
coatings

Article

On the Biodiversity and Biodeteriogenic Activity of Microbial
Communities Present in the Hypogenic Environment of the
Escoural Cave, Alentejo, Portugal

Ana Teresa Caldeira 1,2,3,* , Nick Schiavon 1,2 , Guilhem Mauran 1 , Cátia Salvador 1 , Tânia Rosado 1,
José Mirão 1,2,4 and António Candeias 1,2,3

����������
�������

Citation: Caldeira, A.T.; Schiavon,

N.; Mauran, G.; Salvador, C.; Rosado,

T.; Mirão, J.; Candeias, A. On the

Biodiversity and Biodeteriogenic

Activity of Microbial Communities

Present in the Hypogenic

Environment of the Escoural Cave,

Alentejo, Portugal. Coatings 2021, 11,

209. https://doi.org/10.3390/

coatings11020209

Academic Editor: Beatriz Prieto

Received: 6 January 2021

Accepted: 8 February 2021

Published: 11 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 HERCULES Laboratory, Universidade de Évora, 7000-809 Évora, Portugal; schiavon@uevora.pt (N.S.);
guilhem.mauran@mnhn.fr (G.M.); cscs@uevora.pt (C.S.); tania.s.rosado@gmail.com (T.R.);
jmirao@uevora.pt (J.M.); candeias@uevora.pt (A.C.)

2 City U Macau Chair in Sustainable Heritage, Universidade de Évora, 7000-809 Évora, Portugal
3 Departamento de Química, Universidade de Évora, Escola de Ciências e Tecnologia, 7000-671 Évora, Portugal
4 Geosciences Department, School of Sciences and Technology, Évora University, Rua Romão Ramalho 59,

7000-671 Évora, Portugal
* Correspondence: atc@uevora.pt

Abstract: Hypogenic caves represent unique environments for the development of specific microbial
communities that need to be studied. Caves with rock art pose an additional challenge due to the
fragility of the paintings and engravings and to microbial colonization which may induce chemical,
mechanical and aesthetic alterations. Therefore, it is essential to understand the communities that
thrive in these environments and to monitor the activity and effects on the host rock in order to better
preserve and safeguard these ancestral artforms. This study aims at investigating the Palaeolithic
representations found in the Escoural Cave (Alentejo, Portugal) and their decay features. These
prehistoric artworks, dating back up to 50,000 B.P., are altered due to environmental conditions and
microbial activity inside the cave. Microbial cultivation methods combined with culture-independent
techniques, biomarkers’ viability assays and host rock analysis allowed us to better understand
the microbial biodiversity and biodeteriogenic activity within the hypogenic environment of this
important cave site. This study is part of a long-term monitoring program envisaged to understand
the effect of this biocolonisation and to understand the population dynamics that thrive in this
hypogean environment.

Keywords: cave art; biofilm; microbial diversity; biodiversity; biomarkers

1. Introduction

Within the cultural heritage research field, cave rock art plays an essential role in
understanding the development of art and, more generally, of human cultural development.
Communities inhabiting Western Europe in the Upper Palaeolithic (35,000–10,000 BP)
left us numerous examples of cave artworks in the form of paintings, drawings and
engravings testifying the development of this unique phenomenon. Many of these artworks
have suffered and are suffering chemical, mechanical and aesthetic alterations due to
physical, chemical and biological weathering processes induced by the colonization of
host rock surfaces by microbial communities [1–3]. In order to preserve cave artworks
for future generations, it is therefore essential to develop analytical tools and protocols
enabling fast and reliable monitoring of the microbial activity present on decorated walls
in prehistoric caves.

Previous studies have successfully isolated and identified the presence in several cave
environments of pathogenic fungi such as Hitoplasma capsulatum, Microsporum gypseum and
Trichophyton mentagrophytes [4], or Trichosporon [5–8]. Beside issues related to a potential
threat to human health, fungi and, more generally, micro-organisms are responsible for
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both aesthetic (formation of red, pink, purple, blue, green, white spots) and/or physico-
chemical (cracks, oxidation, solubilisation, and precipitation episodes) alterations on the
decorated parietal surfaces of the cave. In particular it has been shown that microbial
communities may promote biomediated precipitation [9,10] and/or dissolution of car-
bonate minerals [11]. Both processes may damage the parietal paintings found inside of
caves because the artworks can disappear underneath a biomineralised calcite deposits
and/or alter themselves severely due to the weakening of their support caused by microbial
acid attack.

Several studies have focused their attention on the formation of biofilms on stone mon-
uments and their alteration induced by microbial communities. Although the large majority
of them concentrated on stone building and monuments [8,12–21], mortars [22,23] and
mural paintings [24–30], the presence of microbial biofilms have also been widely reported
on the walls of several hypogean caves [3,31–37], catacombs [38–41] and crypts [22,29,42].
Studies carried out on Altamira Cave’s microbial communities, for instance, have re-
vealed the presence of a large diversity of micro-organisms inducing numerous wall’s
alterations [2,10,43–51]. These studies demonstrated that microbial biofilms in caves are
associated with complex and significant interactions between the diverse communities
responsible for their growth. A large extent of caves’ speleothems, such as moonmilk, are
thought to result from calcification of biofilms.

In the field of cultural heritage and more precisely cave rock art, effective and fast
methods are therefore required to identify the communities contaminating these artworks
and their influence on the conservation of the archaeological site where they are found.
Although several tests exist for assessing biocontamination in samples such as soils and
modern building material [52–55], only few have been done to rapidly assess the extent
of microbial contamination in caves displaying rock artworks [36,56,57]. Developing
such tests would help to quickly understand the threats facing the artworks and to assist
conservators and public authorities in planning effective interventions.

This study reports the use of several complementary techniques to assess the microbial
diversity and activity inside a unique Portuguese archaeological site: the Escoural Cave.

The Escoural archaeological site is a natural cave located near Montemor-o-Novo
(Alentejo, Portugal, coordinates: 38◦32′37.05′′ N, 8◦8′14.99′′ W). The cave was discovered
in April 1963 during quarrying after an explosion for extracting-marble-block revealed
the existence of a cavity at the site. At present, the visits to Escoural Cave are limited
to 2 per day and 10 persons per visit following an advanced-booking agenda. It was
occupied by humans from the Middle Palaeolithic until the Early Chalcolithic, with no
outside disruption since the Early Chalcolithic until its discovery in 1963. The cave hosts
numerous altered paintings and engravings dating back (35,000–10,000 BP) to the Upper
Palaeolithic [58]. Most of the representations are covered by layers of re-precipitated calcite
minerals due to water leaking on the walls of the cave; on several areas of the cave walls,
biological outbreaks associated with the development of microbial communities can be
identified. (Figure 1). The present work aims at providing for the first time a first insight on
the microbial diversity and activity in Escoural Cave to better understand their influence
on the paintings found inside the cavity.
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Figure 1. In situ observations of biological and microbial contaminations in the Escoural Cave.
(A) Macrofungi growth covered by other microbial communities. (B) Widespread fungal growths
on the walls of the cave. (C) Roots and sap developing on the ceiling of the cave. (D) Root coming
out of soil covering the walls of the cave. (E) Microbial colonies. (F) Effect of precipitation, with
pigmentation and the buildup of calcite crusts. (G) Biological colonization and moonmilk deposition.

2. Materials and Methods
2.1. Sampling

In situ observations highlighted a large diversity of biological contaminations present
within the Escoural cave (Figure 1).

Samples were collected with a sterile scalpel parallel and not touching the walls
surface and/or by rubbing the walls’ surface with cotton swabs at different locations of
the cave with various potential biological contaminations, and then stored in sterile tubes.
The samples collected by cotton swabs were preserved in sterile MRD. The location of
each sample was precisely documented through various photographs taken during the
sampling procedure.

2.2. Microbial Contamination: Assessment and Diversity
2.2.1. SEM

In order to assess the microbial contamination of the samples and observing the
microbiota colonizing the cave walls, its extent and activity on the marble host-rock,
microsamples were observed by Scanning Electron Microscopy (SEM).

Microsamples were coated with Au-Pd (Quorum Q150R ES) during 300 s, at 25 mA,
and observed in a HITACHI S-3700N variable pressure scanning electron microscope
(VP-SEM) with accelerating voltage of 9–10 kV using Backscattered detector mode.

2.2.2. Isolation Procedure

Biological samples were diluted in MRD and inoculated (100 µL) in media such
as nutrient agar (NA, HIMEDIA—peptic digest animals of 5 g/L, beef extract 1.5 g/L,
yeast extract 1.5 g/L, sodium chloride 5 g/L and agar 15 g/L) for bacteria isolation, malt
extract agar (MEA, HIMEDIA—malt extract 30 g/L, peptone mycologic 5 g/L and agar
15 g/L) and Cooke’s Rose Bengal (CRB, Mikrobiologie—peptone 5 g/L, glucose 10 g/L,
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dipotassium hydrogen phosphate 1 g/L, magnesium sulfate 0.5 g/L, Rose Bengal 0.05 g/L,
chloramphenicol 0.1 g/L and agar 15.5 g/L) to fungi development.

The cultures were incubated at 30 ◦C for 24–48 h for the development of bacteria, and
for 4–5 days at 28 ◦C for fungal growth. To detect slow microbial growth, the inoculated
Petri dishes stayed in incubation more time (up to 30 days). Each different colony observed
was picked up to obtain pure cultures, stored at 4 ◦C and periodically peaked to maintain
the cultures active.

Microscopic observations of the fungal stained with Lactophenol Blue solution (Pan-
Reac AppliChem) and bacterial strains were performed using an optical microscope BA410E
Motic coupled to a camera MoticamPRO 282B and the Motic Images Plus 2.0LM software.

2.2.3. High-Throughput Sequencing

To study the biodiversity and have a full view of the microbial populations thriving
inside the Escoural cave, Next Generation Sequencing (NGS) analyses were performed
on three different locations of the cavity. The three areas were chosen due to their high
potential diversity of microbial contamination.

DNA was extracted from samples using QIAmp DNA Stool Mini Kit (Qiagen, Lim-
burg, Netherlands), with minor modifications to manufacturer’s instructions.

Bacterial and Fungal communities were characterized by Illumina Sequencing for the
16S rRNA V3-V4 region and Internal Transcribed Spacer 2. DNA was amplified for the
hypervariable regions with specific primers and further reamplified in a limited-cycle PCR
reaction to add sequencing adaptor and dual indexes. First, PCR reactions were performed
for each sample using 2X KAPA HiFi HotStart Ready Mix. In a total volume of 25 µL,
12.5 ng of template DNA and 0.2 µM of each PCR primer. For bacteria the following
primers were used: forward primer Bakt_341F 5′-CCTACGGGNGGCWGCAG-3′ and re-
verse primer Bakt_805R 5′-GACTACHVGGGTATCTAATCC-3′ [59,60]. For fungi, a pool of
forward primers was used: ITS3NGS1_F 5′-CATCGATGAAGAACGCAG-3′, ITS3NGS2_F 5′-
CAACGATGAAGAACGCAG-3′, ITS3NGS3_F 5′-CACCGATGAAGAACGCAG-3′, ITS3NG
S4_F 5′-CATCGATGAAGAACGTAG-3′, ITS3NGS5_F 5′-CATCGATGAAGAACGTGG-3′, and
ITS3NGS10_F 5′-CATCGATGAAGAACGCTG-3′ with the reverse primer ITS3NGS001_R
5′-TCCTSCGCTTATTGATATGC-3′ [61]. The PCR conditions involved 3 min of denatura-
tion at 95 ◦C, followed by 25 cycles of 98 ◦C for 20 s, 55 ◦C for 30 s and 72 ◦C for 30 s and
a final extension at 72 ◦C for 5 min. Negative controls were included for all amplification
reactions. Electrophoresis of the PCR products was undertaken on a 1% (w/v) agarose gel and
the ~490 bp V3-V4 and ~390 bp ITS2 amplified fragments were purified using AMPure XP
beads (Agencourt, Beckman Coulter, USA) according to manufacturer’s instructions. Second
PCR reactions added indexes and sequencing adaptors to both ends of the amplified target
region by the use of 2X KAPA HotStart Ready Mix, 5 µL of each index (i7 and i5) (Nextera
XT Index Kit, Illumina, San Diego, CA, USA) and 5 µL of the first PCR product in a total
volume of 50 µL. The PCR conditions involved a 3 min denaturation at 95 ◦C, followed by 8
cycles of 95 ◦C for 30 s, 55 ◦C for 30 s and 72 ◦C for 30 s and a final extension at 72 ◦C for 5
min. Electrophoresis of the PCR products was undertaken on a 1% (w/v) agarose gel and the
amplified fragments were purified using AMPure XP beads (Agencourt, Beckman Coulter,
USA) according to manufacturer’s instructions. The amplicons were quantified by fluorimetry
with PicoGreen dsDNA quantitation kit (Invitrogen, Life Technologies, Carlsbad, CA, USA),
pooled at equimolar concentrations and paired-end sequenced with the V3 chemistry in the
MiSeq® according to manufacturer’s instructions (Illumina, San Diego, CA, USA). They were
multiplexed automatically by the Miseq® sequencer using the CASAVA package (Illumina, San
Diego, CA, USA) and quality-filtered with PRINSEQ software using the following parameters:
(1) bases with average quality lower than Q25 in a window of 5 bases were trimmed, and (2)
reads with less than 220 bases were discarded for V3-V4 samples and less than 100 bases for
ITS samples. The forward and reverse reads were then merged by overlapping paired-end
reads using the AdapterRemoval v2.1.5 [62] software with default parameters. The QIIME
package v1.8.0 [63] was used for Operational Taxonomic Units (OTU) generation, taxonomic
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identification and sample diversity and richness indexes calculation. Sample IDs were assigned
to the merged reads and converted to fast format (split_libraries_fastq.py, QIIME). Chimeric
merged reads were detected and removed using UCHIME [64] against the Greengenes v13.8
database [65] for V3-V4 samples and UNITE/QIIME ITS v12.11 database [66] for ITS samples
(script identify_chimeric_seqs.py, QIIME). OTUs were selected at 97% similarity threshold
using the open reference strategy. First, merged reads were pre-filtered by removing sequences
with a similarity lower than 60% against Greengenes v13.8 database for V3-V4 samples and
UNITE/QIIME ITS v12.11 database for ITS samples. The remaining merged reads were then
clustered at 97% similarity against the same databases listed above. Merged reads that did not
cluster in the previous step were again clustered into OTU at 97% similarity. OTUs with less
than two reads were removed from the OTU table. A representative sequence of each OTU
was then selected for taxonomy assignment.

2.3. Microbial Activity and Viability Assessment

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay is a screen-
ing method implemented in 1983 [67] to measure cell viability. It relies on the reduction
of tetrazolium salt by cells’ respiration’s process (through dehydrogenase enzyme activ-
ity) to purple formazan crystals [67,68]. The procedure followed the one developed by
Rosado et al. [69]. Weighted microsamples were mixed with 300 µL of MTT, solution
prepared with 1 M Tris-HCl buffer (pH 7.5) and 0.5% 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-
phenyltetrazolium chloride and incubated 4 h at 37 ◦C in the dark. The samples were then
centrifuged for 10 min at 10,000 rpm and the supernatant phase was removed to leave only
the purple crystals, which were dissolved in 350 µL of DMSO/ethanol (1:1). Tubes were
then mixed during 30 s with a Vortex mixer to ensure proper dissolution of the crystals.
The solutions were then kept for 10 min in the dark at room temperature and centrifuged
again during 10 min at 10,000 rpm. The amount of iodonitrotetrazolium formazan (INTF)
released was measured spectrophotometrically (U-3010; Hitachi, Tokyo, Japan) with 200 µL
of the supernatant in 96-wells plates at 570 nm.

Presto Blue® (PB) is a reagent based on the same process than the almar blue reac-
tion [70]. Cell’s respiration reduces the blue resazurin into red resofurin [71]. Because it is a
quite new reagent, only few studies already used it. The few found in the literature focused
on comparing its performance with other tests such as Almar Blue an MTT [68,70,72].
Those few studies demonstrated that the PB has comparable results with other methods
when used with absorbance but better detection limit and sensitivity when used with
fluorescence [70,72].

PB assays were carried out in 96-wells plates, each well containing 90 µL of a prepared
solution to be tested and 10 µL of the PB reagent. Plates were then incubated at 37 ◦C for a
specific time, determined after kinetic studies of the reaction of PB with solutions of known
number of microbial cells. The change of absorbance at 570 and 600 nm allowed to quantify
the viable cells present in the prepared solutions.

2.4. Biodeteriogenic Activity
2.4.1. Raman Spectroscopy

Raman spectroscopy was used to assess the presence of microbial contamination in the
different samples, and to detect some metabolic products derived from their biodeteriogenic
activity. Measurements were performed without any preparation of the samples by Raman
micro-spectrometry using a HORIBA Xplora Raman microscope (Tokyo, Japan), with
capacity increased to one hundred times, and a charge coupled device detector. Analyses
were carried out with two different lasers of 638 and 785 nm with a 1–50% filter to avoid
samples’ destruction. The spectra were acquired in scanning mode after 5 to 10 scans with
an acquisition of 10–20 s and spectral resolution of 5 cm−1.
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2.4.2. Simulation Assays

Once the microbial strains were isolated and characterized, experiments were conducted
to assess their ability to alter the marble rock substrate and therefore the artwork hosted in
Escoural Cave. Rock fragments collected outside the cavity were crushed, cleaned, sterilized
and inoculated with different micro-organisms, isolated from culture-dependent techniques.

Eight distinct abundant microbial strains isolated in the cave were used to carry out
these microbial colonization and contamination’s laboratory mock-ups: three bacteria
(b3c, b13b, b16b) and five fungal strains (Cladosporium sp., Aspergillus niger, Penicilium sp.,
Mucor sp. and one unknown specie). Each experiment was performed in duplicate with
fresh slant culture, 5 days old. Microorganisms were collected by diluting them in 4 mL
of Malt Extract (ME). The suspensions were then gently mixed to ensure their relative
homogeneity. Thence 100 µL of each suspension was inoculated on a sterile rock. The
inoculation and culture were performed in a sterile environment.

Two stone controls were also performed. All the stone were then incubated at con-
trolled temperature for 1 month. During all the period of incubation, samples were carefully
monitored and photos were taken to record the development of the microbial communi-
ties. At the end of the assays, the rocks were then observed by SEM, following the same
procedure as for the real samples (Section 2.2.1).

3. Results
3.1. Assessment and Diversity of Microbial Contamination

The in-situ observations of the biological and microbial contamination of Escoural
Cave (Figure 1) allowed us to assess and scale the various biological and microbial con-
taminations’ state found in the cave. Bats’ feces (guano) were considered to be the most
contaminated areas of the cave due to their large organic content and the numerous known
fecal micro-organisms present. As microbial growths (Figure 1A,B) were spotted only in
some rare occasions, they were considered to be punctual in space and time. Therefore,
they only constituted a minor microbial contamination. Presence of roots (Figure 1C,D)
coming from the ceiling or the walls of the cave, acted as source of nutrients and repre-
sented areas characterized by a high biological contamination hosting a large microbial
population. However, numerous spots presented only speleothems that could be attributed
to microbial activity with no relation to outdoor nutrient sources. Furthermore, because no
particular micro-organism seemed to be active, they were considered as spots of very low
contamination (Table 1).

Table 1. Assessment of the biological contaminations inside the Escoural cave by PB and MTT tests.

Location PB
(au)

MTT
(au)

GdE 3 1.80 ± 0.02 0.40 ± 0.04

GdE 8 6.0 ± 0.5 0.50 ± 0.07

GdE 23 0.49 ± 0.05 0.02 ± 0.005

The estimation of the biological outbreaks was later confirmed by SEM observations
of the microbial structures present in the samples. It even provided some insight on the
microbial populations and revealed the presence of a large diversity of micro-organisms
thriving inside the cave. Various structures were spotted inside the cavity ranging from
fungal hyphae to bacterial EPS with the occasional of arthropod’s bodies and of unidentified
microbial structures (Figure 2).
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Figure 2. Micrographs from Escoural Cave showing the diversity of the microbial contamination in the samples from
Escoural Cave. (A) Rock surface without microbial contamination. (B) Widespread fungal colonization of the rock surface
with numerous hyphal structures (C) Hyphal structure developing over a micro-leaf and presence of an unidentified
structure. (D) Bacterial EPS developing over the rock surface. (E) Fungal hyphae and bacteria. (F) Spherical unidentified
structure of possibly microbial origin. (G) Microbial structure. (H) Fungal spore. (I) Arthropod’s corpse.

Analyses of the microbial diversity provided better insights of the population thriving
inside the cavity. The culture-dependent methods highlighted the large predominance of
bacterial communities (more than 90% of the microbial population) over the fungal ones
(around 10%). It was possible to culture different micro-organisms, isolating and distin-
guishing different strains namely 62 fungal strains, 22 bacterial strains and 5 microalgae or
cyanobacterial strains. Among the 62 isolated fungal strains, 13 (representing 7% of the
isolated fungal population) could not be yet identified. The commonly encountered genera
such as Penicilium, Aspergillus, Cladosporium, Mucor, Trichoderma and Fusarium (Table 2)
represent more than 92% of the isolated strains.



Coatings 2021, 11, 209 8 of 16

Table 2. Diversity of the isolated fungal strains present on the Escoural Cave.

Fungi Genus %

Penicillium 29.22

Mucor 28.84

Aspergillus 18.22

Cladosporium 10.82

Unknown 7.78

Fusarium 2.85

Trichoderma 1.52

Absidia 0.57

Acremonium 0.38

NGS analysis complemented these culture-dependent results. In relation to the bac-
terial communities, it was possible to obtain around 2300 Operational Taxonomic Units
(OTU) whose distribution is mostly Proteobacteria (58%), Actinobacteria (19%), Firmicutes
(7%), Acidobacteria (4%), Bacteroidetes (2%), Gemmatimonadetes (2%), Planctomycetes
(2%) and Chloroflexi (1%) (Figure 3A). The majority were of the genera Pseudomonas and
Bacillus but also Lysinibacillus; Staphylococcus; Streptococcus, Sphingobacterium; Nitrospira;
Ochrobactrum; Agrobacterium; Sphingomonas; Acinetobacter; Enhydrobacter; Photobacterium and
Macromonas (Figure 3B).
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In the case of fungi, it was obtained approximately 550 OTU, mostly Ascomycota
(80%) and Basidiomycota (11%). The most common were Hypomyces (74%) and Boletus
(16%) but also Agaricus, Penicillium, Cladosporium, Candida, Kluyveromyces, Sporobolomyces
and Gongronella (Figure 4) were detected.
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The large diversity of the microbial populations identified by both culture-dependent
and high-throughput sequencing (HTS) did not provide any insight on the activity of the
micro-organism and therefore on the potential threat faced by Escoural parietal artworks.
They provide information on the microbial population’s diversity without considering its
activity or inactivity. Therefore, a large number of the microbial community identified with
those two approaches are indeed present in the cave, though only at a dormant stage. As
long as they remain in a dormant stage, micro-organisms do not endanger the artwork nor
its rock support. This is why analysis of the microbial biofilm’s viability and activity was
then required.

3.2. Microbial Activity and Viability

As expected, the MTT exhibited lower signal and therefore sensitivity than the PB
(Table 1). Both methods revealed a nondetectable low activity of the microbial populations
colonizing the samples collected and analyzed. Only two specific spots inside the cavity
appeared to have viable and active populations (detectable signals with MTT and PB). Both
of them showed visually obvious macroscopic contaminations with one presenting roots
and fungal growths while the other showing contamination by faeces of bats.

SEM observations and Raman analyses (data not shown) confirmed the presence of
biocontamination and low activity of the microbial biofilms detection on microsamples
from Escoural Cave. Both did not allow to identify and detect any biodeteriogenic activity
of the microbial populations such as support’s alterations and precipitation of secondary
compounds produce by microbial metabolic activity such as oxalates and carotenoids.

3.3. Assessment of the Biodeteriogenic Ability

The biodeteriogenic activity of the five most common fungal strains isolated and the
three most representative bacterial strains were assessed (Figure 5). In presence of nutrients,
all of the strains tested could grow on the rock support in less than a month, forming a
biofilm over this material.
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isolates (F6f—Cladosporium sp., F8—Aspergillus niger, F10—Penicilium sp., F26c—Mucor sp., F44—Unknown specie). Each
micro-organism was microscopically characterised (O.M.) and their proliferation ability on the rock was evaluated by
scanning electron microscopy (SEM).

While bacteria only appeared to alter the aesthetic aspect of the sample, fungal strains
alter both the aesthetic and the mechanical structures of the marble rocks they colonized
(Figure 5).

4. Discussion
4.1. Biological and Microbial Contamination

During the present work, it was observed the presence of numerous organic nutrients—
bat’s faeces, butterflies’ wings, roots—and fungal outbreaks. These numerous outbreaks
were favoured by the very specific topographic and geomorphological conditions inside
the cave, characterize, in particular, by a high number of cracks in the rock ceiling [73]. Due
to these cracks, the Escoural Cave can be regarded as a fragile hypogean site, extremely
dependent from the conditions present in the indoor and outdoor nearby environments.
Other caves have been reported to have suffered from weathering processes linked to local
air pollutants [74], and/or humidity conditions [2,10].

Another crucial aspect has to be taken into account when dealing with microbiology
and the conservation of the Palaeolithic parietal representations: touristic visits. Studies
have shown that changes in the light entering the cave environment associated with
visitors greatly alter the cave’s environmental conditions and ecosystems, jeopardizing the
conservation of these unique artworks [49,75,76]. Despite the measures taken to minimize
the effects of the visitors on the conservation of the paintings and drawings (at Escoural
Cave the number of visits is currently limited to 2 per day and 10 persons per visit),
consequences on the cave microbial diversity should be monitored and further studied.
The presence of fungal growths (Figure 1B) all over the floor, walls and ceilings of the
Escoural Cave and their disappearance one week later (authors observation), highlights
the high dynamic of the microbial populations thriving inside the cavity and their relative
fragility to nutrients’ outcomes and outbreaks coming from outside. The present study
should be used as a first step to understand the dynamic of these populations by providing
a first insight of the microbial diversity and its activity in the cave.

4.2. Microbial Diversity

Both the macroscopic diversity of the biological and microbial outbreaks and the
microscopic variability of the microbial contaminations highlighted a large diversity of the
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microbial communities growing inside of Escoural Cave (Figures 1 and 2) as confirmed by
culture-dependent (laboratory isolation) and non-culture-dependent (NGS) techniques.

The fungal genus isolated and identified with the culture-dependent method—Penicilium,
Aspergillus, Cladosporium, Mucor, Trichoderma, Fusarium—are not specific to hypogean nor
karstic environments as their presence have been reported in other caves and cultural heritage
artifacts [8,25,33,74,77–81].

As confirmed by these two approaches, the bacterial communities largely predominate
over the fungal ones inside the cavity. Only 1% of the bacterial strains and around 10% of
the fungal strains spotted with NGS were cultured. These numbers correspond to what is
usually considered as being identifiable by culture-dependent methods.

The first use in this karstic environment of HTS, has enabled to confirm the presence
of some micro-organisms already identified by culture-dependent methods, though it also
detected several genera and species not previously identified in these environments. HTS
appeared to be extremely efficient in the detection and identification of known bacterial
and fungal species, providing a wider knowledge of the communities thriving in the
Escoural Cave.

The Hypomyces and Boletus correspond to the two major genera of fungi contaminating
the cave. They are known to be usually found in deep soils. Therefore, their presence in the
Escoural Cave is in accordance with the indoor environment. Due to the fact that most of
them could not be cultured, they could only be identified at the genus level because their
DNA’s sequence was not present in the reference database.

None of the species known for their harmfulness toward cave art, such as Bracteacoccus
minor [82], Fusarium solani [3] and Ochroconis lascauxensis [36], have been reported inside
Escoural Cave through isolation nor NGS methods. Fungal species isolated and identified
in the cavity are known as common species and were already reported in other sites hosting
parietal representations [33,50].

Although when compared to the NGS results, the culture-dependent method appears
to be somewhat limited, it allows to better understand some of the strains present and,
more importantly, to perform simulation assays with these strains in order to understand
the activity and biodegradation, and, consequently, find appropriate solutions to preserve
the contaminated artworks.

4.3. Microbial Viability and Activity

When dealing with microbial communities in cultural heritage, it is important to
assess whether they are viable and active. Indeed, micro-organisms could be present in
a passive state and, as such, they would not constitute a threat to the artworks they are
contaminating. The assessment of the viability and activity of the microbial communities
was performed thanks to chemical assays, SEM observations and Raman analyses.

As expected from the literature, the MTT exhibited lower signal and therefore sensi-
tivity than the PB [70,72]. Such behaviour is expected because studies have shown that
MTT’s signal strongly depends on the metabolism of the microbial strain analyzed. Indeed,
according to those studies, MTT is reduced by enzymes whose activities rely on the re-
duced pyridine NADH. These conclusions lead to question the use of MTT due to the high
dependence of the cytoplasmic metabolism of different strains. These studies performed on
pure microbial cultures also prove that it is necessary to consider that different organisms
provide distinct activity results. Because the metabolic activity of a microbial strain changes
during the distinct stages it goes through, it is important to consider that according to the
development stage, the microbial colony will exhibit distinct activity.

The low signals collected for most of the samples in MTT and PB assays together with
the absence in SEM analyses of the characteristic microbial destructive and constructive
fabrics typically found in hypogean environments [9] and in Raman analyses of alteration
products linkable to microbial metabolism such as oxalates and carotenoid compounds,
tend to suggest that most of the species identified with the culture-dependent and the non-
culture-dependent techniques are present in low amounts or in a dormant stage, making
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them a possible future threat to the support and artworks only when and if sufficient
nutrients would be available to reactivate them. Only areas showing major biological
contamination did in fact present a viable microbial activity, confirming that nutrients’
supply represent a severely limiting factor with respect to the microbial growth inside the
cave. Beside this preliminary result, it also implies that the microbial diversity observed in
the cave, could easily increase in line with an increase in nutrients supply.

4.4. Microbial Biodeteriogenic Activity

Notwithstanding the aforementioned low activity of the microbial communities, it
is also important to assess the biodeteriogenic activity of the most common microbial
communities identified on the parietal wall of the Escoural cave. The dynamic of the
microbial populations of Escoural Cave is quite important as microbial growths were
observed to develop and disappear in less than a month at the site. Microbial colonies
could, when active, rapidly alter the artworks. Preventing their growth would therefore
represent an essential step in the preservation of the cave artworks.

The fungal species presented the highest threat potential to the rock support’s structure
hosting the parietal representations of Escoural Cave. Indeed, all of the five fungal species
studied induced cracks and aesthetic alterations on the rock (Figure 5) while the bacterial
communities’ effect remained largely only aesthetic, with the development of EPS and
biofilms.

The microbial diversity identified during this study by high-throughput sequencing
(HTS) should be subsequently monitored to have a better overview of the microbial
biocenosis of the Escoural cave. The evolution of microbial communities, associated
with the activation of their metabolism, may have a possible influence on support and
parietal representations.

5. Conclusions

Escoural Cave, a natural cavity hosting Upper Palaeolithic representations, presents
major local biological and microbial contaminations. Although culture-dependent and
NGS techniques allowed us to highlight a large microbial diversity, its activity and biodete-
riogenic effect seem to be rather limited according to viability assays and biodegradation
analyses by SEM-EDS microscopy and Raman spectroscopy. Therefore, the microbial
population of the cavity does not seem to constitute a major threat to the conservation
of the parietal art found in this important archaeological site. Indeed, water leaking and
seepage appear to be of major importance in the alteration of these unique artworks.

Using methods assessing the microbial viability such as MTT and Presto Blue® pro-
vided a broad picture allowing us to understand the extent of microbial communities’
activity. The large microbial diversity appears to be at a dormant stage, with low metabolic
activity. The dynamic of the microbial populations indicates an important potential threat
of the microbial populations on the rock support and the paintings and engravings of the
cave. Therefore, a long-term monitoring plan is needed to better understand the coloniza-
tion and spread of the micro-organisms in this site, taking into account future plans for the
full re-opening of the cave to touristic activities.

This work constitutes an important insight on the conservation of the unique Por-
tuguese Palaeolithic cave art site of Escoural. This pioneer study should be completed by
further analyses focusing both on identifying the unknown species and understanding
their metabolism and effect on the various materials present in this hypogean site.
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