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Abstract: In the present work, we investigated the microstructures and properties of as-sprayed
and annealed CoMoCrSi coatings. Specifically, the annealed treatment at 800 ◦C resulted in good
recrystallization, improved microstructure, and enhanced properties of CoMoCrSi coatings. An oxide
layer formed on the annealed coating surfaces; it was mainly composed of nano-sized Cr2O3 and
micro-sized CoMoO4, and could account for the increased surface microhardness and enhanced
anti-wear performance of annealed coatings. In particular, the very hard Cr2O3 played a critical
role of resisting press-in and wear during the tests, and the CoMoO4 had a lubricating effect during
the friction process. Finally, the annealed coatings exhibited low coefficients of friction (COFs) of
0.4 and wear rates of 0.7–0.8 × 10−6 mm3·N−1·m−1 after a long sliding distance of 1000 m at RT.
Consequently, the wear mechanism transferred from brittle fracture coupled with abrasive wear for
the as-sprayed coating to slight abrasive wear for annealed coatings.

Keywords: annealed treatment; CoMoCrSi coating; oxides layer; tribological performance

1. Introduction

Thermally sprayed coatings have been widely applied to provide necessary protection
against oxidation, wear, and corrosion in various industrial fields, e.g., the traditional
machinery industries (gears, rollers, valves, bearings, wheels, axles, and drills), ocean
engineering, and aerospace industries [1–10]. They are also a low-cost, effective way
to enhance the surface properties and to prolong the service life of related mechanical
parts. Many types of thermal spraying techniques have been developed, including oxygen-
acetylene flame spraying, low voltage plasma spraying, atmospheric plasma spraying
(APS), cold spraying, arc spraying, high-velocity oxygen fuel (HVOF) spraying, and high-
velocity air spraying. Compared with other spraying techniques, HVOF technology [11,12]
is usually utilized to fabricate alloy coatings due to its much lower temperature, higher
particle velocity, and less in-flight time, and to obtain compact and less oxidized coatings.

The Co-based alloys, as a branch of Tribaloy alloys, have been widely applied in
various harsh conditions due to their superior hardness and excellent wear performance
as well as their high corrosion resistance. The Co Tribaloy alloy (similar to T-800) (8.5%
Mo-17.5% Cr-3.4% Si) has a hardness of up to 1000–1200 HV because of hard ternary Laves
phase, e.g., Co3Mo2Si or CoMoSi [13]. In addition, Mo and Si in the alloy can improve
the high temperature strength and wear performance of the alloy, and Cr contributes to
high oxidation resistance by means of the formation of Cr2O3 layer [14,15]. However,
recent studies [16–18] showed that CoMoCrSi coatings usually exhibited an amorphous
microstructure, which resulted in brittle and low plastic performance at room temperature
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(RT). Moreover, the sprayed CoMoCrSi coatings, especially prepared by ordinary flame
or APS techniques, normally possessed inescapable defects, e.g., pores, cracks, and inclu-
sions, which caused looser structures and lower mechanical performance compared to the
corresponding alloy. It has been well verified that annealed treatment could effectively
enhance the mechanical wear and oxidation properties of the coatings [19–22]. As for the
investigations concerning the annealed CoMoCrSi alloy coatings, a study revealed that the
cavitation damage of APS-sprayed CoMoCrSi coatings could be significantly alleviated
after heat treatment at 1000 ◦C [23]. Although the HVOF-sprayed CoMoCrSi alloy coatings
were annealed at 200, 400, and 600 ◦C for 1 h [12,24], heat treatments at 200 and 400 ◦C
did not cause any major change in microstructures and wear properties. The 600 ◦C heat
treatment caused a slight crystallization with the formation of sub-micrometric crystalline
regions, resulting in a definite hardness increase and reduction of wear rate at room tem-
perature. This result is not ideal. Recently, a report [25] indicated that annealing treatment
at 600 and 1000 ◦C could lead to the phase transformation, and improvement in mechanical
and tribological properties of the APS-sprayed CoMoCrSi coating. However, the structure
of the coating, that is the oxides formed on the coating surface after heat treatment, and its
influence on the performance of the coating were not deeply analyzed. We have evaluated
the tribological properties of the HVOF-sprayed CoMoCrSi coatings in a wide temperature
range (from RT to 800 ◦C) [18]. The result demonstrated that the as-sprayed coatings
registered an excellent tribological performance up to 600 and 800 ◦C, and unsatisfactory
wear properties at low temperatures. Occasionally, we found that numerous Cr2O3 and
CoMoO4 particles dispersively distributed on the coating surface after wear at 800 ◦C,
implying oxidation occurred during the process of heating up and the friction test. There
was also a report [12] that the differential thermal analysis and thermal gravimetric analysis
(DTA-TG) result of Co-based alloy powder displayed an obvious exothermal peak as the
temperature increased to 812 ◦C, indicating the oxidation of the powder. Considering the
discontinuous particles on the coating surface, which might be due to short time under
800 ◦C, we intended to anneal the as-sprayed CoMoCrSi coating at 800 ◦C and prolong
the annealing time to 3, 5, and 10 h, to improve the tribological properties of CoMoCrSi
coating at room temperature.

In the current work, we investigated the following: (a) the microstructure and phase
transformation of CoMoCrSi coatings before and after annealed treatment, (b) the influence
of oxide formation on the mechanical and tribological properties of CoMoCrSi coatings at
RT, and (c) the wear mechanisms of CoMoCrSi coatings.

2. Materials and Methods
2.1. Coatings Fabrication

A type of commercial CoMoCrSi powder (Metco Diamalloy 3001, Winterthur, Switzer-
land) was used for feedstock, the surface morphology SEM image of which is shown in
Figure 1; the powder particles were spherical and sized below 30 µm. Moreover, energy dis-
persive x-ray spectroscopic (EDS) investigation (insert in Figure 1) basically agreed with the
nominal chemical composition of the CoMoCrSi powder. Diamond Jet 2700 HVOF spraying
equipment (Sulzer Metco, NewYork, NY, USA) manipulated with an IRB 2400/16 robot (ABB,
Vesteros, Switzerland) was used to fabricate the CoMoCrSi coatings, and the major spraying
parameters are as follows: oxygen flow of 21.06 m3·h−1, natural gas flow of 13.14 m3·h−1,
nitrogen flow of 18.7 m3·h−1, and spray distance of 27 mm; the concrete details have been
reported elsewhere [18]. The substrate was 316L stainless steel. The substrates were ultrason-
ically cleaned in a mixture of alcohol and acetone for 20 min after the alloys were machined
to target size (Φ20 mm × 10 mm for the friction tests and 25 mm × 20 mm × 10 mm for
the microstructure observation) and sandblasted. The specific chemical compositions of
CoMoCrSi coating and 316L steel are presented in Table 1.
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Figure 1. Surface morphology and EDS result of the CoMoCrSi powder.

Table 1. Chemical composition of CoMoCrSi coating and 316L steel.

Items
Elements w.t.%

Co Mo Cr Si Ni Mn P S

CoMoCrSi coating 50.6 28.5 17.5 3.4 – – – –
316L steel – 2.0–3.0 16.0–18.0 ≤1.0 12.0–15.0 ≤2.0 ≤0.035 ≤0.030

2.2. Isothermal Oxidation

Isothermal oxidation of the coating was carried out at 800 ◦C in a muffle furnace
with a heating rate of 5 ◦C·min−1 and held there for 3 h, 5 h, and 10 h, respectively. The
specimens were naturally cooled in the muffle furnace.

2.3. Characterization of Coatings

Microstructures and wear tracks of coatings were characterized by using a scanning
electron microscope (TESCAN MIRA3 Bron, Kohoutovice, Czech Republic) with an energy
dispersive X-ray spectrometry (EDS, Bruker, Leipzig, Germany). The phase composition of
the coatings before and after the annealing treatment was evaluated by X-ray diffraction
(Rigaku D/max-RB, λ = 0.15 nm, Tokyo, Japan); the specific operation parameters have
been reported in previous work. Jade 6.5 software (TILAB) based on the standard ICSD
pattern (51/54529) data files was used to analyze the XRD results.

Indentation tests were carried out by an MH-5-VM microhardness tester (Shanghai
Hengyi Science and Technology Corporation, Shanghai, China) with a load of 300 g and
dwelling time of 10 s. In particular, the surface microhardness was randomly evaluated on
the coating surface, and an average of ten measured values was reported as the final result,
which was also applied to the report of the cross-sectional microhardness. Moreover, the
cross-sectional hardness was measured from the substrate to coating cross-section.

A ball-on-disc tribometer (CSM, Locarno, Switzerland) was employed to assess the
tribological performance of the coatings at room temperature (RT) (about 25 ± 5 ◦C). Al2O3
balls with a diameter of 6 mm were used as the counterpart. All tests were carried out under
normal load of 5 N, line velocity of 10 cm·s−1, rotating radius of 5 mm, and sliding distance
of 1000 m. The tests were performed on three specimens annealed at the same temperature
to reduce the error, and the average of the three measured COF values were reported as the
final result. A two-dimensional surface profiler (KLA-tencor D-100, KLA-Tencor, Silicon
Valley, CA, USA) was employed to measure the volume loss of the coatings after the friction
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tests. It is notable that the volume loss of each specimen was measured at three different
spots, and the final volume loss value was the average of nine measured values obtained
from the three specimens. Subsequently, the wear rates of coatings (KW, mm3·N−1·m−1)
were obtained based on an equation, KW = VW/(P × L), as reported previously, where
VW is the wear volume loss in mm3, P is the normal load applied in newton (N), and L
is the sliding distance in meter (m). The average of five measurements is reported as the
final result. The Horiba Raman microscope (Jobin Yvon, France) with 532 nm He–Ne laser
was used to analyze the phase composition of the coating surface and wear track, and
conducted in the range of 100 to 1500 cm−1.

3. Results and Discussion
3.1. Microstructure of the Coatings

Figure 2 shows X-ray diffraction patterns of as-sprayed and annealed CoMoCrSi
coatings. The as-sprayed coating displayed a wide peak at 43.6◦, which implies amor-
phous phases made up the coating. Additionally, some hard intermetallic phases, such
as Co7Mo6 (PDF#29-0489) and Co3Mo2Si (PDF#30-0449) [12,24], could be detected in this
coating. However, the annealed CoMoCrSi coatings exhibited well-crystallized structures
after heat treatment, demonstrating recrystallization and oxidation occurred during the
process. In particular, the diffuse scattering peak disappeared, and numerous diffraction
peaks represented new metal oxides appeared in the patterns of annealed coatings. Those
pointed diffraction peaks could be identified as metal oxides and bimetallic oxides includ-
ing Cr2O3 (PDF#38-1479), Co3O4 (PDF#43-1003), CoMoO4 (PDF#25-1434), Co7Mo6 and
Co3Mo2Si [25–27]. Moreover, the phase composition of the annealed coatings changed
slightly when the annealing time was prolonged. The number and intensity of the CoMoO4
peaks decreased when the annealing time increasing from 3 h to 10 h, especially in the
diffraction angle range of 25◦ to 30◦, while the CoMoO4 peaks disappeared in the patterns
of coating annealed for 10 h, implying that the volume fraction of CoMoO4 phase reduced.
On the contrary, the intensity of Cr2O3 peaks increased with increase in annealing time,
indicating that the volume fraction and grain size of Cr2O3 phase increased [25].
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Figure 2. X-ray diffraction patterns of as-sprayed and annealed CoMoCrSi coating.

To further investigate the oxidation after heat treatment, surface morphologies of
as-sprayed and annealed coatings are demonstrated in Figure 3. In particular, Figure 3a,b
displays the polished surface of as-sprayed coating, which exhibits compact microstructure
except for a few unfused particles and micropores. Moreover, grain boundaries and
compact structures can be clearly seen in the highly magnified image (as indicated in
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Figure 3b). However, annealed coatings possess different surface morphologies compared
to the as-sprayed coatings. Specifically, numerous light-white island structures were
distributed on the grey surface of annealed coatings (Figure 3c,e,g). The number of these
reduced as the annealing time increased from 3 h to 10 h. According to the highly magnified
images (Figure 3d,f,h), the dark grey areas were composed of a great number of nano-
sized (300–500 nm) olivine-shaped particles, and the light-white islands were made up
of numerous micron-sized (1–4 µm) pomegranate-seed-like particles. Furthermore, EDS
analyses were conducted on the corresponding spots (as indicated in Figure 3d,f,g) and the
atomic ratios of the elements are itemized in Table 2. In combination with above results of
XRD analysis, the dark grey particles were identified as Cr2O3, and the light-white islands
as CoMoO4 (as indicated in Figure 3). This verifies the XRD result that the quantity of
CoMoO4 decreased with increase in annealing time.
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Table 2. EDS results of different spots indicated in Figure 3d,f,g.

Spots Elements At.%
Demonstration

Co Mo Cr Si O

A 20.14 17.05 4.06 0.2 68.75 CoMoO4
B 8.27 1.19 36.20 0.41 53.93 Cr2O3
C 21.65 15.87 2.58 0.13 59.77 CoMoO4
D 8.89 1.03 38.10 0.35 52.53 Cr2O3
E 5.06 0.86 39.95 0.16 53.97 Cr2O3

Figure 4 illustrates the cross-sectional morphologies of as-sprayed and annealed
CoMoCrSi coatings. All the SEM images were obtained with a magnification of 5000 ×
from the coating cross-sections. It can be seen that, except for a few pores, layered and
compact structures make up the as-sprayed CoMoCrSi coating (Figure 4a). Moreover, the
annealed coatings show different morphologies after annealing treatment. In particular,
grain boundaries are obvious, and a great number of precipitated phases with spherical and
irregular shape were distributed in layered structures (as indicated in Figure 4). According
to the EDS result (Figure 5), the Cr and O elements are rich in these precipitated phases
regions, and the Co, Mo, and Cr elements are homogenously distributed in the compact
areas. This could be attributed to recrystallization of phases during the process of annealing
treatment, as well as the fact that some chromium oxide (not necessarily Cr2O3) grains
formed and gathered at the boundaries of layered structures. As a whole, the coating
structures can be significantly improved after heat treatment at 800 ◦C.
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3.2. Microhardness of the Coatings

Hardness is a symbol of anti-wear resistance of the coatings. Thus, microhardness
values of as-sprayed and annealed coatings are measured and illustrated Figure 6. In
particular, the annealed coatings registered a higher micro-hardness than the as-sprayed
coating (Figure 6a), the surface microhardness was higher than the cross-sectional mi-
crohardness for all coatings, which is consistent to the other reports [12,25]. In brief, the
surface microhardness increased from 902.8 HV0.3 to 1257.9 HV0.3 after the heat treatment
at 800 ◦C for 10 h (increased by 40%), and the cross-sectional microhardness was up to 965.6
HV0.3. The results are better than the reported CoMoCrSi coatings (550–650 HV0.3) [17],
and even comparable to the HVOF-sprayed CoMoCrSi-Cr3C2 coating elsewhere [28]. In
addition, the variations of cross-sectional microhardness from substrates to the coatings
are depicted in Figure 6b. There were obvious differences between the microhardness of
the coatings and substrates, however, the microhardness across the thickness of coatings
was not remarkably different for every specimen (as shown in Figure 6b), indicating the
balanced mechanical property of the coatings.
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Figure 7 displays the indentation morphologies of as-sprayed and annealed CoMoCrSi
coatings. It can be clearly seen that the area of the indentation gradually reduced with
the annealing time increased, which demonstrates the increasing of microhardness value.
Furthermore, the indentation morphology of as-sprayed coating implies that the brittle
crack occurred after the test (Figure 7a). However, the plastic deformation could be
verified by the indentation morphology of coating annealed for 5 h (as indicated in insert
in Figure 7c), where wave-like patterns are obvious on the regular indentation surface.
Although some tiny malleable cracks can be found around the indentation (Figure 7c,d), it
could be concluded that toughness and plasticity of annealed coatings had been improved
after annealed treatment.
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3.3. Tribological Performance of the Coatings

To evaluate the influence of oxidation on the tribological performance, friction tests
were carried out on as-sprayed and annealed CoMoCrSi coatings with a long sliding
distance of 1000 m. The friction coefficient–distance curves are illustrated in Figure 8. It is
obvious that the coefficient of friction (COF) of the as-sprayed coating is higher than that
of annealed coatings. In particular, the as-sprayed coating registered a COF of 0.53 in the
first 120 m, however, the COF increased and stabilized at 0.79 for the remaining distance.
Moreover, the coating annealed for 3 h exhibited the lowest COF in the range of 0.36 to
0.39, the coatings annealed for 5 h and 10 h possessed a relative lower COF of 0.40–0.43. As
a whole, the annealed coatings exhibited an equivalent COF of 0.40, which is much lower
than that of as-sprayed coating (~0.79) at room temperature.
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Figure 9 displays the wear rates of as-sprayed and annealed CoMoCrSi coatings. It is ob-
vious that as-sprayed coating processes the highest wear rate of 9.169 × 10−6 mm3·N−1·m−1

at RT, however, the wear rates of annealed coatings dropped one order of magnitude after
the friction test. Specifically, the annealed coatings registered the wear rate of 0.878–0.719 ×
10−6 mm3·N−1·m−1 after a sliding distance of 1000 m, which is superior to that of previous
reports [12,29]. In addition, the cross-sectional profiles of the wear tracks of as-sprayed and
annealed CoMoCrSi coatings (Figure 10) could further illustrate the differences in the wear
extent—especially the width and depth of wear track for as-sprayed coatings, which were
up to 430 µm and 5000 nm. However, the width of wear track for annealed coatings were
about 280 µm and the depth was just about 800 nm. It could be also concluded that the im-
provement in microstructure and microhardness would lead to the significant enhancement
of anti-wear properties, and that the lubricating phases formed on the annealed coatings
surface reduce the friction during the sliding process.
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3.4. Discussion

To explore the causes of increased hardness, cross-sectional morphologies of annealed
CoMoCrSi coatings were further investigated, as shown in Figure 11. A compact oxides
layer in the range of 630 to 1150 nm can be seen, the thickness of which increased with
increasing annealing time. Furthermore, the element-mapping result shows that the nano-
sized oxides layer is enriched in Cr and O elements, as indicated in Figure 12. It should be
noted that the coating annealed for 3 h was selected as a representative. In combination
with the above statement, the oxide layer (at this position) mainly consisted of Cr2O3.
It is interesting that the amount of Cr was lower in the coating part and present on the
coating surface, and the Si either agglomerated at the bottom of oxides layer or intensively
distributed in the coating. It could be concluded that the Cr and Si elements stopped
further migration of other elements during the heat treatment. Moreover, both elements
play a dual role of prohibiting the permeation of the O element from atmosphere and
further serious oxidation of the coating. It is worth noting that the oxidation mechanism in
present work was different to that of the solid T-800alloy [14], where the outermost Co3O4
layer was followed by some CoMoO4 after exposure oxidation at 800 ◦C for 40 h, and the
non-protective external scale could not prevent the dissolution of oxygen in the substrate
alloy. This might be on account of the different fabrication process and status of the material.
A conclusion could be drawn as that the high hard oxide layer on the coatings surfaces
resisted indentation during the hardness test and this accounted for increased surface
microhardness, which would also play a critical role of improving anti-wear performance
during the sliding process.
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Figure 13 illustrates the worn surface of as-sprayed and annealed CoMoCrSi coatings
after a sliding distance of 1000 m. It is obvious that as-sprayed and annealed coatings
registered different wear mechanism. Specifically, there are numerous brittle failure and
friction scratches as well as some flat surface on the wear track of as-sprayed coating.
Further investigation displayed that the brittle failure area was rich in Co, Mo, Cr, and
O, demonstrating that wear debris are formed by the rolling compaction of counterparts
during the sliding process (as indicated in Figure 13a), and it is easier for the tiny debris
to capture the O element. Moreover, the flat areas are richer in element Cr, Mo, and Co,
implying this part has not been crushed. Additionally, friction scratch areas exhibit a large
number of fish scales (as shown in insert in Figure 13a), demonstrating serious scraping
occurred during the friction process. These areas are rich in Co, Mo and O, according to the
EDS result. This might be the result of easier oxidation occurring on the freshly-scratched
surface of Co–Mo alloys. As the friction process continues, the coating will continue its
brittle failure and become wear debris, and the wear in the fish-scale areas will also increase,
eventually leading to a higher wear rate and larger depth of wear track (as indicated in
Figures 9 and 10). It could be concluded that a brittle fracture coupled with abrasive wear
dominated in the wear mechanism of as-sprayed coating at RT.
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Figure 13. Worn surface of as-sprayed CoMoCrSi coatings (a) and coatings annealed for 3 h (b),
5 h (c), and 10 h (d).

As for the annealed coatings, the worn surfaces were relatively flatter compared to
that of the as-sprayed coating. In particular, numerous white light areas (rich in Co and
Mo) and dark grey areas (rich in Co, Mo, and O) were distributed on the grey worn surface
(rich in Cr and O), as shown in Figure 13b–d. Figure 14 demonstrates elemental maps of
worn surface of the coating annealed for 5 h, which could well verify the above conclusion.
In the top insert in Figure 14, the particle areas show obvious sign of worn Cr2O3 particles,
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indicating that Cr2O3 particles play an anti-wear role during the friction process. The
smooth, dark, and compact island areas are rich in Co, Mo, and O, demonstrating the
existence of CoMoO4, which could play the critical role of lubrication [18]. As a result,
annealed coatings exhibited lower COFs and wear rates. It must be noted that the small
light areas displayed higher content of Co and Mo, and subtle cracks (as indicated in
Figure 14), implying the existence of Co–Mo alloy, which well corresponds to the fish-scale
pattern appearing on the wear surface of as-sprayed coating.
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In addition, the results of Raman analysis (Figure 15) conducted on worn surfaces
further confirmed the existence of MoO3 (115, 144, 189, 238, and 665 cm−1) [30–32], Co3O4
(194, 470, 488, 521, 618, and 691 cm−1) [33,34], Cr2O3 (300, 332, 532, 551, 607, 685, and
700 cm−1) [35,36], and CoMoO4 (345, 367, 816, 876, and 937 cm−1) [37,38]. In particular,
the small number and weak intensities of the Cr2O3 peaks implies that they did not
dominate on the worn surface of as-sprayed coating (Figure 15a). Furthermore, there was
no lubricating CoMoO4 in the wear track, resulting in high COF and wear rate. However,
the Cr2O3 and CoMoO4 dominated on the worn surface of annealed coating, and the
content of Cr2O3 gradually increased when prolonging the annealing time, and CoMoO4
phases reduced conversely. The increase of Cr2O3 and reduction of CoMoO4 phases is
well in accordance with above results and could account for the slight increase of COF
while prolonging the annealing time. Irrespective of the cause, a dual coating of Cr2O3
and CoMoO4 formed on the annealed coating surface might play a critical role in reducing
friction and wear during the sliding process, and results in lowering COF and wear rates.

Another investigation was conducted on the worn surface of the coating annealed
for 3 h with different sliding distances of 300, 500, and 1000 m, as shown in Figure 16.
The process of wear can be seen from the images, and the wear degree of Cr2O3 particles
increases with the sliding distance increase. Specifically, Figure 16a illustrates the rough
surface and light wear of Cr2O3 particles, Figure 16b displays the polished state of Cr2O3
particles indicating further wear, and Figure 16c demonstrates the glazed surface of Cr2O3
particles. Furthermore, the element distribution on the worn Al2O3 pair vs. the coating
annealed for 3 h after a sliding distance of 500 m is depicted in Figure 17. Combined with
the EDS result, the large high-brightness areas of Co and Mo elements on the transfer film
demonstrate the most of the Co- (23.14 at.%) and Mo- (15.08 at.%) oxides were removed
during friction, however, the low Cr content (2.42 at.%) on the transfer film implies Cr2O3
mainly existed in the wear track. That is, the Cr2O3 phases play a key role of anti-wear
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during the friction process. It could be concluded that slight abrasive wear dominates in
the wear mechanism of annealed coatings at RT.
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Coatings 2021, 11, x FOR PEER REVIEW 14 of 17 
 

 

Another investigation was conducted on the worn surface of the coating annealed 
for 3 h with different sliding distances of 300, 500, and 1000 m, as shown in Figure 16. The 
process of wear can be seen from the images, and the wear degree of Cr2O3 particles in-
creases with the sliding distance increase. Specifically, Figure 16a illustrates the rough 
surface and light wear of Cr2O3 particles, Figure 16b displays the polished state of Cr2O3 
particles indicating further wear, and Figure 16c demonstrates the glazed surface of Cr2O3 
particles. Furthermore, the element distribution on the worn Al2O3 pair vs. the coating 
annealed for 3 h after a sliding distance of 500 m is depicted in Figure 17. Combined with 
the EDS result, the large high-brightness areas of Co and Mo elements on the transfer film 
demonstrate the most of the Co- (23.14 at.%) and Mo- (15.08 at.%) oxides were removed 
during friction, however, the low Cr content (2.42 at.%) on the transfer film implies Cr2O3 
mainly existed in the wear track. That is, the Cr2O3 phases play a key role of anti-wear 
during the friction process. It could be concluded that slight abrasive wear dominates in 
the wear mechanism of annealed coatings at RT. 

 
Figure 16. SEM images of the worn surfaces of CoMoCrSi coating annealed for 3 h with a distance 
of 300 m (a), 500 m (b), and 1000 m (c). 

Figure 16. SEM images of the worn surfaces of CoMoCrSi coating annealed for 3 h with a distance of
300 m (a), 500 m (b), and 1000 m (c).



Coatings 2021, 11, 290 15 of 17
Coatings 2021, 11, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 17. Elemental maps acquired from the worn surface of the Al2O3 pair for the coating an-
nealed for 3 h after the sliding distance of 500 m. 

4. Conclusions 
In conclusion, the annealed treatment at 800 °C led to recrystallization, improved 

microstructures, and enhanced hardness of CoMoCrSi coatings. Most of all, the annealed 
coatings exhibited low COFs of 0.40 and wear rates of 0.7–0.8 × 10−6 mm3·N−1·m−1 after a 
long sliding distance of 1000 m, which were much lower than those of as-sprayed Co-
MoCrSi coating and other alloys at RT. In addition, an oxide layer formed on the annealed 
coating surfaces, which was mainly composed of micro-sized CoMoO4 and nano-sized 
Cr2O3 and could have contributed to the increased surface microhardness (up to 1257.9 
HV0.3) and enhanced tribological performance of annealed coatings. In particular, the very 
hard Cr2O3 layer played the critical roles of resisting press-in and anti-wear during the 
tests, and the CoMoO4 had a lubricating effect during the sliding process. Finally, the wear 
tracks of the annealed coatings indicated that the worn Cr2O3 particles were distributed in 
the soft Co–Mo–O or Co–Mo–Cr matrix after friction test. Consequently, the wear mech-
anism transferred from brittle fracture coupled with abrasive wear for the as-sprayed 
coating to slight abrasive wear for the annealed coatings. In view of the industrial appli-
cations, our results would not only enrich theoretical knowledge of heat treatment, but 
also furnish a technical reference for improving tribological performance of Co-based al-
loy coatings. Moreover, when we comprehensively considered the microhardness and 
tribological properties of the annealed coatings and the economic cost, the annealing time 
of 3 h was found to be the most appropriate. 

Author Contributions: Writing—Review & editing, H.G.; Data curation, B.L. and Z.W.; Formal 
analysis, B.L.; Project administration, P.Y. All authors have read and agreed to the published version 
of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (Grant 
Nos. 51665026, 51805408), the Outstanding Youth Foundation of Gansu Province (Grant No. 
20JR5RA212), the “Light of West China” talent program of Chinese Academy of Sciences, the China 
Postdoctoral Science Foundation (Grant Nos. 2019M663851, 2019M653597), the Young Science and 
Technology Foundation of Gansu Academy of Sciences (Grant No. 2019QN-07), and Doctoral start-
up funds (Grant No. LZCU-BS2019-29). 

Figure 17. Elemental maps acquired from the worn surface of the Al2O3 pair for the coating annealed
for 3 h after the sliding distance of 500 m.

4. Conclusions

In conclusion, the annealed treatment at 800 ◦C led to recrystallization, improved
microstructures, and enhanced hardness of CoMoCrSi coatings. Most of all, the annealed
coatings exhibited low COFs of 0.40 and wear rates of 0.7–0.8 × 10−6 mm3·N−1·m−1

after a long sliding distance of 1000 m, which were much lower than those of as-sprayed
CoMoCrSi coating and other alloys at RT. In addition, an oxide layer formed on the
annealed coating surfaces, which was mainly composed of micro-sized CoMoO4 and nano-
sized Cr2O3 and could have contributed to the increased surface microhardness (up to
1257.9 HV0.3) and enhanced tribological performance of annealed coatings. In particular,
the very hard Cr2O3 layer played the critical roles of resisting press-in and anti-wear
during the tests, and the CoMoO4 had a lubricating effect during the sliding process.
Finally, the wear tracks of the annealed coatings indicated that the worn Cr2O3 particles
were distributed in the soft Co–Mo–O or Co–Mo–Cr matrix after friction test. Consequently,
the wear mechanism transferred from brittle fracture coupled with abrasive wear for the as-
sprayed coating to slight abrasive wear for the annealed coatings. In view of the industrial
applications, our results would not only enrich theoretical knowledge of heat treatment,
but also furnish a technical reference for improving tribological performance of Co-based
alloy coatings. Moreover, when we comprehensively considered the microhardness and
tribological properties of the annealed coatings and the economic cost, the annealing time
of 3 h was found to be the most appropriate.
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