, and 1.5 × 10−4 Torr. Then, oxygen gas was
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simultaneously supplied at NH3 to O2 partial pressure ratios of 0.5, 1, 2, and 3, and the as-deposited
films were labeled as TiON-0.5, TiON-1, TiON-2, and TiON-3, respectively.

2.2. Investigation of Samples

Crystalline structures of the films were examined using an X-ray diffractometer (Multiflex, Rigaku
Corporation, Tokyo, Japan) with a copper Kλ line at 1.54055 Å. The film morphology was monitored
using a Dimension 3100 atomic force microscope (Veeco Instruments Inc., New York, NY, USA). XPS
profiles of the films were recorded on a Kratos Axis Ultra DLD spectrometer (Warwick Photoemission
Facility, West Midlands, UK). Film transmittance was examined on a Varian Cary 5E spectrometer
(Varian, CA, USA) at wavelengths of 200–1000 nm in the visible spectrum. Other optical properties,
such as the refractive index (n) and extinction coefficient (k), were measured using an ellipsometer,
VASE M44 (J. A. Woollam Co., Inc., Lincoln, NE, USA). The front surfaces of the samples were irradiated
by polarization light at four incident angles of 60◦, 65◦, 70◦, and 75◦, respectively. The Ψ and ∆ values
of the films deposited on fused silica substrates in an optical wavelength range from 350–1000 nm
were obtained by ellipsometry, which was performed with a focused beam. A model other than the
Tauc–Lorentz model was used to fit the ellipsometry data, therefore, it was difficult to determine
the bandgap energy caused by the optical absorption of the intraband or defects in the composite
amorphous film [16–18]. The model expressed the imaginary part of the dielectric function ε2 (= 2nk)
at a photon energy E as follows:

ε2 =
A(E− Eg)

2CE0

(E2 − E02)2 + C2E2
, as E > Eg (1)

ε2 = 0, as E ≤ Eg (2)

where four parameters are comprised: The prefactor A (the amplitude of the oscillator), the bandgap
energy Eg, the broadening parameter C, and the peak in the joint density of states E0. This four-parameter
model is typically sufficient to describe the optical functions of the amorphous film by the ellipsometry
software of VASE M44 [19].

In this study, the Tauc–Lorentz model was utilized to fit the measured Ψ and ∆ values for the four
incident angles. The mean squared error (MSE) is a measure of the quality of an estimator, i.e.,

MSE =
1

2N −M

N∑
i=1


Ψmod

i −Ψexp
i

σ
exp
Ψi


2

+

∆mod
i − ∆exp

i

σ
exp
∆,i


2 (3)

where i = 1 to N; Ψexp and ∆exp represent the experimental data and Ψmod and ∆mod represent the fitting
data, respectively. N and M represent the number of the measured Ψ–∆ pairs and the fitting parameters,
respectively and σΨ

exp and σ4exp represent the standard deviations of Ψ and ∆ experimental data
points, respectively. In the equation, the prefactor comprises 2N due to the inclusion of the two
measured values in the calculation for each Ψ–∆ pair [19]. Figure 2 shows a fitting example of the
TiON-3 film expressed by Ψ and ∆. The MSE values of the samples were less than 5.

Fourier transform infrared (FTIR) spectroscopy (PE-2000-type PerkinElmer, Waltham, MA, USA)
was employed to investigate the hydrogen, hydroxyl, and NH3 bonds in the films. XPS (Axis Ultra
DLD system, Kratos Analytical Ltd., Manchester, UK) was employed to examine the chemical bonds
and atomic concentrations of the films, which were etched for 30 s before measurement. Binding
energies (BEs) of the components obtained from the fitting program applied to the Ti2p, O1s, and N1s
XPS spectra were utilized to deduce the oxidation states and chemical bonding environments of the
atoms in the films.
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Figure 2. A fitting example of the TiON-3 film expressed by Ψ and ∆ with a root mean square (RMS) of 4.8.

3. Results and Discussion

3.1. XRD of N-Doped TiO2 Films

Generally, the titanium dioxide film deposited at a substrate temperature of 400 ◦C exhibited
an anatase structure, with a sharp (101) peak observed at 2θ = 25◦ in the XRD spectrum [20,21].
Karunagaran et al. also found that the structures of the films deposited at ambient temperature
were amorphous, whereas the films annealed at 400 ◦C and above were crystalline with anatase [22].
However, doped titanium oxide co-sputtered with a metallic aluminum target or a semiconductor
silicon target led to reduced polycrystallinity in the structure [23,24]. In this study, the titanium dioxide
film was doped with nitride by IBSD under different NH3/O2 gas mixtures. The argon ion beam
bombarded the metallic titanium target, and the sputtered titanium atoms exhibited more energy to
react with the NH3 and O2 gases on the target surface [21]. Equipped with the kinetic energy of several
electron volts, the reaction atoms that accumulated on the fused silica substrate surface [25], where the
substrate temperature was 400 ◦C, enhanced the formation of the deposited titanium oxynitride species.
However, although these films were deposited at high substrate temperatures under an NH3/O2 gas
mixture ratio of ≥0.5, the XRD spectra indicated that the films were not anatase, but rather amorphous,
due to the change in the lattice parameters, bond length, and charges on the Ti atom caused by the
complex dopant N ions [4].

3.2. Surface Morphology of N-Doped TiO2 Films

The surface morphology of amorphous films revealed that the surface roughness was less than
that of a pure polycrystalline film [21]. The NH3/O2 gas mixture ratio affected the surface roughness of
the film prepared by IBSD. For example, the root mean square (RMS) roughness of the TiON-2 sample
was 0.187 nm, a value that was about four times less than TiON-0.5, which was 0.651 nm (Figure 3).
Moreover, the atomic radius of the nitrogen atom was greater than that of the oxygen atom. When
N atoms were substituted for O atoms in the TiO2 film, the bond length, lattice constant, and atomic
volume all changed, leading to the weak anisotropy of anatase. The N-dopants randomly bonded to
titanium dioxide in the film, as observed by the XRD inhibition. In the pitch multiplication process for
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integrated circuit fabrication, the amorphous titanium oxynitride film was capable of depositing a
thick, smooth, and amorphous film to form spacers [26].
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morphology of TiON-2 with a surface roughness (RMS) of 0.2 ± 0.1 nm.

3.3. FTIR Spectra of N-Doped TiO2 Films

Vietro et al. examined the dissociation of the NH3/O2 gas mixture by radio-frequency (RF) glow
discharge. NH3 gas feed produced H atoms, NH radicals, and excited N2; and O2 gas feeds produced O
atoms and excited O2 [27]. Therefore, the plasma contained OH radicals, H2O, and NOx species in the
IBSD process. Species of NH3 and H2O molecules in the plasma that did not react with the sputtered
titanium atoms might have been present in the film, even though the molecules were continuously
pumped out of the chamber under high vacuum conditions. Figure 4 shows the FTIR spectra of the
films, which were recorded under various NH3/O2 gas mixing ratios.
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Characteristics of anatase and rutile corresponding to the Ti–O stretching vibrations [28] were
absent in the range from 440 to ~505 cm−1 in their FTIR spectra compared with that of the fused silica
substrate. Hence, the as-deposited films were amorphous, as mentioned in Section 3.1. The small
peak observed at 800 cm−1 corresponded to the Si–O–Si bending vibration. The peak at 950 cm−1

(O-doped amorphous silicon) to 1075 cm−1 (stoichiometric SiO2) corresponded to the SiOx stretching
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vibration (0 < x < 2) in the FTIR spectrum of the fused silica substrate. With the decrease in the
oxygen concentration, the broad shoulder extended to a high frequency of 1300 cm−1 and merged
with the main band [29]. Small peaks were observed at ~1460, 1514, and 1735 cm−1, which were
characteristic of C–H, C=C, and C=O bonds of the contaminant, respectively [30,31]. NH3 (1225, 3154,
3195, 3255, and 3393 cm−1) [32], nitrogen-related hydrogen bonds (at 1150–1220, 1300–1350, 1560–1610,
and 3150–3393 cm−1) and hydroxyl radical bonds (3200–3400 cm−1) [33] completely disappeared from
the FTIR spectra when the substrate temperature was 400 ◦C during the deposition. The FTIR spectra
of the films prepared using various gas ratios were similar to that of the fused silica substrate, except
for a low-intensity broad peak at 620 cm−1 for the N-doped TiO2 [28] and a small peak at 1250 cm−1 for
the monodentate nitrate [34]. The absorber NO species of the film that were deposited using different
NH3/O2 gas mixture ratios are discussed in the following section.

3.4. X-ray Photoelectron Spectra of N-Doped TiO2 Films

The XRD inhibition of the N-doped TiO2 film exhibited a change in the chemical bonds of the
film. XPS is one of the most suitable techniques to directly observe the N-derived state from the
photoelectron BE.

3.4.1. O1s XPS Spectra

Figure 5 shows the O1s XPS spectra of the N-doped TiO2 films fabricated under various NH3/O2

gas mixing ratios. All of the films exhibited amorphous structures, as mentioned in Section 3.1.
Typically, the XPS peaks corresponding to core-level electrons were broad due to the less-localized
electron density distribution [35]. The XPS spectra with shoulders were decomposed into two peaks,
i.e., bridging oxygen (BO) and high-binding-energy oxygen (HBO). The main peak at 530.1 eV with the
largest area corresponded to BO, where the O atom was the dominant species in the Ti–O linkage.
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in the non-stoichiometric oxygen atom, which corresponded to oxygen in the Ti–O–N or Ti–N–O
bonds [36–38]. With the increase in the NH3/O2 gas ratio, the peak area and BE decreased, resulting
from the increase in the number of electrons provided by the nitrogen atoms. Compared with our
previous results regarding co-sputtering of a Ti target with an Al or Si target [22,23], the HBO area of
N-doped TiO2 decreased with the increase in the doping material, which was contrary to the increase
in HBO areas of Al-doped or Si-doped TiO2, also indicating that nitrogen-dopants provided more
electrons to oxygen atoms than the Al and Si dopants during the IBSD process. The oxidation states of
the N atoms in N-doped films fabricated by IBSD using different NH3/O2 gas mixtures are discussed
again in Section 3.4.3.
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3.4.2. X-ray Photoelectron Spectroscopy of Ti

The Ti XPS signal comprised two peaks, i.e., weak Ti2p1/2 and strong Ti2p3/2 (Figure 6). Previous
studies reported that each peak was decomposed into three sub-peaks, with components of Ti4+, Ti3+,
and Ti2+, respectively: Ti4+ (2p1/2 at ~464.5 eV, 2p3/2 at ~458.9 eV), Ti3+ (2p1/2 at ~462.8 eV, 2p3/2 at
~457.3 eV), and Ti2+ (2p1/2 at ~460.9 eV, 2p3/2 at ~455.6 eV) [23,39]. In this study, however, the Ti2p1/2

and Ti2p3/2 XPS peaks were mainly located at 464.2 and 458.5 eV, respectively. With the change in the
NH3/O2 gas mixture ratio, their areas exhibited marginal changes and were composed of lower-energy
peaks of Ti3+ and Ti2+, as reported by Jia et al. for N-doped TiO2 nanocrystals [40].
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Compared with our previous study involving the co-sputtering of Al or Si, the increases in the
amounts of Ti3+ and Ti2+ in the N-doped film were less than those of the Al-doped or Si-doped
TiO2 films [22,23]. Moreover, the electronegativity of the nitrogen atom (3.06) was similar to that of
the oxygen atom (3.44). That is, the high electronegativity of the nitrogen atom led to the complete
oxidation of the titanium atom in the N-doped TiO2 film. Hence, Ti4+ peaks were mainly observed in
the XPS spectra of the N-doped TiO2 films. Yu et al. also explained that some Ti2+ reacted with N1− to
form Ti3+, followed by a reaction with N1− or N2− to form Ti4+. Therefore, only Ti4+ was present in all
of the films deposited using various NH3/O2 gas mixing ratios [36].

3.4.3. XPS of N

The XPS N1s spectra exhibited six fitted sub-peaks (Figure 7). The six sub-peaks were located at
average BEs of 395.93, 396.92, 397.84, 399.55, 400.58, and 401.68 eV, corresponding to the oxidation
states of N3−, N2−, N1−, N1+, N2+, and N3+ species, respectively (Table 1).

Table 1 summarizes the full width at half maximum (FWHM), BE, and the difference (∆) between
adjacent oxidation states of the six sub-peaks. The ∆ values fluctuated by ~1 eV due to the complex
nitrogen bonding. The N0 oxidation state is not listed in Table 1 due to the absence of the N0 bond
from the films, which was caused by electrical neutralization. Table 2 summarizes the BEs and types of
bonds in the six N oxidation states of N3− to N3+. The N3− species at the lowest average BE of 395.9 eV
substituted the O2− site in TiO2 and formed the N–Ti chemical bond [2,36,41]. With the increase in the
NH3/O2 gas mixing ratio, the relative concentration of the N3− species clearly increased, while those of
the N1− and N2− species decreased (Figure 7). The BE of the N3− slightly increased and the FWHM
decreased (Table 1) due to the purification of the N3− species. Hence, N–Ti bonds were formed at high
NH3/O2 gas mixing ratios. However, the optical absorption increased as the form of the N–Ti bonds
changed in the optical spectrum, as explained in Section 3.5.
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Figure 7. Original and fitted N1s XPS spectra of titanium oxynitride films prepared using different
NH3/O2 ratios. Six components of N3−, N2−, N1−, N1+, N2+, and N3+, respectively, from low to high
binding energy (BE), were applied to spectral fitting.

Table 1. Summary of all of the components of N1s in titanium oxynitride films.

Oxidation States N3+ N2+ N1+ N1− N2− N3−

TiON-0.5
BE 401.6 400.5 399.5 397.9 396.9 395.9
∆ * – 1.0 1.1 – 1.1 1.0 –

FWHM 0.60 0.6 0.7 0.7 0.7 0.7

TiON-1
BE 401.7 400.6 399.6 397.8 396.9 395.9
∆ – 1.1 1.0 – 0.9 1.0 –

FWHM 0.6 0.6 0.7 0.5 0.6 0.5

TiON-2
BE 401.7 400.6 399.6 397.8 396.9 395.9
∆ – 1.1 1.0 – 0.9 1.0 –

FWHM 0.6 0.6 0.6 0.6 0.5 0.5

TiON-3
BE 401.7 400.7 399.6 – 397.0 396.0
∆ – 1.0 1.1 – – 0.9 –

FWHM 0.6 0.6 0.6 – 0.5 0.5

Average of BE 401.7 400.6 399.6 397.8 396.9 395.9

* ∆: BE difference between adjacent oxidation states; Unit: eV. Error = 0.5 eV.

Table 2. Binding energies and types of bonding in the six N oxidation states.

Oxidation States Binding Energy (eV) Bonding Reference

N3− 396 N–Ti, N–Ti–O [2,36,41]

N2− 395.4, 395.7, 396, 396.3,
396.6, 396.9, 397.2, 397.5

Ti–N–Ti–O, Ti–N–Ti–N, O–Ti–N
(N3− substitute O2−) [36–50]

N1−, N1+ 398.7, 398.2, 399, 399.1 N–O, N–Ti–O, N≡O (in TiOxNy) [37,39,41,42,46,47,50]

N2+, N3+ 399.8, 400, 400.2, 401.8, 402 Ti–O–N–O [41,43,44,47]

As summarized in Table 1, the average next lower BE for the N2− species was 396.92 eV due to
the decrease in the number of electrons surrounding the N ions, which was formed by Ti–N–Ti–O or
Ti–N–Ti–N bonds due to the chemical absorption of nitrogen on the surface or complex bonding of
oxynitride (Table 2). The Ti atom was bonded to not only the N atoms but also another atom, leading
to an increase in the BE of N2− compared with N3−. With the increase in the gas mixture ratio, the BE
increased and the FWHM decreased, similar to the trend observed for the N3− species.
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When the oxidation decreased again, the N1− species were located at an average BE of 397.84 eV
in Table 1. The intensities of the N1− XPS spectra apparently decayed with the increase in the NH3/O2

gas mixing ratio and disappeared in the TiON-3 sample (Figure 1). The trend of the changing BE was
opposite to what was observed for the N2− and N3− species. Nitrogen attracts electrons with difficulty
when surrounded by an increased amount of oxygen, therefore, the shift of the outermost nitrogen
electrons to their neighbors was affected by an increase in the amount of oxygen.

As the nitrogen ions were surrounded by many oxygen atoms, these ions were transferred from the
electron acceptor to the electron donor. Positive nitrogen ions at high BEs transfer electrons to adjacent
oxygen atoms more easily than to nitrogen ions due to the lower electronegativity of nitrogen atoms
than oxygen atoms. The N chemical states of the positively charged nitrogen species corresponded to
N–Ti–O and Ti–O–N–O (Table 2) [50], where nitrogen oxidation states may have corresponded to the
higher BE components of N1+, N2+, and N3+ in the films deposited at low NH3/O2 gas mixture ratios.

Figure 8 shows the relative concentrations of various nitrogen bonding states in the total N1s
signal. With the increase in the NH3/O2 gas mixing ratio from 0.5 to 1.0, the relative concentrations of
the N1− and N1+ oxidization states decreased, while those of N3− and N3+ oxidation states increased.
NH3 gas affected the nitridation of N-doped TiO2. Furthermore, with the increase in the NH3/O2 gas
mixing ratio, the relative concentration of the N3− species continuously increased. The N3− species
slightly served as an electron buffer for the remaining Ti at positive tetravalent ions, the electrons
of which attracted the N3− and O2− species. The amount of N3− was affected by the NH3/O2 gas
mixing ratio. Moreover, at a low gas mixing ratio, the lack of attracted electrons led to an increase
in the number of HBO species and positive N ions. Contrastingly, a large amount of N3− at a high
NH3/O2 gas mixture ratio reduced the BE and transmission of the film. These changes in N3+ and N3-

concentrations were similar to those observed by Yang et al. [51].
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Figure 9 shows the UV-vis transmission spectra of the fused quartz substrate and as-deposited 
N-doped TiO2 samples prepared by IBSD. The UV cutoff wavelengths of the N-doped TiO2 films 
were considerably greater than that of the fused silica substrate. The NH3/O2 mixture gas apparently 
affected the transmission spectra of the deposited films. With the increase in the NH3/O2 gas mixture 
ratio, the transmittance decreased from 350 to 500 nm. The transmittance of samples with NH3/O2 
ratios of 1 and 2 were higher than those of NH3/O2 ratios of 0.5 and 3 because the thickness of the 
samples with NH3/O2 ratios of 1 and 2 was larger than the samples with NH3/O2 ratios of 0.5 and 3. 
Regardless of the fact that the transmittances of the TiON-1 and -2 samples at 600 nm were greater 
than 80%, the deposited samples exhibited a red-shift due to the amount of the N-dopant, as reported 
by Mohamed et al. [52]. The more nitrogen and the less oxygen in the vacuum, the more O2− in the 
Ti–O bond was replaced by N3– in the film. The TiO2−xNx films noticeably absorbed the light at less 
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3.5. Optical UV-Vis Transmittance of Nitrogen-Doped TiO2 Films

Figure 9 shows the UV-vis transmission spectra of the fused quartz substrate and as-deposited
N-doped TiO2 samples prepared by IBSD. The UV cutoff wavelengths of the N-doped TiO2 films
were considerably greater than that of the fused silica substrate. The NH3/O2 mixture gas apparently
affected the transmission spectra of the deposited films. With the increase in the NH3/O2 gas mixture
ratio, the transmittance decreased from 350 to 500 nm. The transmittance of samples with NH3/O2

ratios of 1 and 2 were higher than those of NH3/O2 ratios of 0.5 and 3 because the thickness of the
samples with NH3/O2 ratios of 1 and 2 was larger than the samples with NH3/O2 ratios of 0.5 and 3.
Regardless of the fact that the transmittances of the TiON-1 and -2 samples at 600 nm were greater
than 80%, the deposited samples exhibited a red-shift due to the amount of the N-dopant, as reported
by Mohamed et al. [52]. The more nitrogen and the less oxygen in the vacuum, the more O2− in the
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Ti–O bond was replaced by N3− in the film. The TiO2−xNx films noticeably absorbed the light at less
than 500 nm, which was in good agreement with the theoretical and experimental results studied by
Asahi et al. [2]. This observation is further discussed in the next section.Coatings 2019, 9, x FOR PEER REVIEW 10 of 14 
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To increase photocatalytic reaction efficiency, it was crucial to reduce the optical bandgap of the 
TiO2 film from 3.2 V. The preparation of N-doped TiO2 with visible-light activity was considered to 
be a promising approach. During doping, two characteristic deep levels were located below the 
conduction band. The O vacancy state was active as an efficient generation–recombination center. 
The newly introduced N2p-doped state that was generated directly above the valence band mixed 
with the O2p valence band and contributed to the narrowing of the bandgap [53]. Asahi et al. predicted 
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3.6. Ellipsometry of Nitrogen-Doped TiO2 Films

Figure 10 shows the refractive indices and extinction coefficients of the films as a function of the
NH3/O2 gas ratio, as investigated by the Tauc–Lorentz model. These films exhibited an optical index
of 2.52 ± 0.02 at a wavelength of 550 nm. Moreover, the indices exhibited a large optical dispersion in a
short wavelength range of 350–500 nm (Figure 10a). The TiON-0.5, -1, and -2 samples exhibited similar
trends of refractive indices as functions of the wavelength.
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The films deposited using a high NH3/O2 gas mixing ratio also exhibited high extinction coefficients
in the short wavelength range of 350–500 nm (Figure 10b). The starting absorption wavelengths, the
extinction coefficients of which were zero, of TiON-0.5, TiON-1, TiON-2, and TiON-3 samples were
located at ~400, 425, 450, and 500 nm, respectively, indicating that the optical bandgap energies of the
films strongly depended on the NH3/O2 gas mixture ratio.
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To increase photocatalytic reaction efficiency, it was crucial to reduce the optical bandgap of the
TiO2 film from 3.2 V. The preparation of N-doped TiO2 with visible-light activity was considered
to be a promising approach. During doping, two characteristic deep levels were located below the
conduction band. The O vacancy state was active as an efficient generation–recombination center.
The newly introduced N2p-doped state that was generated directly above the valence band mixed with
the O2p valence band and contributed to the narrowing of the bandgap [53]. Asahi et al. predicted
the narrowing of the bandgap using first-principle calculations [2]. In this study, when the NH3/O2

gas mixture ratio increased, the bandgaps evaluated by the Tauc–Lorentz model decreased from 3.1
to 2.54 eV (Figure 11). The tuning of the bandgap from 3.1 to 2.54 eV resulted from increases in
complex, randomly oriented chemical N bonds and N3− in the films when the NH3/O2 gas mixing
ratio was increased, as shown in Figure 8. The bandgap narrowed in the range of 0.1 to 0.56 eV, thus,
the fundamental absorption edges of the films extended to the visible-light region.
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fitting the data measured by ellipsometry using the Tauc–Lorentz model. Six oxidation states, N3−, 
N2−, N1−, N1+, N2+, and N3+ in the fitting of the N1s spectra, respectively, were evaluated, even though 
Ti4+ was almost the only species involved in the fitting of the Ti2p spectra. With the increase in the 
NH3/O2 gas mixing ratio, the bandgap narrowing reduced due to the presence of N3− in the film. 
Various optical properties resulted from the complex N bonds in the completely oxidized N-doped 
TiO2 films. This conclusion provides understanding and further development regarding the N-doped 
TiO2 photocatalysts that are active under visible-light irradiation. 
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4. Conclusions

N-doped TiO2 films fabricated by IBSD were prepared under various NH3/O2 gas mixing ratios at
a substrate temperature of 400 ◦C. All of the films were amorphous because of the complex, randomly
oriented chemical bonds in the films due to the N-dopant. A significant bandgap-narrowing effect was
observed on the optical bandgap down to a visible light range of 2.54 eV by fitting the data measured
by ellipsometry using the Tauc–Lorentz model. Six oxidation states, N3−, N2−, N1−, N1+, N2+, and N3+

in the fitting of the N1s spectra, respectively, were evaluated, even though Ti4+ was almost the only
species involved in the fitting of the Ti2p spectra. With the increase in the NH3/O2 gas mixing ratio, the
bandgap narrowing reduced due to the presence of N3− in the film. Various optical properties resulted
from the complex N bonds in the completely oxidized N-doped TiO2 films. This conclusion provides
understanding and further development regarding the N-doped TiO2 photocatalysts that are active
under visible-light irradiation.
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