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Abstract: The society has become increasingly interested in using natural products over chemicals
for cleaning activities. In this study, the cleaning potential of formulations embedded in a hydrogel
matrix and composed respectively of essential oils (EOs) of Origanum vulgare, Thymus vulgaris, and
Calamintha nepeta, and their respective main active components (EO-ACs), viz., Carvacrol, Thymol,
and Pulegone, on a phototropic biofilm growing on granite was investigated. In addition, and
for comparative purposes, analysis with the combination of the three EOs, the combination of the
three EO-ACs, and Preventol RI-80® (one of the most effective commercial cleaning agents based
on quaternary ammonium salts) in all three cases embedded in a hydrogel matrix, as well as only
the hydrogel matrix, distilled water, and Preventol RI-80%®, in both latter cases applied with brush,
were also studied. The cleaning effect of the treatments was assessed immediately after the treatment
and after one and two weeks by color spectrophotometry, a reliable tool to evaluate the presence
and vitality of the phototrophs and the cleaning effectiveness in granite. C. nepeta and its active
component Pulegone proved to be the most effective and yielded similar results, comparable to those
of uncolonized granite, and better than those obtained with Preventol RI-80® applied with brush
(most common way), especially at the end of the experiment. These promising first results support
the suitable use of the phytochemical compounds used on phototrophs field where there are still
few published studies and encourage further investigation toward the evaluation of their exhibited
biocidal activity.

Keywords: essential oils (EOs); essential oil active components (EO-ACs); biodeterioration; granite;
non-destructive techniques; algae; antibiofilm; green methods

1. Introduction

Because it has been estimated that from 20% to 30% of stone deterioration is a result of biological
activity [1], it is clear that formation of subaerial biofilms, shortened to SABs and defined as “microbial
communities that grow on solid surfaces exposed to the atmosphere” [2], represent an important
topic for cultural conservation researchers. Many different methods, such as mechanical (brushing
and rubbing, washing and steaming, wet and dry abrasives, etc.), physical (UV radiation, laser, etc.),
chemical (alkaline and acidic treatments, organic solvents, etc.), and biological (viable bacterial cells,
enzymes, etc.) have been employed to eliminate SABs-forming colonizing microorganisms from stone
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surfaces [3]. Cleaning of SABs is a necessary operation for conserving historical stone buildings,
which generally is a very complicated procedure and involves a significant financial outlay. Chemical
products are currently most practical and are employed for this purpose [4-6], although their use is not
always encouraged on the basis of possible secondary implications on the environment and human
health [7].

Furthermore, in the case of poultices with quaternary ammonium-based compounds (QACs),
chemicals are largely employed in different fields because of their wide action for cleaning purposes
(since, besides being antimicrobial agents, secondarily are used as surfactants) [8-10]. They can promote
(as main side-effect) the recolonization of the surfaces by phototropic and heterotrophic microorganisms
able to use the organic residuals of the QACs as carbon and nitrogen sources [1,11]. Indeed, in the
study case of the Cave of Lascaux (France) it was demonstrated that the prolonged employment of a
QACs derivate (benzalkonium chloride) to eliminate the fungus Fusarium solani from a subterranean
mural painting increased the level of organic carbon content in the cave, with a consequent spread of
other fungi (Ochroconis lascauxensis) and bacteria (Ralstonia spp. and Pseudomonas spp.) highly resistant
to benzalkonium chloride and not originally detected on the surfaces [12,13]. Similarly, more recently,
Urzi et al. [14] evidenced a recolonization by bacteria, with a drastic increase in their diversity, after
a treatment with a mixture of quaternary ammonium compounds and octylisothiazolone (OIT) on
hypogea environment.

A possible alternative to chemicals is represented by the use of essential oils (EOs): secondary
metabolites produced by plants for the defense against pathogenic microorganisms and predators [15].
The increased interest in the use of these natural substances is partly attributable to their proved
cleaning and biocidal properties at concentrations low enough to be harmless for the environment and
human health [16]. The cleaning efficacy and biocide properties of some EOs on fungi and bacteria
naturally present on stone materials have been established, also in comparison with some QACs based
biocides. Stupar et al. [17] compared the minimal inhibitory concentration (MIC) of benzalkonium
chloride and the essential oil of Origanum vulgare against four strains of fungi isolated from a mural
painting (Aspergillus fumigatus, Aspergillus nidulans, Aspergillus versicolor, and Penicillium sp.). Essential
oils rich in phenolic compounds such as carvacrol were reported to possess high levels of antimicrobial
activity [18]. Other study of Stupar et al. [9] provided a similar test, employing three essential oils
belonging to the Lamiaceae family (Lavandula angustifolia, Rosmarinus officinalis, and Origanum vulgare)
and benzalkonium chloride in different concentrations against six fungi strains (Aspergillus niger Tiegh,
Aspergillus ochrauceus G.Wilh, Penicillium Link sp., Thricoderma viride Pers., Bipolaris spicifera (Bainier)
Subram, and Epicoccum nigrum Link). The lower MICs have been detected for O. vulgare and the QACs
based biocide while L. angustifolia and R. officinalis showed a significantly lower antifungal activity.
According to the authors [9], the different efficacies may be attributed to the composition of the EOs.
Each EO was constituted by a mixture of 20 to 60 compounds but one or two of these, in greater
proportion (20%-70% of the total composition), are the ones that establish the chemotype [15].

Phenolic compounds are one of the most important compounds in the EOs and are natural plant
metabolites with different functions, among which their antimicrobial action stands out. The cleaning
and biocidal efficacy of EOs with a predominantly phenolic composition have been demonstrated in
the study of Mironescu et al. [19], where the fungicidal action of Thymus vulgaris, Thymus serpyllum
and Foeniculum vulgare, mainly composed respectively by the monoterpenoids carvacrol, thymol, and
estragol, was significantly greater than that attained by three EOs characterized by a predominant
concentration of hydrocarbons.

Even if the bactericidal and fungicidal action of EOs has been demonstrated, few research deals
with their potential use on photoautotrophic microorganisms (cyanobacteria and algae), i.e., pioneer
colonizer of stone substrata [20]. Among those few studies, recently Bruno et al. [21] tested the
efficacy of two EOs (Lavandula angustifolia and Thymus vulgaris), mixed together, against three
commonly found cyanobacterial strains of subaerial biofilms detected in catacombs (Scytonema
julianum, Oculatella subterranean, and Leptolyngbya sp.). The results showed that both concentrations
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used (1% and 10%) inhibited the photosynthetic activities of the cyanobacteria, even if the mixture at
1% required two applications to make the biological activity undetectable.

In the present study, the cleaning potential of formulations embedded in a hydrogel matrix and
composed respectively by Origanum vulgare, Thymus vulgaris, and Calamintha nepeta essential oils (EOs)
and their respective main active components (EO-ACs), viz., Carvacrol, Thymol, and Pulegone were
assessed on a phototropic biofilm growing on granite stone. The comparison of EOs versus EO-ACs,
such as terpenic phenols (thymol and carvacrol) and terpenic ketone (pulegone) is very valuable to
know if the effect of the latter is increased by being combined with other compounds present in the
commercial oils. In addition, and for comparative purposes, analysis with the combination of the three
EOs, the combination of the three EO-ACs, and Preventol RI-80® in all three cases embedded in a
hydrogel matrix, as well as only the hydrogel matrix, distilled water and Preventol RI-80®, in both
latter cases applied with brush, were also analyzed. The cleaning effect of the treatments was assessed
immediately after treatment and after one, and two weeks by color spectrophotometry.

In the context of this article, these treatments denote the cleaning effectiveness, i.e., removal of
biofouling from granite surface, only removal not considering the microbial abatement related to
biocide effect of treatment, intended to destroy, deter, or exert a controlling effect on organisms by
chemical or biological means. In this sense, color spectrophotometry, the technique used in the study,
allows to reliably evaluate the cleaning effectiveness in granite [3,8].

2. Materials and Methods

2.1. Granite Blocks Inoculated with Phototrophic Microorganisms

The culture selected for the experimentation was already described in the study of Vazquez-Nion
et al. [22]. This latter is mainly characterized by the presence of phototrophic microorganisms
(green algae and cyanobacteria), in particular: Bracteacoccus minor (Schmidle ex Chodat) Petrova,
Stichococcus bacillaris Nageli, Chlorella sp., Isocystis sp., Aphanocapsa sp., Leptolyngbya cebennensis
(Gomont) .Umezaki and M.Watanabe. The culture was derived from a natural biofilm growing on a
historic granitic building in Santiago de Compostela (Monastery of San Martifio Pinario, Santiago de
Compostela, Spain) and demonstrated to be particularly suitable to reproduce a natural biofilm on
granite stones in laboratory conditions, as the study of Vazquez-Nion et al. evidenced [23].

2.2. Essential Oils and Their Main Active Compounds

Three EOs of Origanum vulgare, Thymus vulgaris, and Calamintha nepeta were purchased from
specialized retailers of natural phytochemical products. Oils of Origanum vulgare and Thymus vulgaris
were purchased from Esencias Martinez Lozano (Murcia, Spain) and the oil of Calamintha nepeta
from Joulienne Fauconnier (Corse, France). On the basis of their composition (Table 1), carvacrol,
thymol, and pulegone were selected as the “active principles” (respectively carvacrol for O. vulgare,
thymol for T. vulgaris, and pulegone for C. nepeta). The pure thymol (>98.5%) carvacrol (>98%) and
(R)-(+)-pulegone (>90%) compounds were purchased from Aldrich Corp. (St Louis, MO, USA).
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Table 1. Chemical characterization and chromatographic area percentage of the compounds present
in the essential oils (EOs). Minor compounds (concentration < 0.02%) have not been included. The
concentrations in percentage of the active principles are indicated in bold.

Compound. C. nepeta T. vulgaris 1 O. vulgare
a-thujene 0.1 1.3 1.3
a-pinene 1.1 0.9 0.9

Camphene 0.04 1.0 0.1
Sabinene 0.4 - -
-pinene 1.1 0.3 0.1

3-octanone 0.1 - 0.3
-mircene 1.1 1.9 1.1
3-octanol 1.7 - -

a-phellandrene 0.1 0.2 0.1

a-terpinene 0.3 1.6 0.7
p-cimene 0.2 15.8 6.5
Limonene 9.9 0.4 0.2

1,8-cineole 0.5 0.4 0.2
cis-b-ocimene 0.2 - -
trans-b-ocimene 0.2 - -

Y-terpinene 0.5 10.2 59

cis-sabinene 0.1 - -
hydrate

Terpinolene 0.2 0.1 0.2
Linalool 0.7 45 1.6
Camphor 0.1 0.8 -
Menthone 21 0.2 -

Isomenthone 3.8 - -

Borneol - 1.2 0.2
Menthol 0.1 - -
terpinene-4-ol 3.1 14 0.6
a-terpineol 0.5 0.2 0.1
Verbenone - 0.2 -
Pulegone 55.2 - -
Piperitone 0.6 - -
Thymol - 46.4 3.8
Carvacrol - 4.0 70.5
Piperitenone 10 - -
piperitenone oxide 0.4 - -
x-copaene 0.1 - -
B-bourbonene 0.1 - -
trans-fB-caryophyllene 0.5 2.0 2.0
germacrene D 0.9 - -

o-humulene 0.1 - 0.2

3-bisabolene - - 0.3

y-cadinene 0.3 0.1 -

5-cadinene 04 0.1 -
carophyllene oxyde - 0.2 0.2

! Data provided by the producer (Esencias Martinez Lozano, Murcia, Spain).

2.3. Experimental Setup

The capacity of the essential oils (O. vulgare, T. vulgaris and C. nepeta) and their active principles
(Carvacrol, Thymol, and Pulegone) as cleaning agents on phototrophs colonizing granite blocks was
studied. For this purpose, twelve granite blocks (5 cm X 5 cm X 2 cm) were inoculated with 3 mL
(1.19 g-L71) of the previously described phototropic culture (Section 2.1) and maintained in controlled
and stationary conditions of temperature (23 °C), relative humidity (80%), and light (12 h light/dark
photoperiod) in a climatic chamber (SCLAB PGA-1228/2 HR) until biofilm formation (Figure 1).
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Figure 1. Confocal laser scanning microscopy (CLSM) imaging of the biofilm thrived on the granite
surface. The red is the autofluorescence from the chlorophyll of the phototrophs, the green indicates
the lipids stained with Lipidtox Green, and the grey is the reflection of the granite stone. Scale bar is
10 um. A Leica TCS SP5 X CLSM (Leica Microsystems, Wetzlar, Germany) equipped with a white light
laser and a 63X objective (NA 1.4, glycerol) was used to obtain the image.

When the granite samples showed the same level (or degree of presence) of biological colonization,
each sample surface was divided into three replicate areas, each of ca. 1.7 cm X 5 cm, and different
treatments were applied (Figure 2).

WITH HYDROGEL

O. vulgare C. nepeta Carvacrol Pulegone

Thymol
T3 2.00% T4 093% 1.41%

T. vulgaris

2.00% 1.10%

T1 2.00% i,

: i C I 1N

T. wulgaris arvacro Hydrogel alone Preventol RI-80% WITHOUT HYDROGEL / \
0. vulgare Thymol ( |
C. nepeta Pulegone 5.00% - b

T7 2.00% T8 1.15% Preventol RI-80 Water + brushed

2.00% + brushed
Ti1

Figure 2. Schematic diagram of the experimental setup for testing the phytochemical compounds as
cleaning agents.

The surfaces were treated with three commercial essential oils of the aromatic plants O. vulgare (T1),
T. vulgaris (T2), and C. nepeta (T3), and the active principles present on the aforementioned plants:
Carvacrol (T4), Thymol (T5), and Pulegone (T6). Furthermore, to evaluate an eventual synergic action
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between the substances and a consequent empowerment of their respective biocides properties, two
additional emulsions were prepared mixing together the three essential oils (T7) and the three active
components or phenolic compounds (T8). For the application, the products were incorporated inside
an innovative hydrogel matrix conceived for the cleaning of cultural heritage materials, based on a
mixture of surfactants and polymeric substances (0.4% w/w Gelrite (Sigma-Aldrich, St. Louis, MO,
USA), 4% w/w PVA (Sigma-Aldrich), 0.045% w/w CaCl,, and 5% w/w Acemoll CC (ACEEF, Fiorenzuola
D’Arda (PC), Italy) dissolved in distilled water). The hydrogel matrix was also applied alone (T9) to
determinate its own cleaning efficacy, enabling it to make a comparison when it is used alone or in
combination with other substances. Finally, treatments with commercial biocide Preventol RI-80®, a
well-known QAC that has given suitable results in cleaning of phototrophic biofilms [24], incorporated
in the hydrogel matrix (T10) and applied with a brush (T11), and distilled water applied with a brush
(T12) were included, for a total of 12 different treatments (Figure 2). An uncolonized clean granite
sample was also incorporated as reference.

The concentration employed in the treatment emulsions containing the essential oils, alone (T1-T3)
and combined (17), and those containing Preventol RI-80® (T10 and T11), was 2% (w/w) and 2%
(v/v) for T10 [25-28]. As already mentioned, the essential oils used in the study have as principal
active component various phenolic compounds at certain concentrations. To investigate and establish
the potential contribution of phenols in the biocidal action of oils, it was decided to use the same
concentration of phenolic substances presents in the essential oils in the hydrogel emulsions (results
reported in Table 1). For example, considering that 70.5% is the percentage of Carvacrol in O. vulgaris,
the final concentration of the active substance in the emulsion with the hydrogel was 1.41% (T5 in
Figure 2). The same was applied in the other cases: T4, T6, and T8 (Figure 2).

All treatments with hydrogel (from T1 to T10) were applied to the colonized surfaces with a
paintbrush, left for a week until the hydrogel matrix dried completely, and then removed by peeling
it off. In the cases without hydrogel, i.e., Preventol RI-80® (in T11) and distilled water (T12) both
treatments were applied with a paintbrush, allowed to dry, and then removed brushing the surface
with a soft brush.

2.4. Chemical Characterization of the Commercial Essential Oils (EOs)

In the case of O. vulgare and T. vulgaris, both oils were acquired from the company Esencias
Martinez Lozano, Murcia, Spain, which provided the chemical analyses and the relative data sheet
containing the identified compounds at the respective concentrations (Table 1). C. nepeta oil was
analyzed with a gas chromatography—mass spectrometry (GC-MS) system (Shimidazu, Kyoto, Japan)
equipped with a MEGA SE52 5% polydiphenyl-95% dimethylsiloxane-bonded phase column (Mega,
Legnano, Italy) (dim. 30 m X 0.32 mm X 0.15 um). The oven temperature used was initially 50 °C
heating to 250 °C at a rate of 3 °C/min. The operating conditions were: injection temperature 250 °C,
carrier (helium) flow rate of 1 mL/min, electronic impact mode of 70 eV, injection in the split mode,
interface at 230 °C, quadrupole temperature 150 °C, transfer line temperature 280 °C, SCAN acquisition
mode (masses interval: 35-350 AMU). For the analyses, the oil extracts were diluted in cyclohexane
(5 mg/mL). The identification of the compounds was realized by comparing the mass spectra reported
in the commercial libraries and using the retention indexes compared with those of the reference
libraries [29].

2.5. Evaluation of Cleaning Effectiveness by Using Color Spectrophotometry Analysis

The cleaning effect of the treatments was assessed immediately after treatment, and after one
and two weeks, by color spectrophotometry, a reliable tool to evaluate the presence and vitality of
phototrophs [30-35] and the cleaning effectiveness in granite [8,24].

A portable spectrophotometer (CM-700d, Konica Minolta, Tokyo, Japan) equipped with a
CM-S100w software (SpectraMagic'™ NX) was used for instrumental color measurements, under the
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following analytical conditions: D65 illuminant, 2° observer, target area of Smm o and SCI mode.
Three measurements were made in each replicate area, i.e., nine measurements by each treatment.

Color was measured directly on randomly selected areas of the humid colonized surfaces [36]:
before cleaning, immediately after cleaning, one week after cleaning, and two weeks after cleaning.
Monitorization for 14 days was carried out in order to evaluate the effectiveness and persistence of each
treatment over time in terms of cleaning, and to evaluate the change of color of the substrate over time.
The data were analyzed using the CIELAB color system [37], where of the three parameters (L*, a* and
b*) that define it, only the chromatic parameters, i.e., a* (associated with changes in redness-greenness)
and b* (associated with changes in yellowness-blueness) proved relevant for evaluating the efficacy
of the treatments, as in Sanmartin et al. [8,24]. Thus, partial differences in these parameters were
determined using the following equations:

Aa* = a* —a* )

Ab* = b*; — b% @)

where the subscript i denotes the average value of the parameter immediately after, one or two weeks
after the cleaning procedure, and the subscript 0 denotes the average value of parameter before the
application of the treatments. Positive values of Aa* indicate reddening, and negative values indicate
greening. Positive values of Ab* indicate yellowing, and negative values indicate blueing.

2.6. Statistical Analysis

The data were subjected to analysis of variance (ANOVA) and Tukey’s HSD post-hoc test
(p-value < 0.05) implemented in the SPSS statistical program (version 23.0).

3. Results and Discussion

3.1. Essential Oils (EOs) Content and Chemical Composition

The chemical compositions of the essential oils (C. nepeta, T. vulgaris, O. vulgare) are detailed in
Table 1. A total of 36 compounds have been identified in C. nepeta (96.8% of the total composition), 25
compounds in T. vulgaris (95.3% of the total composition) and 23 compounds in O. vulgare (96.7% of the
total composition). The presence of the major phenolic compounds in each oil (i.e., active principles)
have been confirmed, where Pulegone represents the 55.2% of the total composition of C. nepeta, thymol
the 46.4% of T. vulgaris and carvacrol the 70.5% of O. vulgare. The presence of Carvacrol (4%) has been
detected also in T. vulgaris, as well as thymol (3.8%) in O. vulgare.

3.2. Cleaning Effectiveness of the Treatments

In all cases, a single application of the treatment successfully removed much of the subaerial
biofilm, as assessed by naked eye observation (Figure 3). After cleaning, main visual changes were
observed in T3, T6, T9, T11, and T12; two weeks after cleaning T4 and T7 were added to the list (Figure 3).

Before cleaning, chromatic color data from all samples were included in a small color gamut,
ranging between —5.0 and —3.0 CIELAB units for a*, and between 18.1 and 15.3 CIELAB units for
b* (Figure 4). They can be considered similar starting points according to colorimetric criteria and
considering the upper limit of rigorous color tolerance or noticeable change in color of three CIELAB
units [38,39].
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BEFORE

CLEANING

AFTER
CLEANING

ONE WEEK
AFTER CLEANING

TWO WEEKS
AFTER CLEANING

Figure 3. Macroscopic appearance of the samples studied throughout the experimental period.

As seen in Figure 4 and Table 2, after cleaning all treatments led to changes toward red (marked
by an increase in the coordinate a* and positive values of Aa*) and blue (marked by a decrease in
the coordinate b* and negative values of Ab*) components. This trend continued until the end of the
experiment, and increased with time. Thus, two weeks after cleaning the chromatic values are close to
the reference value indicated by an uncolonized clean granite sample (Figure 4). It demonstrated that
the changes were associated with the effective cleaning during the experiment and not with a change
in color of the granite substrate. In this regard, it also indicates that observing the more consistent
variations of Ab*, it seems that this coordinate was more informative for the purpose of the study, in
line with previous studies of phototrophic biofilms on granite rocks [33].

21
18
15

12

b* (associated with changes in yellowness-blueness) (CIELAB units)

-6 -3 0 3

a* (associated with changes in redness-greenness) (CIELAB units)
®BEFORE CLEANING ~ ® AFTER CLEANING ~ © ONE WEEK AFTER CLEANING ~ © TWO WEEKS AFTER CLEANING ~ ® UNCOLONIZED GRANITE

Figure 4. Color changes of the samples studied throughout the experimental period in the b* versus a*
diagram. Each symbol is also identified by a sub-legend showing the sample’s treatment (codes are
shown in Figure 2).
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Table 2. Changes in the green-red color component (Aa*) and blue-yellow color component (Ab*) in
the treated samples throughout the study period. Different superscript letters in each row indicate
significant differences (p < 0.05) in relation to the different stages of the sample’s treatment for a given
partial color difference.

Aa* (CIELAB Units) Ab* (CIELAB Units)
Treatment Components After One Week Two Weeks After One Week Two Weeks
Cleaning afte‘r afte.r Cleaning afte.r afte'r
Cleaning Cleaning Cleaning Cleaning
T1 T. vulgaris 244 4.48 538 -2.0A -7.3B -9.0B
T2 O. vulgare 224 3.68 4.3 -1.7A -7.3B -8.88
T3 C. nepeta 4.0 484 4.8% -6.3% -10.18 -11.58
T4 Thymol 1.24 2.58 2.98 -0.84 -5.98 -8.78
5 Carvacrol 2.74 3.61B 448 -3.54 -7.8B -8.98
Té Pulegone 3.74 5.1B 5.08 -6.8% -10.98 -12.78
T7 All EOs 0.94 2.68 2.88 —0.24 -5.68 -8.0¢
T8 All APs 3.04 418 448 0.04 -5.58 -7.3C
T9 Hydrogel 4.08 4.68 4.58 -3.94 -7.68 -8.28
T10 Preventol + 2.1A 4.6 5.0 —2.7A —4.4AB —6.3B
Hydrogel

T11 Preventol 3.14 418 428 -7.54 -9.28 -9.78
T12 Water 3.14 324 3.64 8447 -9.14 -10.04

Taking into account both chromatic coordinates, the treatments that provoked significant color
changes after their application were T3, T5, T6, T9, T10, T11, and T12 (data not shown), while those that
exceeded the threshold of 3 CIELAB units in both partial differences Aa* and Ab* were T3, T6, T9, T11,
and T12 (Table 2). These results are consistent with those reported by naked eye observation (Figure 3).

In T6, T9, and T11 there were significant changes in values of Aa* (increasing) and Ab* (decreasing)
between immediately after treatment and one week later, and in the case of T3 it was only in Ab*
(Table 2). It shows that after cleaning, these four treatments left some organism alive over the surface
of the stone, whose color after one week turned from pale green to yellow and then bleached due to the
senescence and death of the cells and the concomitant degradation of chlorophyll-a content [32,33,36].

At the end of the experiment, all treatments achieved values of a* ranging between —0.7 and 0.6
CIELAB units, very close to the reference a* value of the uncolonized granite of 0.3 CIELAB units
(Figure 4). In the case of b*, the values ranged between 10.4 and 5.1 CIELAB units, with a reference
value of 5.2 CIELAB units (Figure 4), allowing to use this coordinate to make differences between
the treatments’ success, in line with the above mentioned. Accordingly, T3 and T6 obtained a value
practically identical to that of the reference, with values of b* of 5.1 and 5.4 CIELAB units respectively,
yielded therefore the best results. This resulted in the end of study, not continuing it over time. T4, T11,
T7, T5, and T1 produced results of b* away from reference value in 1.5, 1.7, 2.1, 2.8, and 2.9 CIELAB
units, all below the previously indicated visual threshold of 3 CIELAB units. The other treatments,
ie, T12, T2, T8, and T9, with b* values ranged between 8.2 and 8.4 CELAB units, barely exceeding this
threshold; whereas T10 reached a partial difference of b* with respect to the reference of 5.2 CIELAB
units (> 5 CIELAB units, the normal limit of perception in industrial or technical applications [38,40]).

Pulegone (T6) is the main component of C. nepeta oil (T3), so the most effectiveness of both
treatments in the cleaning should be attributed to this terpenic ketone, which seems to be effective
either applied individually or incorporated in an oil product. For visual comparative purposes,
these results can also be observed in Figure 5. A previous study where the essential oil active
components (EO-ACs): limonene, menthone, pulegone, and menthol were tested against the bacteria
Listeria monocytogenes, Bacillus cereus, Salmonella veneziana, S. paratyphi B, and S. typhimurium, and
the fungi Fusarium moniliforme, Botrytis ijjinereal, Aspergillus niger, and Pyricularia oryzae, using the
agar diffusion technique, showed also that only pulegone had an effective response regarding the
antimicrobial activity, particularly against the Salmonella species [39]. Preventol RI-80® embedded in a
hydrogel matrix (T10), on the contrary, was the least effective cleaning treatment of the twelve tested,
but not its two components separately, Preventol RI-80® applied with a brush (T11) and hydrogel (T9).
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It could be due to an incompatibility of both compounds when mixed, i.e., they are more effective
separately than together, which impedes the effective action. Similarly, the treatments where the three
essential oils were combined (T7) and, to a greater extent, where the three active compounds were
combined (T8) yielded rather poor results, similar to T. vulgaris (T1) and O. vulgare (T2) oils separately,
and their active components Thymol (T4) and Carvacrol (T5) also separately, which indicated that
the effect of C. nepeta (T3) and Pulegone (T6) in the mixture, is either neutralized or turns out to be in
an excessively low percentage to achieve a successful effect. However, in a previous study by Bruno
et al. [21] the application of a combination of essential oils from L. angustifolia and T. vulgaris was
effective in killing phototrophic biofilms also at low concentrations. Also, O. vulgare proved, in a
previous study [9], to be the most effective, compared to L. angustifolia and R. offocinalis, with regards to
antifungal properties, using Epicoccum nigrum and Bipolaris spicifera as test species, with comparable
results to those obtained with the commercial biocide QACs derivate benzalkonium chloride.

2 :

Figure 5. Granite samples (a) examined under a stereoscopic microscope Nikon Eclipse E600, Tokyo,
Japan. Scale bar is 500 um. (b) photographed with a macro lens Tamron SP 90mm F/2.8 Di MACRO 1:1.
Scale bar is 1 cm. (1) Uncolonized, (2) colonized, (3) cleaned with C. Nepeta (T3).

It is well-known that essential oils are widely used in various industries. However, it should be
remembered that the chemical composition of the EOs and the content of bioactive compounds are
variable, even when they come from the same plants. Differences in composition of the EOs may affect
its effectiveness and may be variable. Also, it is possible to suppose that the efficacy of essential oils
is closely related with the ratio of the active components in their composition, whereas the efficacy
of essential oils and essential oil active components are related with the target microorganisms. As
an example, C. nepeta of autochthonous aromatic plants from Alentejo (Portugal) demonstrated high
toxicity against Artemia salina shrimp larvae and presented higher content in oxygenated monoterpenes,
with 1,8-cineole as main component [41], while in our study 1,8-cineole was found at a concentration
of barely 0.5% (Table 1).

4. Conclusions

In general, the results obtained for the essentials oils (both alone and combined) are comparable
with those of their respective major terpenic compounds. This confirms the high contribution in the
biocidal action of the major compound (i.e., active principle) in the heterogeneous composition of the
essential oil. This result is encouraging in view of possible future experimentations that will provide
the employment of the active principles alone, which presents advantages as: (i) formulation of ad hoc
treatments with simpler product combinations and (ii) lower treatment costs.
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C. nepeta and its active component Pulegone yielded similar results, comparable to those of
uncolonized-clean granite, proving to be the most effective treatment, even better than application of
Preventol RI-80® plus brushing (most common treatment at present).

The efficacy of the phytochemicals on the target microorganism seems to depend on their chemical
composition. This matter must be investigated deeply in order to create treatments containing single
or mixtures of products against a specific, characterized biofilm.

To investigate the biocidal properties of these EOs, and not only the cleaning ones, future studies
should involve re-inoculating the treated samples with the same phototropic culture to determine if
the presence of the eventual residual compounds may influence the growth of the microorganisms.

Finally, it is worth indicating that it is the first study where phytochemical compounds are
embedded in a hydrogel matrix and applied on phototrophic subaerial biofilms. This innovative mode
of application, which uses harmless gel with high adhesive properties, avoids the deleterious effect of
brushing on surface stone.
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