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Abstract: In this study, a novel high-manganese steel (HMS) was borided at 850, 900 and 950 ◦C for 2,
4, and 6 h by the pack boriding process. Contrary to previous literature, borided HMS uncommonly
exhibited saw-tooth morphology like low alloy steels, and manganese enhanced the boron diffusion.
Another striking analysis is that the “egg-shell effect” did not occur. The present study demonstrated
the silicon-rich zone for the first time in the literature by EDX mapping. Moreover, the formation
mechanism of silicon-rich zones was explained and termed as “compact transfer of silicones (CTS)”.
XRD analysis showed the existence of FeB, Fe2B, MnB and SiC phases. The boriding time and
temperature increased the thickness of the boride layer from 31.41 µm to 117.65 µm. The hardness
of the borided layer ranged from 1120 to 1915 HV0.05. The activation energy of borided HMS was
found to be a very low result compared to high alloy steel investigated in the literature. The Daimler-
Benz Rockwell-C adhesion test showed that adhesions of borided HMS surfaces are sufficient. The
dry sliding wear tests showed that boriding treatment increased the wear resistance of untreated
HMS by 5 times. The present study revealed that the boriding process extended the service life of
HMS components.

Keywords: boriding; high manganese steel; wear; diffusion kinetic; adhesion test

1. Introduction

High manganese steel (HMS) has been used in automotive [1,2], mining [3,4], and
defense industries [5], as well as in oil and slurry pipes [6]. In particular, HMS has been
widely used in industrial applications such as steelmaking equipment, crusher jaws, impact
hammers, hoppers, grinding mill liners, crawler treads for tractors, and in the manufac-
ture of cement and clay products [3,4]. It is also advised to use for construction, heavy
equipment, and military bulletproof tanks by steel manufacturers such as POSCO. Its
wear-resistance, high formability, high toughness at low temperature, non-magnetism, and
high strength causes an increasing interest of its use in these industries. HMS has these
superior properties through transformations in its microstructure. HMS shows three differ-
ent deformation mechanisms: TRIP (Transformation Induced Plasticity), TWIP (Twinning
Induced Plasticity) and TRIP/TWIP. In the TRIP mechanism, retained austenite transforms
to martensite under strain [7]. The TWIP mechanism exhibits twin formation (γ–γT’) under
mechanical loads [8]. The TRIP/TWIP mechanism performs both deformation twinning
and transformation of austenite to martensite during the deformation [9]. The roles of
alloying elements are quite effective in the differences in the microstructure of HMS. One
of the most important alloying elements affecting the microstructural transformation of
HMS against impacts is silicon. Silicon content of more than 1% in steel prevents the
formation of cementite and stabilizes austenite at room temperature [10]. Many steel
manufacturers (such as POSCO) invest in the manufacturing of HMS seriously due to its
superior mechanical properties. Therefore, HMS usage has increased in many industrial
areas such as mining, construction equipment, and slurry transporting. However, a major
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problem of these industrial applications is the decrease of the lifetime of components
because of wear. Under extreme conditions, HMS cannot provide adequate wear resistance
by itself. To solve this problem, surface treatments have been commonly applied to protect
equipment and ensure superior wear resistance under harsh conditions. Since boriding is
an economical and effective surface treatment, it can be preferred for improving the wear
properties of HMS.

Boriding is a thermo-chemical process applied to improve the surface properties
of metals. The boriding is usually applied between 800 to 1050 ◦C over a period of
0.5 to 10 h [11]. Although the boriding is carried out in plasma, liquid and gas media,
pack (solid) boriding is the most commonly used in industry due to its affordable and
simple process compared with other boriding methods. Moreover, pack boriding does
not need to use a complex machine system. As a result of the boriding process, single
Fe2B phase or Fe2B and FeB phases (double layer) are formed together on the surfaces of
steel. When FeB phase occurs, it is formed above the Fe2B phase. As mentioned above,
the boriding process is used to enhance surface properties of metallic materials such
as corrosion resistance [12,13], hardness [14,15], wear resistance [16–18], tribo-corrosion
resistance [19,20], and radiation protection [21]. There are many studies in the literature
focusing on improving the wear and corrosion resistance of steel. Gutierrez-Noda et al.
carried out boriding on AISI M2 at 950 ◦C for 6 h and reported that the boriding process
decreased the wear rate of the substrate [22]. Keddam et al. obtained that the plasma
paste boriding process significantly increased the wear resistance of AISI 440C steel [23].
Cardenas et al. investigated tribological behaviors of D2 and H13 steels. They observed
that the wear resistance of the borided steels was 13 times higher than that of the unborided
substrate [24]. Günen et al. reported that boriding increased the corrosion resistance of the
AISI 304 steel against the acid solution about by seven times according to the unborided
sample [25]. Medvedovski reported that boriding was a unique surface treatment for
corrosion and wear resistance of large, long, and complex shaped steels and ferrous alloy
tubular components used at the refinery, for oil and gas processing, etc. [26]. Medvedosvki
and Antonov evaluated the dry erosion and slurry erosion resistance of borided J55 and
L80 that were widely used in mineral processing and oil production. They deduced that
borided components and tubing used in mineral processing, downhole oil production
conditions and various engineering applications could be successfully employed [27].

Novelty of the Work

In this paper, boriding of a novel HMS was investigated. If the wear resistance
of HMS is further improved, it will have longer service life and wider applications in
many industries. Since no study has been observed in the literature about tribological
properties of borided HMS, this study focuses on investigating the wear behavior, adhesion
properties and diffusion kinetic of borided HMS at different processing temperatures and
holding times.

2. Materials and Methods

The HMS used in this study was melted in an induction furnace and cast as a slab.
The cast slab was homogenized at 1100 ◦C for 6 h. The slab was subsequently air-cooled to
room temperature. The slab was heated at 1100 ◦C for 30 min before hot rolling to 5 mm
and cooled in air. The hot-rolled sheet was subsequently cold-rolled to 45% thickness
reduction in 4 passes. The chemical composition of HMS is shown in Table 1.

Table 1. Chemical composition (in wt%) of the HMS.

C Si Mn P S Cr Ni Mo Cu Al Fe

0.278 2.75 13.804 0.011 0.017 0.195 0.036 0.058 0.067 0.092 balance

The samples were cut to dimensions of 30 × 15 mm. Samples were mechanically polished
with SiC sandpaper up to 1500 grade. The boriding was carried out at 850, 900 and 950 ◦C for
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2, 4, and 6 h using the pack boriding method in a conventional furnace. EKabor-II powders
(90 wt% SiC, 5 wt% B4C, and 5 wt% KBF4) were used for boriding. After treatment, the
box was cooled down in the furnace slowly. The microstructural analysis of the sample
was conducted with a scanning electron microscope (SEM-TESCAN MAIA3 XMU). The
operating parameters were carried out with acceleration voltage: 20 kV, detection: BSE,
beam intensity: 16.00, scan step: 200 nm. The component of the boride layer was studied
by employing energy dispersive X-ray spectrometry (EDX) microprobe within SEM. The
presence of borides formed in the layers was confirmed using X-Ray diffraction (XRD-
Rigaku Ultima IV diffractometer) using Cu Kα radiation, 30 kV, 20 mA (λCu = 0.1540 nm).
The investigated angular range was between 3◦ and 90◦, steps scan of 3◦ and counting time
of 1 m. The thicknesses of boride layers were measured with SEM. The micro-hardness
(Shimadzu HMV-G series) was measured from the surface to the center in a line with
a Vickers indenter with a 50 gr load for 15 s. Table 2 shows the sample nomenclature.
Additionally, the unborided sample was termed base metal (BM).

Table 2. List of samples of borided HMS.

Temperature (◦C) Time (h) Sample

850 2 852

850 4 854

850 6 856

900 2 902

900 4 904

900 6 906

950 2 952

950 4 954

950 6 956

The adhesion of the boride layers was determined by Daimler-Benz Rockwell-C
adhesion test. The Daimler-Benz Rockwell-C adhesion test (BMS 200 RB) is applied
according to the VDI 3198 norm, as a destructive quality test for coated compounds [28].

Diffusion kinetics of borided HMS was calculated with:

x2 = D × t (1)

where x is the depth of the boride layer (mm), t is the boriding time (s), and D is the growth
rate constant depending on the boriding temperature [29]. The growth rate constant, D,
can be expressed by an Arrhenius equation as follows:

D = D0 exp(−Q/RT) (2)

where D0 is a constant, Q is the activation energy (J/mol), T is the absolute temperature in
Kelvin and R is the universal gas constant (8.31434 J/mol K) [29].

The surface roughness of the boride layer was examined by a portable surface rough-
ness tester (Mitutoyo SJ-410 series). At least three measurements were carried out to
calculate the average roughness of the surfaces. The friction coefficient (COF) plots of all
samples were obtained during the dry sliding wear tests.

The dry sliding wear test was studied on a rectilinear reciprocating wear tester
(Turkyus POD&HT&WT). Wear tests were carried out to use 6 mm diameter WC (1917 HV
hardness) counter material on a rectilinear reciprocating wear tester due to its high hard-
ness. Figure 1 shows the schematic diagram of tribotest. The x axis indicates the wear track
width, and the y axis defines the wear ball movement direction during the tribotest.
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Figure 1. Schematic diagram of tribotest.

The presence of wear debris at the sliding interface unidirectional motion like pin-
on-disk can be found less than under reciprocating wear test condition due to centrifugal
force. This force causes the removal of wear debris from the counter surface. Therefore,
the reciprocating wear test circumstances will be more drastic than unidirectional motion
like pin-on-disk [30]. HMS is generally used in mining, oil drilling and defense industries.
According to some of the reasons mentioned above, the reciprocating wear test method
displays more realistic results in the industrial usage of this steel. The wear tests were
implemented under the load of 5, 10, and 15 N. Çimenoğlu et al. reported that no deforma-
tion was observed on Fe2B or Fe2B/FeB layers during the tests applied under lower loads
(3 N load) because of Hertzian forces [16]. According to Gök et al. as the critical value of
mechanical stress is exceeded, crack formation occurs more easily [17]. They carried out
the wear test under 5 N and they observed delamination type wear mechanism at their
samples, which is why the initial point of the wear test performed in the present study is
5 N load. Since the wear behavior of borided HMS was aimed to be observed under the
different loads, the wear tests were applied under 5,10 and 15 N loads. The total sliding
distances on the specimens were 200 m for each load. Each test was repeated three times
for each load. The wear volume losses were obtained by post-test analysis of the wear scars
measured using 3-D profilometry (HUVITZ HDS-5800). The wear rates were calculated
according to:

R = V/l.d (3)

R is the relative wear rate (mm3/Nm), V is the wear volume (mm3), l is the load (N),
and d is the sliding distance(m).

3. Results and Discussions
3.1. Microstructural Characterization and XRD Analysis

FeB phase was not observed at 850 and 900 ◦C in Figure 2a,b; however, XRD results
proved the presence of FeB at all boriding processes. FeB and Fe2B phases can be viewed
obviously in Figure 3. Although HMS was high alloying steel (14% Mn and 2.75% Si),
the saw-tooth borided morphology unexpectedly occurred on its surface. The saw-tooth
structure commonly occurs at the borided low carbon and low-alloy steel [31–33]. In
addition, Sinha reported that manganese flattened out the saw-tooth morphology in carbon
steel and prevented the boron diffusion [32]. The flat boride morphology appears on the
surface of high alloying steel [3,9,24], since the presence of alloying elements in grain
boundaries blocks the diffusion of boron atoms from the surface to the inside of the high
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alloy steel [34,35]. Figure 3 exhibits that Mn is densely accumulated in the saw-tooth boron
layer. Martini et al. explained that the saw-tooth boride layers were observed in steels
because the iron borides prefer to grow in a crystallographic direction [001]. The iron
borides contact neighbor crystals and grow inside the metal as an acicular (saw-tooth)
shape. This layer grows in-depth, leading to a strong (002) preferred orientation [36].
This analysis may also be suitable for manganese borides. Ma et al. reported that MnB
adopted an orthorhombic Pnma (space group) structure, isotropic with FeB [37]. Hence,
the similarity of crystal structures of MnB and FeB can cause a saw-tooth morphology on
borided HMS.
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Figure 2. Cross-section SEM microstructures of borided HMS samples: (a) 854, (b) 902.

An evident boundary line that was not seen in many studies—particularly in studies
exhibiting the saw-tooth morphology [16,31,38]—was also observed in Figure 2a,b and
Figure 3. The boundary line separated the borided layer and transition zone. During
boriding C and Si atoms diffuse away from the boride layer to the matrix and form boro-
cementite (Fe3(B, C)) and iron-silico-borides as a separate layer under the Fe2B layer [32].

Several studies have found that the three regions are boride layer (BL), transition zone
(TZ), and BM matrix in borided steel [17,29,39]. BM matrix was zone unaffected by heat
or boron. TZ formed below the boundary line and was distinguished by the hardness
different from that of the BM. Figure 3 also shows that there is a silicon-rich zone (SRZ) in
the boride layer. Therefore, SRZ can be accepted as the fourth region of boride layer.
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The most striking result to emerge from the data is shown in Figure 3. Since iron
borides and manganese borides prevented the diffusion of Si from the metal core towards
the surface of HMS, Si concentrated strongly between the borided layer (BL) and transition
zone (TZ). Taktak [39] and Gök et al. [17] determined Si diffusion with the EDX line. In this
study, SRZ was confirmed by the EDX mapping. SRZ is seen obviously in Figure 3 due to
the high Si content of the HMS. As the borides formed, they push the Si atoms towards
the steel core. Additionally, Si atoms in steel move towards the surface with increasing
temperature. Si atoms cannot reach the surface because Taktak [39] reported that Si could
not soluble in iron borides, concentrating effectively at the interface of steel. Si atoms
accumulate between BL and TZ and SRZ occurs. Since this formation was not given any
name in the literature, it was termed “compact transfer of silicones (CTS)”.

The SEM micrograph of sample 904 and its EDX point analyses are shown in Figure 4
and Table 3, respectively. The significant data in Table 3 revealed that Si and Al could not
dissolve in iron borides and MnB. Al and Si ratios increased in SRZ due to their insolubility
or solubility limits in the boron layer. The differences between BL and SRZ, where neither
B nor Si was detected, respectively, are highlighted in Table 3. Moreover, it was determined
that aluminum presence in SRZ has increased compared to BL and TZ. Although Al and B
form intermetallics, such as AlB2 and AlB12, they are not observed as they are unstable at
room temperature [40].

Figure 5 shows that the presence of Fe2B (JCPDS 00-003-1053), FeB (JCPDS 00-002-
0869), SiC (JCPDS 00-002-1042), and MnB (JCPDS 03-065-5149) phases are detected in
XRD analysis. Although FeB was not seen in SEM micrographs (Figure 2a,b), XRD results
revealed its presence. XRD analysis revealed that the predominant phases were FeB and
Fe2B. The aforementioned MnB adopted an isotropic orthorhombic Pnma structure with
FeB [37]. This situation was discovered in Figure 3. Since Mn formed borides with a lattice
constant similar to that of iron borides, it tended to dissolve in Fe2B and FeB phases. SiC
can be formed during boriding due to the high level of Si in HMS.
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Figure 4. EDX point analyses of SEM micrograph of sample 904.

Table 3. Results of EDX point analyses of sample 904, wt%. (BL: borided layer; SRZ: silicon-rich zone;
TZ: transition zone).

Point Zone Fe B Mn Si C Al S

1 BL 57.4 19 13.1 - 10.4 0.1 -
2 BL 57 19.3 12.5 - 11.2 0.1 -
3 BL 57.2 18.2 12.6 - 11.9 0.2 -
4 SRZ 76.6 - 9.9 5.7 5.9 1.9 -
5 SRZ 76.3 - 9.9 5.9 5.9 1.9 -
6 SRZ 75.9 - 9.5 5.8 7.1 1.7 -
7 BL 65.3 11.2 18 - 5.4 - -
8 BL 62.9 11 18 - 8.1 - -
9 BL 58.5 15.4 16.4 - 9.6 0.1 -

10 TZ 64 - 11.9 1.5 21.1 0.7 0.8
11 TZ 73.4 - 14.4 2.1 8.9 1 0.2
12 TZ 71.4 - 14 2 11.2 0.9 0.4

3.2. Thicknesses of Boride Layers and Microhardness

Figure 6 shows that the thicknesses of boride layers range from 31.41 to 117.65 µm
depending on treatment temperature and time. Minimum and maximum boride layer
thicknesses were observed at samples 852 and 956, respectively. The thickness measure-
ments indicated that the thickness of the boride layer increased with increasing process
time and temperature. The comparison of boride layer thicknesses of different steels
between this study and the other studies in the literature is shown in Table 4. It shows
that HMS has the second-highest borided layer thickness in high alloy steel. Although
Sinha reported that manganese reduced the boride layer thickness in carbon steel [32], the
thickness measurements show that Mn facilitates boron diffusion in HMS.
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Table 4. The comparison of boride layer thicknesses between literature and in this study.

Steel Temperature (◦C) Time (Hour) Max. Layer Thickness
(µm) Reference

AISI 420 950 6 64 [29]

AISI 304 950 6 37 [29]

AISI 304L 950 6 45 [29]

AISI H13 1000 6 96.46 [17]

AISI 1040 950 8 ~200 [31]

AISI P20 950 8 180 [31]

AISI D2 1000 7 126.8 [35]

AISI 4140 900 3 42 [20]

HMS 950 6 117.65 in this study

Figure 7 exhibits the cross-sectional microhardness measurement profile of borided
HMS samples. The hardness of unborided HMS was 532 HV0.05. The highest hardness
value was seen at 902 (1915 HV0.05). The hardness of the boride layers is approximately
three to four times higher than that of the BM matrix due to the presence of FeB, Fe2B,
and MnB phases which are significant for increasing the hardness of the surface. In the
studies of Gök et al. [17] and Kayali [29], the high Cr content in steel caused chromium
borides formation, which are harder than manganese borides, to reach hardness values
of boride layer above 2000 HV. On the other hand, Duran et al., who boronized Inconel
718, was able to reach almost 1300 HV boron layer hardness due to the lower hardness of
nickel borides than manganese borides [14]. Compared with unborided HMS, the hardness
of the BM matrix in borided steel decreases with the effect of time and high temperature.
However, in the literature, there is a common ratio between hardness and boriding time and
temperature increases [17,29,31,41], which was not observed in this study. The changing
distribution of various phases (MnB, FeB, Fe2B) in the boride layer can cause fluctuations
in the hardness plot.
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3.3. Diffusion Kinetics

Process temperature and time are kinetic parameters of boriding treatment, and they
are significant for controlling boriding treatment [42]. If the activation energy is low,
diffusion will occur easily. Figure 8 exhibits a linear relationship between ln D and 1/T. The
calculated value of activation energy for the boriding process in the HMS is 198.486 kJ/mol.
Table 5 shows that Q calculated in the present study was compared with the results detected
in the literature. Activation energy values increased in high alloy steel due to the presence
of alloying elements in grain boundaries that block the diffusion of boron atoms from the
surface to the inside of the steel [34,35]. Since the steels used in references [44] and [45] are
low alloy steel, their activation energies have lower values than the HMS used in this study.
However, it was observed that the activation energy of HMS was lower than other high
alloy steels according to Table 5. The relevance of Mn that enhances the boron diffusion is
supported obviously by the current diffusion kinetic results in Table 5.
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Table 5. The comparison of the boron activation energy (Q) of HMS with other steels in the literature.

Steel Boriding Method Q (kJ/mol) References

AISI H13 Salt Bath 244.37 [39]
AISI 304 Salt Bath 253.35 [39]

AISI 440C Pack boriding 203.723 [41]
AISI H13 Pack boriding 233 [43]
AISI D6 Pack boriding 180.539 [44]

AISI 1018 Pack boriding 148.3 [45]
HMS Pack boriding 198.486 In this study

3.4. Rockwell-C Adhesion Properties

Rockwell-C indentation was applied to analyze the adhesion properties of boride
layers on HMS. The test is simple, low cost and can be suitable to identify the failures of
borided layers. VDI 3198 Rockwell-C indentation test was carried out to cause damage
on the borided layer under 1471 N load. The damage to the boride layer was compared
with the quality map in [28]. The indentation craters of borided HMS formed after the
adhesion test were evaluated by using SEM. The adhesion strength quality HF1–HF4
defines strong interfacial, whereas HF5 and HF6 define poor interfacial adhesion between
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the coating and the substrate [28]. Applied load and the contact geometry cause shear
stresses at the interface. Suitable coatings manage to resist these stresses and prevent
extended circular delamination, however, extended delamination at the crater around
specifies a poor interfacial adhesion [28,46,47]. Three indentations were deployed for each
specimen and intended surfaces were evaluated by SEM.

In conventional steels containing more than 0.8% Si, Si generates a very soft ferrite
zone between the base material and the boron layer during boriding. At higher surface
pressure, a quite brittle and hard boride layer is significantly damaged softer intermediate
layer due to its penetration. Therefore, Si reduces the wear resistance of boride layers. The
case is called the egg-shell effect [32,33]. However, Si affects to refine ε-martensite plates
in HMS [48]. Since ε- martensite was a harder phase than ferrite, no egg-shell effect was
detected in borided HMS in this study. Related results are shown in Figure 9.
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Figure 9 shows that there are radial cracks at the circumference of indentation craters
without any flaking or delamination on surfaces of borided HMS. The adhesion strength
quality of surfaces of all samples used in this study match with HF1 and HF2. The VDI
3198 indentation test shows that there are strong interfacial bonds between the borided
surface and HMS. Zong et al. [41], Taktak and Tasgetiren [46] observed HF5-HF6 adhesion
quality at 1000 and 950 ◦C, respectively. Additionally, Zong et al. determined HF4-HF5
adhesion quality at 950 ◦C [41]. Both studies attribute that FeB is more prone to cracking
and spalling due to tensile residual stresses under mechanical strain than Fe2B. However,
in both studies, high chromium steels were used, and we think that hard, brittle chrome
borides would have caused these adhesion damages, since in this study no delamination
was observed on the surface as a result of the adhesion test, despite the boriding process at
950 ◦C for 6 h. The high content of MnB in boronized HMS, which has less hardness than
chromium borides [37], may have caused this result.
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3.5. Roughness, COF and Reciprocating Dry Sliding Wear Tests

Figure 10a–c demonstrate COF plots recorded during the wear tests of all samples,
that were carried out under 5, 10, and 15 N loads, respectively. Moreover, Table 6 shows
the mean value of COF results of all samples. The COFs of the BM were lower than those
of the borided samples at all three test loadings. Although the COFs of sample 954 were
lower than BM under the load of 5 and 10 N, the BM had lower COF than sample 954
under the load of 15 N. The COF can be affected by many parameters, such as the adhesion
strength of the coating, hardness, roughness and distribution of phases occurred on the
substrate surface [35]. Svahn et al. found that rougher surfaces have higher COF [49]. The
low surface hardness of the substrate can cause low COF [20,50]. Costa-Aichholz et al. [20]
reported that in the low hardness unborided sample, when in contact with the counter
material plastic deformation occurs; being these deformations a result of ease to shear
surface that leads to a low COF, according to the borided sample. Peaks show very high
COF for borided morphology due to the high roughness of borided samples (902, 854, 956
in Figure 10a–c, respectively) in Figure 10. This could be owing to sharp asperities causing
abrasive behavior leading to infrequent high COF [51]. This situation causes three-body
wear between the sliding surfaces.
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Table 6. Average roughness and COF of samples (COF: coefficient of friction, St.D.: Standard
Deviation).

Sample Ra (µm) COF

5 N 10 N 15 N

Mean St.D. Mean St.D. Mean St.D.

BM 0.267 0.506 0.246 0.403 0.246 0.359 0.239

852 0.836 0.503 0.322 0.485 0.317 0.421 0.268

854 1.044 0.509 0.330 0.558 0.322 0.579 0.327

856 0.710 0.557 0.280 0.444 0.272 0.559 0.310

902 0.813 0.594 0.249 0.514 0.285 0.479 0.289

904 0.758 0.454 0.249 0.540 0.285 0.548 0.289

906 0.417 0.569 0.353 0.525 0.323 0.542 0.296

952 0.745 0.627 0.344 0.540 0.322 0.607 0.306

954 0.854 0.474 0.272 0.401 0.227 0.410 0.239

956 0.740 0.598 0.338 0.571 0.325 0.541 0.311

Table 6 shows that the COF of the BM is lower than that of all borided samples. The
surface roughness may have affected the COF results. The effect of high roughness is to
distribute the load over asperities contact leading to higher frictional resistance and so a
higher value of the COF can be obtained.

The volumetric wear results from dry sliding wear tests are shown in Figure 11. It
exhibits that an increase in the applied load increases the volumetric wear losses of all
samples. All borided samples performed lower volumetric wear loss than BM for each
wear condition. The lowest volumetric wear losses were observed at sample 954 under the
load of 5 and 10 N and sample 856 under the load of 15 N. Under 15 N load, sample 954
exhibited the second lowest volumetric wear loss. According to the literature, as boriding
temperature and time increase, volumetric wear loss occurs [17,35]. This interpretation
was related to the thickness and hardness of the boride layers obtained. In this study, a
steady volumetric wear loss was not seen from tribological results of borided samples
depending on the time and temperature increase. There are many parameters of material
loss from the contacting surfaces under the loading such as work hardening tendency,
applied load, type of relative movement, sliding speed, interfacial contact properties, and
test environment, determining the contact stresses at the interface and material proper-
ties [30]. Each parameter might have caused this unsteady volumetric wear loss due to
the complex morphology formed on the surface. In addition, reciprocating wear tests can
affect the results of wear volume loss because of presences of wear debris at the sliding
interface. Therefore, asperities might lead to different wear losses on the surfaces of each
borided sample.

The wear rates of samples are shown in Figure 12. The lowest wear rate was obtained
in 954, 954, 856 under the load of 5, 10 and 15 N, respectively. The highest wear rates
were observed at BM for each load. The hardness of the boride layer is significant for
the improvement of wear resistance [52]. Due to the hardness of the FeB, Fe2B, and MnB
phases, borided HMS showed more resistance to wear. The wear rate of the borided steels
is more than six times lower than BM under 15 N load. Both wear rate and wear volume
loss test results show that the boriding process significantly increases the wear resistance
of HMS.
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EDS analyses were carried out on the worn area after the dry sliding wear test. The
results of EDS line and mapping analyses aimed at determining the changes in the amount
of existing elements on the surface of borided samples and BM after the dry sliding wear
tests. Figure 13a,b shows EDX line analyses of samples 854 and BM, respectively. The x axis
indicates the wear track width, and the y axis defines the wear ball movement direction
during the tribotest. Figure 13a shows that the amount of Mn, S, Si, and K significantly
decreased after the wear test. K arose due to KBF4 in the boriding powder. B decreased
after the wear test, but it was not as much as the elements mentioned above. There was
no significant decrease in iron, however, a significant increase in oxygen along the line
indicates that oxide compounds are formed there. It is seen that the regions where oxygen
elements increase are in dark color in Figure 13b. The quantification results indicate the
decrease in iron and the increase in oxygen in these dark regions. Most likely, iron oxide
occurred on the surface after the wear test. Figure 13b shows that except Al, C, and Si, no
significant decrease in other elements actualized.



Coatings 2021, 11, 1207 15 of 21Coatings 2021, 11, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 13. EDX line analyses of borided HMS: (a) 854-15 N, (b) BM-15 N. 

The most striking result to emerge from the data is that changes in Mn and S are 
noticed when comparing Figure 13a,b. Figure 13a shows that Mn and S significantly de-
creased after the wear test. It was determined that the amount of both elements—espe-
cially S—in the scale on the left side in the elemental analysis, increased significantly in 
the boriding process. As a result of the wear test in Figure 13b, a strong relationship be-
tween Mn and S does not appear in Figure 13a. MnS has a very low hardness, like 142 

Figure 13. EDX line analyses of borided HMS: (a) 854-15 N, (b) BM-15 N.

The most striking result to emerge from the data is that changes in Mn and S are noticed
when comparing Figure 13a,b. Figure 13a shows that Mn and S significantly decreased
after the wear test. It was determined that the amount of both elements—especially S—in
the scale on the left side in the elemental analysis, increased significantly in the boriding
process. As a result of the wear test in Figure 13b, a strong relationship between Mn
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and S does not appear in Figure 13a. MnS has a very low hardness, like 142 Vickers [53].
Therefore, Mn and S could decrease rapidly on the surface of borided HMS after the wear
test. MnS formation may have adversely affected the wear volume results of the boronized
layer because of its low hardness. However, it is not considered to be overly effective on
wear resistance of borided HMS.

Figure 14 shows the cross-sectional view near the surface of HMS before the boriding
process. MnS formation was not observed in Figure 14. EDS mapping analysis confirms
the absence of MnS formation on the surface of HMS in SEM image.
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Figure 14. Cross-sectional SEM view and EDS mapping analysis of unborided HMS.

Figure 15 provides additional evidence concerning MnS formation on the surface
of HMS during boriding. The structures circled in Figure 15 are assumed to be MnS,
probably formed by the effect of high temperature and low cooling kinetic that encourage
its nucleation and growth during boriding.

Due to boriding powder, K was detected in the EDS mapping analysis of borided
sample surface in Figure 15a,b. In Figure 15b, it is determined that oxides are formed
like a shell. When oxide shells were broken due to the worn ball, K filled in these spaces
(Figure 15a,b). As mentioned above, it is most likely that K stuck to the WC ball and filled
these gaps by the movement of the ball. Figure 15c confirms the oxidation layer analysis
performed in Figure 13b. The oxide layers are seen in dark color. Penetration of carbon
atoms on the edge of the oxide layer is shown in Figure 15c.

The surface morphologies of the worn samples are given in Figure 16. It is seen that
the oxide layer (dark region) partially delaminates under repeated loads because of plastic
deformations in Figure 16a. Micro-cracks also occurred on the oxide layer. In the wear test,
it is observed that the oxide layers formed on the surface disappeared with the increase
of the applied load in Figure 16b. The debris and grooves occurred on the surface of BM.
Almost the entire surface of borided HMS had smooth wear tracks. Micro-cracks on the
oxide layer and pits on the borided surface as a consequence of surface fatigue [50] can be
observed in Figure 16c,d. Figure 16d shows that particle impact-induced brittle fracture
caused spalling off of the oxide layer. Oxidative type local delamination was observed in
borided HMS. The oxide layer is spalled off in an area much larger than the impact crater,
while the substrate is almost unaffected [54].
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4. Conclusions

• Fe2B, FeB, MnB, and SiC phases were determined on the surfaces of borided HMS.
Although FeB was not observed at 850 and 900 ◦C in SEM micrographs, XRD results
proved that FeB existed. One of the stunning results was that saw-tooth morphology
was unexpectedly observed at the surface of borided HMS. SRZ was detected by
using EDX mapping and the formation of SRZ was named as the compact transfer
of silicones (CTS). The thicknesses of the boride layers on the surface of HMS range
from 31.41 to 117.65 µm, depending on boriding temperature and time. The thickness
results show that Mn enhanced the boron diffusion in steel. Diffusion kinetic results
support this analysis. The hardness also increases with the new phases formed.
According to the Daimler-Benz adhesion test, the adhesion quality of all borided HMS
is acceptable (HF1 and HF2). Contrary to previous studies, high silicon content did
not cause the “egg-shell effect”. It was also detected that MnS formed on the surface
of HMS during boriding.

• The COF and roughness value of the BM were lower than borided HMS. A small
number of wear damages were observed, such as oxide layer delamination, micro-
cracks and surface fatigue causing pits to occur on the surface of the borided HMS.
Delamination, micro-cracks, wear debris, and groove was detected on the surface of
BM. The results of this study indicate that boriding allows a longer service life and
increases the wear resistance of HMS. All borided HMS showed lower wear and rate
higher wear resistance for all wear test conditions than BM. Therefore, the boriding
process extends the service life of HMS components which are used in oil drilling,
mining processes, defense and various other industries.
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