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Abstract: Water pipes and drinking water quality deterioration in distribution systems and sea water
desalination impose the use of corrosion inhibitors. The protective effect of spiropyrazole derivatives
against Q235 steel and its adsorption performance were examined in solution of 1 M HCl utilizing TP
(Tafel polarization), electrochemical frequency modulation (EFM), and electrochemical impedance
spectroscopy (EIS) tests. The outcome data from hindrance efficiency rise with the dose of inhibitor.
The orders of %IE of spiropyrazole derivatives are given: (1) > (2) > (3).It was noted that the values
of EHOMO and ELUMO dropping in order run parallel to the improvement in %IE, which support
the preceding order. EIS spectra exhibited one capacitive loop and approve the protective ability.
Molecular docking was utilized to get a full picture on the binding mode among spiropyrazoles
derivatives and the receptor of 3tt8-hormone of crystal structure examination of Cu human insulin
derivative. The morphology of protected Q235 steel was evaluated by checking electron magnifying
instrument innovation with energy dispersive X-beam spectroscopy (SEM–EDX).

Keywords: spiropyrazoles; 3tt8-hormone; Q235 steel; SEM–EDX; molecular docking

1. Introduction

Corrosion in distribution systems pipes resulted in not only pipe material destruction, but also
deterioration in drinking water quality, i.e., water infection with other wastewater or any other water.
Which leads to corrosion of valves or pumps in addition to blockage in pipes as a result of solid
corrosion products.Unwanted chemical and biochemical reactions that occur in the distribution systems
that release iron into distributed water can accumulate, creating tubers [1]. Corrosion measurements
(tubers) consist of reactive types that modify the physical and chemical parameters of water in the
distribution system not only by releasing Fe oxyhydroxides, but also by interactions, for example,
with by-products of chlorinated disinfection [2], nitrates, or with natural organic substance [3]. Salinity
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(chloride) is one of the most aggressive substances in seawater. Oxygen in seawater also affects metal
pipes corrosion rate. Moreover, the amount of oxygen affected with the temperature, and consequently
influences the rate of corrosion [4].

Salts in the sea water cause corrosion inside the surfaces of pipes that transport saltwater in
desalination water treatment plants. Also, the existence of air, salts on the ground, moisture, and other
factors lead to outside pipe corrosion in the form of small holes or rough surface.

In any case, corrosion causes a short lifetime of the pipe, hydraulic effects, aesthetic effects, including
increasing pumping costs, water leaks, and the buildup of corrosion products. Pipe replacement is not
possible due to the high cost, so it is necessary to isolate pipe material from water and any corrosive
agents [5].

Corrosion inhibitors are largely utilized as a part of industry, as for instance, corrosive pickling of
steel and iron, overflow cleaning and preparing, generation of metal and well oil fermentation [6–8].
Improving the acidic environment needed the progress of altered corrosion control tests among
which the implementation of chemical restraints has been the most economical test for the hindrance
corrosion of acid [9–14]. Several organic composites, such as heterocyclic assembled, acetylenic
alcohol, and quaternary ammonium salts are normally utilized as inhibitors in altered industries.
The selected atoms adsorbed on the surface of metal among hetero atoms which include N, S, and O
due to its protection for the active centers and to form a physical barrier to lowering the transmit of
erosion sample to the metal surface [15–21]. The heterocyclic affluences containing nitrogen atoms,
like 4-aminoantipyrine (pyrazole derivative) are excellent corrosion hindrance with corrosive solution
because rise hindrance of corrosion and prevent the odor irritating for alloys in altered aggressive
environment [22–27]. Therefore, the development of novel adjuster inhibitors consisting of a pyrazol
ring and the study of the relations among the inhibitors chemical structure and their inhibition led to
the greater significance in theoretical points and industrial application.

In this study, the hindrance effect and electrochemical habit of spiropyrazole products for Q235
steel including 1.0 M HCl are given by the TP, EIS) and EFM tests. A few quantum-chemistry tests and
molecular docking have been conducted in order to record the inhibition protection to the molecular
properties of the altered kind of assembled [28,29].

2. Experimental

2.1. Measurements

This research mimics the actual docking process in which measuring interaction energies of
the ligand–protein pair-wise through Docking Server [30]. Docking computations were carried out
on a spiropyrazoles protein model. Kollman united atom kind charges, Essential hydrogen atoms,
and solvation parameters were additional with the support of AutoDock tools [31]. Affinity (grid) maps
of 20 × 20 × 20 Å grid points and 0.375 Å spacing were generated utilizing the program Autogrid [32].

2.2. Material and Medium

Q235 steel was utilized for the measurements of corrosion. Its % conformation is 0.16 C, 0.30 Si,
0.53 Mn, 0.055 S, 0.045 P, the rest iron. The corrosion dose (HCl 1.0 M) (37% analytical grade).
The structure of spiropyrazole derivatives utilized for this paper are given in Table 1 [33].
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Table 1. Molecular formulas and structure of spiropyrazoles products.

Cpd.
No. Name Structure

Molecular Weight
&Chemical

Formula

(1)

2′,3′,6,7,8,9-Hexahydro-2′-phenyl-5′-styryl-
3′-(3,4,5-trimethoxy-phenyl)

spiro[benzocyclo–heptane-6(5H),
4′(4H-pyrazol)-5-one
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2.3. Methods

2.3.1. Electrochemical Tests

Electrochemical tests were performed utilizing three thermostat electrodes cell for the electrode
cell using a Gamrypotentiostat/galvanostat/ZRA (model PCI300/4). A saturated platinum and calomel
electrode were utilized as auxiliary and reference electrodes. All tests were done at the temperature of
25 ± 1 ◦C. The measurements of potentiodynamic bends were from −50 to 50 V at a rate scan 1 mV S−1

after the steady state is approximated (30 min) and the OCP was detected after the electrode was
putted for 15 min in the solution test.

The two tests, EFM and EIS were carried out as before with the system of a Gamry framework rely
on ESA400. Echem Analyst 5.5 Software was utilized for graphing, drawing, and fitting value. EIS tests
were done in a range of frequency of 100 kHz to 10 mHz with amplitude of 5 mV signal-to-signal
ac peaks utilized at respective for corrosion potential. EFM had used 2 frequencies 2 and 5 Hz.
The frequency base was 1 Hz.

2.3.2. SEM-EDX Tests

The surface of Q235 steel was gotten by observance the coins for 3 days dipping in 1 M HCl
existence and lack of seamless dose of spiropyrazoles derivatives. Then, after this time dipping, the coins
were lotion gently with water distilled. The surface of alloy was tested utilized an X-ray diffractometer
Philips (pw-1390) with Cu-tube (CuKα, l = 1.54051 Ǻ), (SEM, JOEL, JSM-T20, Tokyo, Japan).
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2.3.3. Theoretical Study

Accelrys (Material Studio Version 4.4) software for quantum chemical measurements has
been utilized.

3. Results and Discussion

3.1. TP Tests

TP tests were conducted to obtain information regarding the kinetics of the anodic and cathodic
reactions. Figure 1 demonstrations the TP performance of Q235 steel electrode in corrosive solution
nonexistence and attendance unlike dose of spiropyrazoles derivatives (1). Figure 1 shows that the %IEp

rise as the spiropyrazoles dose rise, while the cathodic reaction is efficient protective, i.e., the adding
of spiropyrazoles decrease the anodic liquefaction of alloyand also hindrance the cathodic reactions.
Therefore, spiropyrazoles are acts as mixed kind inhibitors.

The (θ) and %IE were measured from relation (1):

%IEp = θ × 100 = [1 − (i0corr/icorr)] × 100 (1)

where i0corr and icorr are the current lack and attendance of solution inhibitor, consecutively.
It is evident from Table 2 that the adsorbed inhibitors lessened the surface area for corrosion

without effect on the mechanism of alloy corrosion in acidic solution [34,35]. The orders of IE% were:
(1) > (2) > (3).

Table 2. Impact of spiropyrazoles derivatives for Q235 steel in in corrosive environments attendance
and lack of unlike dose of spiropyrazoles.

Cpd. No. Conc., M. −Ecorr
(mV vs. SCE)

icorr × 10−5

(µA cm−2)
βa × 10−3

(mV dec−1)
βc × 10−3

(mV dec−1) θ %IE

– Blank 489 5.02 106 145 – –

(1)

1 × 10−6 459 1.3 60 132 0.741 74.1
3 × 10−6 469 1.28 91 198 0.745 74.5
5 × 10−6 493 1.26 99 152 0.749 74.9
7 × 10−6 479 1.24 77 119 0.753 75.3
9 × 10−6 488 1.19 79 159 0.7629 76.29

11 × 10−6 467 1.05 104 146 0.7908 79.08

(2)

1 × 10−6 457 1.51 34 56 0.6992 69.92
3 × 10−6 491 1.48 87 123 0.7052 70.52
5 × 10−6 466 1.45 53 135 0.7112 71.12
7 × 10−6 487 1.37 83 121 0.7271 72.71
9 × 10−6 458 1.35 62 115 0.7311 73.11

11 × 10−6 489 1.25 107 156 0.751 75.1

(3)

1 × 10−6 439 2.4 52 127 0.5219 52.19
3 × 10−6 481 2.05 79 143 0.5916 59.16
5 × 10−6 483 1.92 84 129 0.6175 61.75
7 × 10−6 462 1.73 67 143 0.6554 65.54
9 × 10−6 461 1.64 58 117 0.6733 67.33

11 × 10−6 480 1.48 69 123 0.7052 70.52
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3.2. EIS Tests

One of the most effective tests in corrosion study is EIS. The properties of mechanical materials for
surface and electrode motility can be obtained using impedance diagrams [36–40]. Figure 2 illustrated
Nyquist (a) and Bode (b) bends given at OCP both in lack and attendance of improving dose of
spiropyrazole derivatives. The values from EIS tests for a Q235 steel electrode were given utilizing the
equivalent circuit demonstrated in Figure 3.The improvement in the size of the capacitive loop with
the attachment of spiropyrazole derivatives demonstrate that a barrier gradually forms on the surface
of metal [41,42]. The higher in the size of capacitive loop Figure 2 aimproves, at a fixed inhibitor dose,
conformed the order: (1) > (2) > (3). The Cdl is measured from Equation (2):

Cdl = Yo ω
n−1/sin[n(π/2)] (2)

whereω = 2πf max, f max = the maximum frequency.
After EIS exam the figure of the Nyquist bends, the corrosion procedure was measured principally

charged-transfer [43–46]. From Table 3 for the EIS data, we distinguished that the results of Rct improve
with increasing the dose of spiropyrazoles and this result in improving in %IE. Data of Cdl are also
minor to the maximum spiropyrazole inhibitor range [47,48]. The main merits of EIS are to monitor
the corrosion performance of the metal with constant time. The %IEEIS was gotten from the EIS data
from Equation (3) [49]:

%IEEIS = [1 - (R◦ct/Rct)] × 100 (3)

where Ro
ct and Rct are the resistance values existence and lack of spiropyrazole, consecutively.
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Table 3. Parameters given by EIS test for Q235 steel in corrosive environments attendance and lack of
unlike dose of spiropyrazoles derivatives.

Cpd. No. Conc., M. RS× 10−3

(Ω cm2) Yo× 10−6 n× 10−3 Rct× 10−3

(Ω cm2)
Cdl× 10−5

(µFcm−2)
θ IE

– Blank 11.1 18.2 1.01 36.9 8.93 – –

(1)

1 × 10−6 9.7 12.6 1.03 178 1.24 0.793 79.3
3 × 10−6 9.7 12.2 1.04 179 1.23 0.794 79.4
5 × 10−6 10.8 12.7 1.12 194.7 1.22 0.81 81
7 × 10−6 10.6 16.8 1.05 220.1 1.29 0.832 83.2
9 × 10−6 9.6 16.3 1.07 361.7 1.2 0.898 89.8

11 × 10−6 9.7 12.3 1.06 428.1 1.19 0.914 91.4

(2)

1 × 10−6 9.6 9 1.05 78.61 1.67 0.531 53.1
3 × 10−6 11.4 18.3 1.03 105.3 1.31 0.65 65
5 × 10−6 13.9 13 1.05 112.3 1.3 0.671 67.1
7 × 10−6 15.9 19.8 1.12 119.5 1.29 0.691 69.1
9 × 10−6 9.7 12.6 1.04 123.2 1.26 0.7 70

11 × 10−6 11.1 19 1.06 134.2 1.25 0.725 72.5

(3)

1 × 10−6 10 27.6 1.01 42.13 6.24 0.124 12.4
3 × 10−6 9.5 13.7 1.02 49.85 2.75 0.26 26
5 × 10−6 11.89 18.15 1.05 55.28 1.98 0.332 33.2
7 × 10−6 13.37 11.98 1.03 66.76 1.9 0.447 44.7
9 × 10−6 9.5 12.99 1.02 67.12 1.83 0.45 45

11 × 10−6 13.81 12.98 1.06 77.56 1.7 0.524 52.4

3.3. The Method of EFM

The advantages of EFM test gotten it a perfect for online monitoring of corrosion [50]. The data
of EFM in corrosive environments existance and lack of unlike dose of spiropyrazoles was obtain in
Figure 4. The results of EFM-tests were applied two unlike models: diffusion complete control of
the cathodic reaction was quantified by and the “activation” model [51]. The (icorr), (CF-2 and CF-3),
and (βc and βa) were quantified by the higher peaks. The preferable data of CF-2 and CF-3 in Table 4
are parallel to their theoretical numbers of 2.0 and 3.0, individually result in excellent quality of the
measured data.

The %IEEFM raising by improvement the inhibitor dose and was calculated from Equation (4):

%IEEFM = [1 − (icorriocorr)] × 100 (4)

where iocorr and icorr are current attendance and lack of spiropyrazoles, consecutively.
The order of %IEEFM: (1) > (2) > (3).
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Figure 4. EFM bends for the corrosion of Q235 steel in corrosive environments attendance and lack of
unlike dose of spiropyrazoles (1).

Table 4. EFM parameters for Q235 steel in corrosive environments attendance and lack of unlike dose
of spiropyrazoles derivatives at 25 ± 1 ◦C.

Cpd. No. Conc., M. icorr
(µA cm−2)

βa× 10−3

(mV dec−1)
βc× 10−3

(mV dec−1) CF-2 CF-3 θ %IE

– Blank 58.04 98 331 2.02 2.87 – –

(1)

1 × 10−6 21.99 88 350 1.94 2.95 0.6211 62.11
3 × 10−6 19.09 82 129 1.89 2.9 0.6711 67.11
5 × 10−6 15.29 87 146 1.85 3.02 0.7366 73.66
7 × 10−6 14.91 74 105 1.87 3.12 0.7431 74.31
9 × 10−6 11.48 46 49 1.89 3.01 0.8022 80.22
11 × 10−6 9.33 55 71 2.01 2.74 0.8392 83.92

(2)

1 × 10−6 32.5 97 193 1.99 2.89 0.44 44
3 × 10−6 31.02 121 227 2.02 2.87 0.4655 46.55
5 × 10−6 28.8 79 90 2.02 2.91 0.5038 50.38
7 × 10−6 28.03 91 195 1.97 3 0.5171 51.71
9 × 10−6 27.04 92 165 1.87 2.91 0.5341 53.41
11 × 10−6 25.36 84 162 1.93 3.05 0.5631 56.31

(3)

1 × 10−6 38.22 86 108 1.97 3.08 0.3415 34.15
3 × 10−6 37.55 141 298 1.92 2.87 0.353 35.3
5 × 10−6 36.32 106 190 1.89 3.14 0.3742 37.42
7 × 10−6 35.12 93 189 2.08 3.04 0.3949 39.49
9 × 10−6 33.04 105 227 1.83 3.02 0.4307 43.07
11 × 10−6 30.34 76 148 1.76 2.78 0.4773 47.73
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3.4. Molecular Docking

The docking study presented a favorable contact among spiropyrazoles derivatives and the
receptor of 3tt8-hormone of crystal structure analysis of Cu human insulin derivative. The energy
calculated is recorded in Table 5 and Figure 5. According to the outcome data in this study, HB diagrams
specified that the spiropyrazoles derivatives bind to the proteins via hydrogen bond and disintegrated
interactions energies in kcal/mol existed among the spiropyrazoles derivatives with 3tt8 receptor as
exposed in Figure 6. Also, based on this value, it can propose that interaction among the 3tt8 receptor
and the spiropyrazoles is possible [52]. Further, 2D plot bends of docking with spiropyrazole products
are displayed in Figure 7.

Table 5. Energy data gotten in docking measurements of spiropyrazoles derivatives with 3tt8 receptor.

Cpd. No.

Est. Free
Energy of
Binding

(kcal/mol)

Est.
Inhibition
Constant
(Ki) (µM)

vdW+ bond+
Desolve Energy

(kcal/mol)

Electrostatic
Energy

(kcal/mol)

Total
Intercooled

Energy
(kcal/mol)

Interact
Surface

(1) −5.06 193.78 −6.45 −0.03 −6.48 640.460
(2) −4.92 247.10 −6.57 +0.01 −6.56 594.819
(3) −6.36 21.62 −7.32 −0.01 −7.33 611.749
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3.5. SEM Tests

The SEM test gotten from coins of Q235 steel existence and lack of 11 × 10−6 M spiropyrazoles
products after dipping for three days obtain in Figure 8. The surfaces suffer from damaged corrosion
attack in the blank. Due to the stress out when the composite appending in the solution, the morphology
of the tests free surfaces was smoother. We observed a film creation which distributed in a random
way on the whole surface of Q235 steel. This may be understood as being due to the spiropyrazole
products adsorbed of the on Q235 steel which block the active center on alloy. This causes less contact
among alloys and the aggressive enlivenments, and sequentially gives best protection effect [53,54].
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Figure 8. SEM images of Q235 steel in corrosive environments attendance and lack of unlike dose of
11 × 10−6 M spiropyrazoles.

3.6. EDS Test

The EDS tests were applied to measure the elements obtain on the surface of Q235 steel and after
3 days of coated in the lack and attendance of corrosive solution. Figure 9 gives the EDS data from the
composition of Q235 steel only without the acid and presence spiropyrazoles. The EDS show that only
oxygen and iron were detected, and the film passive was obtained with only Fe2O3.

The spectra give added lines, lead to the existence of C (C atoms of spiropyrazoles products).
These data provide that the O and C atoms enclosed surface. The elemental detected is listed in Table 6.
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Table 6. Mass % of Q235 steel after 3 days in corrosive environments attendance and lack of unlike
dose of 11 × 10−6 M spiropyrazoles.

(Mass %) C O Al Si S Cl Cr Mn Fe Rb Tb

Pure Sample 7.08 – 0.28 0.27 – – 0.24 0.46 87.14 – 4.53
Blank 11.98 17.64 0.29 0.30 0.14 0.18 0.19 0.39 65.54 0.46 2.89

Compound (1) 13.05 14.03 0.31 0.23 – – 0.20 o.43 67.56 – 4.19
Compound (2) 12.68 16.99 0.01 0.26 – – 0.19 0.41 65.70 – 3.76
Compound (3) 12.53 16.07 0.23 0.28 – 0.03 0.18 0.40 65.68 0.73 3.87

3.7. Quantum Chemical Calculations

The Mulliken charges and molecular orbital bends of spiropyrazole products given in Figure 10.
Theoretical tests were obtained for only the forms of neutral, in order to gotten further insight into the
experimental results. Data of quantum chemical chief to ∆E and EHOMO and ELUMO are measured
and listed in Table 7. The improved or lesser negative EHOMO is inhibitor related, the higher the
trend of offering electrons to unoccupied d orbital of Q235 steel, and the progress of the corrosion
hindrance. The lesser ELUMO, the greater the acceptance of plain electrons from surface of Q235
steel [55,56]. ∆E assumed by the tests in case of spiropyrazole (1) is less than (3) (Table 7) given
spiropyrazole (1) molecule will absorb more highest on alloy surface than others, due to electron easy
transfer between HOMO and LUMO occurred among its adsorption on the surface of Q235 steel and
the maximum of hindrance productivity [57]. It can be seen that all tests of quantum checking these
results from experimental.
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Table 7. The measured quantum chemical propertiesfor spiropyrazoles products.

Quantum Chemical Properties (1) (2) (3)

−EHOMO (eV) 8.006 8.007 8.021
−ELUMO (eV) 4.318 4.317 4.309

∆E (eV) 3.688 3.690 3.712
η (eV) 1.844 1.845 1.856
σ (eV)−1 0.542 0.542 6.165
−Pi (a.u) 6.162 6.162 0.538
χ (eV) 6.162 6.162 6.165

S (eV)−1 0.271 0.271 0.269
ω (a.u) 3.081 3.081 3.0825
∆Nmax 3.341 3.339 3.321

3.8. Mechanism of Protection

From the results of electrochemical tests, the IE% relies on metal nature, dose, surface conditions,
and the kind of spiropyrazole derivatives adsorption on Q235-steel.

The outcome data of corrosion data attendance of these inhibitors:

• With an increase in the dose of the inhibitor, the corrosion rate becomes lower
• The exchange in Tafel lines to extreme regions of potential.
• The %IE relies on excharge density and their equipment of adsorption centers in the molecule.

Metals such as iron, which are highly attractive to aromatic rings, were gotten to adsorb benzene
rings in a flat direction. The order of breakdown of the %IE of the spiropyrazoles in the corrosion
solution was in the following order: (1) > (2) > (3).

Spiropyrazoles (1) demonstrations best hindrance power because: (i) it has greater molecular size
(558.25) that may enable best surface coated and bigger molecular area and (ii) its adsorption among
6 active sites (2-N and 4-O atoms). Spiropyrazoles (2) comes after (1) in %IE because it has fewer
molecular size (528.24) and minus active site (1-O and 2-N atoms). Spiropyrazoles (3) is the smallest
one in %IE, this is due to it having a minor molecular size (502.18), the appending of p-Cl group is
electron withdrawing group with (σ Cl = +0.23), and its order of protection relies on the magnitude of
their withdrawing character.

Concentration of the inhibitor is an important factor in adsorption. As illustrated in Figure 11,
at the adsorption density less than monolayer (Figure 11a), most of the nucleus sites are still likely to be
exposed to hydrochloric acid, as the inhibitor absorbs them less. When the adsorption intensity reaches
monolayer adsorption (Figure 11b), some nucleus sites begin to cover with the barrier particles. At the
maximum absorption density (Figure 11c), the inhibitor particles cover the entire surface, including
the sites of the nucleus, and then complete inhibition occurs.
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3.9. Conclusions

• All the spiropyrazole products are potentially brilliant corrosion inhibitors for Q235 steel.
The structures of these spiropyrazole inhibtors as well as the presence of certain substituents play
a vital role on their effectiveness anticorrosive agents.

• The results of EIS display enhancement in the charge transfer resistance and a decline in double
layer capacitances. When adding an inhibitor and thus an increase in% IE due to an increase in
the electrical double layer the thickness.

• The outcome values from electrochemical tests were in good agreement. The % IE of these
spiropyrazoles is: (1)>(2)>(3).

• Molecular docking and binding energy calculations of spiropyrazolederivatives (1)–(3) with the
receptor of 3tt8-hormone of crystal structure analysis of Cu human insulin derivative indicated
that the spiropyrazoles are %IE of receptor of 3tt8-hormone.

• The morphology of protected and no protected Q235 steel was tested by SEM and EDX.
• Quantum calculation results demonstrated that the heteroatoms of N and O are the active sites

ofthe spiropyrazole derivatives.
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