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Abstract: The present research paper deals with the study of heat and mass transfer characteristics of
steady viscous incompressible two-dimensional Maxwell fluid flow past a stretching sheet under
the influence of magnetic field and the Soret effect. A well-known non-Newtonian Maxwell fluid
flow model is used to differentiate it from the Newtonian fluids. The present physical problem gives
the set of highly nonlinear-coupled partial differential equations that are not amenable to any of the
direct techniques. The resultant nonlinear system of partial differential equations is reduced to a
set of nonlinear ordinary differential equations by using suitable similarity transformations. Due to
the inadequacy of analytical techniques, a bvp4c MATLAB function is used to solve the developed
nonlinear system of equations. The simulated results are shown for various values of physical
parameters in the flow regime. Additionally, the numerical values of skin-friction coefficient, heat,
and mass transfer rates are calculated and tabularized. From the present investigation, it is observed
that the normal and axial velocity profiles decreased for the enhancing values of the magnetic
parameter. Increasing the Prandtl and Schmidt numbers reduces the temperature and concentration
profiles in the flow region, respectively. Increasing the Maxwell fluid parameter decreases the velocity
profile and magnifies the temperature field. Additionally, increasing the Soret number increases the
concentration profile in the flow regime. Comparison of current similarity solutions with available
results indicates the accuracy and guarantee of the present numerical results and the used method.

Keywords: Maxwell fluid; Soret effect; magnetic number; Joule heating; Schmidt number

1. Introduction

Due to the exhaustive literature review, the analysis of boundary layer flow problems
concerning real fluids past stretching sheets/surfaces received considerable attention in
various fields of science and engineering including polymer sheet extrusion, metallurgy,
drawing plastics, and chemical engineering. In the manufacturing of these physical ma-
terials, the melting issues from the slit and then stretches to attain the desired shape.
In such physical problems, the magnetohydrodynamic (MHD) flows are significant and
have greater technical applications in metallurgical and petroleum production industries.
However, the characteristics of the end product significantly depend on the cooling rate,
and these desired characteristics of the end product are controlled by utilizing electrically
conducting fluids and the application of Lorentz forces. Further, in the purification of
molten metals from nonmetallic additives, the applications of Lorentz forces play a key
role. In addition to the above-mentioned applications and advantages, the investigation
of thermal and mass transfer produced by stretching sheets/surfaces are of great signif-
icance in various industrial processes including hot rolling extrusion, crystal growing,
glass blowing, rubber and plastic sheets, and spinning of fibers. However, among the
available coolants, water is the most preferably utilized fluid. The analysis of flow and
heat transfer in the above cases is very important because the accuracy of the end material
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depends on wall shear stress and heat transfer rate. The detailed applications can be found
in the literature [1].

For the first time, Sakiadis [2,3] investigated the different features of the stretching
surface problems, particularly, the fluid flow over a horizontal semi-infinite moving surface
in the free stream fluid. Phan-Thien [4] investigated the axisymmetric and plane stagnation
point flow in a Maxwell fluid by using a shooting scheme. Zheng et al. [5] and Sadeghy
et al. [6] analyzed the Sakiadis flow of hydrodynamic Maxwell fluid over a steadily moving
rigid plate by using the boundary element method. Hayat et al. [7] discussed the flow of
Maxwell fluid about a porous stretching surface by utilizing a homotopy analysis scheme.
Further, the thermal transfer of Maxwell fluid in various stretching flow configurations
was discussed by Hayat and Sajid [8], Abbas et al. [9,10], and Hayat et al. [11]. Ishak
et al. [12] investigated the mixed convection flow about a vertical plate in a porous medium
and analyzed the dual solutions close to the stagnation point. Sahoo [13] discussed the
impact of MHD on thermal and flow behavior of conducting second-order fluid along an
axisymmetric stretching surface with partial slip.

Ijaz and Ayub [14] discussed the influence of Cattaneo–Christov heat flux on the
mixed convection flow of Jeffrey fluid over an elongating cylinder. It is recorded from their
investigation that the increasing Deborah number raises the velocity field. Sandeep and
Sulochana [15] analyzed the influence of nanofluids on temperature and velocity distribu-
tions over an elongating surface under the action of thermal source and sink. Their study
reveals that amplifying radiation number magnifies the thermal field in the flow regime.
The impact of thermal generation/absorption on magnetized Jeffrey nanofluid over an
elongating cylinder was discussed by Ramzan et al. [16]. Their analysis shows that enhanc-
ing the stratification parameter diminished the thermal field. Khan et al. [17] demonstrated
the influence of Soret and Dufour effects on Jeffrey fluid over an elongating cylinder under
the action of Newtonian heat and mass transfer process. Hayat et al. [18] semi-analytically
discussed the impact of mixed convection on Jeffrey liquid over an elongating cylinder
with stratification conditions. Zeeshan and Majeed [19] discussed the influence of suction
and injection on thermal transfer in Jeffrey fluid over an elongating sheet under the action
of a magnetic dipole. The influence of Cattaneo–Christov heat flux on three-dimensional
Jeffrey fluid flow over an elongating sheet was demonstrated by Hayat et al. [20]. Their
investigation shows that the rising thermal relaxation time decays the thermal field. Abbasi
et al. [21] studied the impact of thermal radiation on magnetized Jeffrey nanofluids over an
elongating sheet under Brownian motion and thermophoresis. Hayat et al. [22] analyzed
the impact of thermal radiation on an isothermally heated elongating cylinder under the
action of viscous dissipation impact. Influence of thermal source/sink on magnetized
Jeffrey fluid over elongating cylinder with Newtonian heating was discussed by Farooq
et al. [23]. Hayat et al. [24] studied the time-independent axisymmetric flow of Jeffrey fluid
under the action of thermophoresis and Brownian motion about an elongating cylinder.

The thermal flow of various viscoelastic fluids gained better consideration in industrial
applications such as motor oils, polymer air processing, and spinning of various metals.
Considerable investigations are readily available in the literature on the modeling of these
heat transfer problems. In this direction, Liu and Guo [25] introduced a new fractional
derivative method to analyze the Fourier law of heat conduction for unsteady Maxwell
fluid with thermal radiation effect. Li et al. [26] discussed the thermal flow behavior of
Maxwell liquid with improved fractional Darcy and Fourier law. Zhang et al. [27] described
the impact of Marangoni convection on heat transfer behavior of power-law fluids with
linear heat flow. Zhang et al. [28] investigated the impact of radiation on the heat transfer
behavior of nanofluids over a flat plate with porosity effects having variable wall heat flux
and chemical reaction. Shen et al. [29] analyzed the radiation impact on heat transfer of
magnetized viscoelastic fluid via fractional derivative scheme over an unsteady stretching
surface. Rachid [30] discussed the impacts of endoscope and heat flow on the peristaltic
transfer of Maxwell fluid in a vertical cylindrical tube. Waheed [31] analyzed the heat and
mass transfer of unsteady Maxwell fluid about a stretching sheet with radiation effect.
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The temperature difference in the various parts of the material bodies result in heat
energy transfer, and this phenomenon occurs in various biomedical, industrial processes.
Additionally, it has a rich set of applications in heat conduction in energy generation,
nuclear reactors, electronic equipment, mass transfer process, etc. The Fourier law of
heat conduction [32] is the basic foundation for the understanding of heat transfer in
flow fluid problems. Further, for any initial noise felt instantaneously in the material
medium, the Fourier law of heat conduction provides the parabolic energy expression.
However, the Fourier law of heat conduction appears physically unrealistic. Considering
these drawbacks of the Fourier law of heat conduction, Cattaneo [33] revised this law by
considering the relaxation time. Further, Christov [34] modified this law by considering
the Oldroyd upper-convected derivatives. Tibullo and Zampoli [35] described the unique
solution for the incompressible fluid flow problems by considering the Cattaneo–Christov
heat flux model. Han et al. [36] studied the heat and flow behavior of Maxwell fluid
about an elongating surface by utilizing the Cattaneo–Christov heat flux model. Detailed
information on heat transfer studies can be found in the literature [37–40].

Srinivasulu and Goud [41] discussed the effect of magnetic field on Williamson
nanofluid flow over a stretching sheet under the action of convective boundary conditions.
It is noticed from their investigation that the temperature field is enhanced with the rising
Prandtl number. Khan and Sultan [42] investigated the magnetized Williamson liquid over
a rotating disk under the action of Soret and Dufour effects. From their analysis, it is found
that radial velocity enhances with rising radial slip parameter. Shafiq et al. [43] discussed
the mixed convection stagnation point flow of Williamson fluid over a vertical elongating
plate. It is recorded from the analysis that the boundary layer thickness is enhanced with
increasing Grashof and Eckert numbers. Rasool et al. [44] described the flow of Williamson
nanofluid over a nonlinear stretching surface under the influence of entropy generation and
chemical reaction. Their analysis shows that the Bejan number is increased with the rising
of the Weissenberg number. Hamid et al. [45] investigated the unsteady Williamson fluid
flow over an elongating sheet with multiple slip conditions under the action of a chemical
reaction. Hashim [46] discussed the influence of magnetic field on Williamson nanofluid
flow over an expanding/contracting cylinder under the influence of convective boundary
conditions with multiple solutions. It is found that the accelerating magnetic parameter
magnifies the velocity field in the flow regime. Khan et al. [47] described the impact of
entropy generation on Williamson nanofluid over an elongating sheet under the action
of Joule heating and chemical reaction effects. Khan et al. [48] discussed the influence of
variable thermal coefficient and activation energy on magnetized Williamson nanofluid
flow over a rotating stretching surface under the impact of thermal radiation effect.

The mass flow is the motion of the concentration field from one location to another lo-
cation, and this convective mass transport behavior is greatly used in different engineering
systems, for instance, water evaporation, chemical contamination diffusion in rivers and
oceans, and chemical separation in the distillation process. The mass flow process has a
rich set of technical applications in the chemical engineering field. Usually, the chemical
species transfer occurs between two different stages of the flow phenomena through the
diffusion process. Concentration difference is the main driving force behind the mass
flow; the zig-zag movement of species causes the net mass flow from a location of higher
concentration to a location of lower concentration. Thermodynamics identifies the extent of
separation for the separation processes; on the other hand, mass flow identifies the possible
separation rate. However, the quantity of mass flow can be measured with the help of
calculations and the use of mass transport coefficients. In this direction, the following is the
available literature review in mass flow under various aspects. Kendoush [49] analyzed
the stagnation point flow with thermal and mass transfer to liquid jets imposing usually
on solid walls. Liu [50] investigated the hydromagnetic flow about an elongating sheet
with thermal and concentration transfer. Cortell [51] studied the chemically reactive mass
flow species for two different groups of viscoelastic fluids about a porous elongating sur-
face. Andersson et al. [52] examined the transport of momentum and chemically reactive
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species concentration about a linearly elongating sheet. Takhar et al. [53] investigated the
magnetized heat and flow behavior of viscous fluid over an elongating surface with slip
velocity. Further, Akyildiz et al. [54] studied the chemically reactive species diffusion about
an elongating sheet under the influence of a porous medium. Layek et al. [55] described the
impact of thermal absorption/generation and suction/blowing on boundary layer behavior
of heat and mass transfer characteristics of stagnation-point flow about a heated porous
stretching surface. Hayat et al. [56] discussed similar solutions of stretching flows with
concentration transport effects. Further, Hayat and Awais [57] described the simultaneous
influence of thermal and concentration transport on an unsteady fluid motion about a
stretching surface.

Raza et al. [58] discussed the influence of viscous and Joule heating effects on multiple
slip flow of Williamson nanofluid over a slandering stretching plate under the impact
of temperature-dependent conductivity. Their investigation shows that increasing the
Williamson fluid parameter increases the thermal field. Shawky et al. [59] discussed the in-
fluence of Soret and Dufour effects on Williamson nanofluid over an elongating sheet under
the influence of a porous medium. It is recorded from their analysis that the Nusselt number
diminished with the rising radiation absorption parameter. Loganathan and Rajan [60] an-
alyzed the influence of Joule heating and convective heating on Williamson nanofluid over
a stretching surface under the influence of Christov–Cattaneo heat flux. Salahuddin [61]
studied the behavior of time-dependent Williamson fluid about a permeable stretching
surface. Their investigation shows that the Williamson fluid is a decreasing function of fluid
motion in the flow regime. Dada and Onwubuoya [62] discussed the impact of magnetic
field on flow and heat transfer behavior of Williamson fluid over a slendering elongating
sheet. Their analysis shows that enhanced Lorentz forces diminished the flow velocity.
Kumar et al. [63] analyzed the impact of nonlinear thermal radiation and Joule heating on
Williamson nanofluid over a stretching sheet under the influence of entropy generation.
Khan et al. [64] discussed the effect of magnetic field on non-Newtonian Williamson fluid
over a stretchable rotating disk. Their analysis described that the increasing Williamson
liquid parameter decays the radial velocity field in the flow regime.

Based on the current literature review, it is noticed that the problem considered in this
study has a good number of applications in the various fields of engineering. According
to the authors’ knowledge, the steady-state boundary layer flow of Maxwell fluid over a
stretching sheet with the above-mentioned physical effects has not yet been reported in the
literature. Thus, the authors made an attempt to investigate the thermal and concentration
transport characteristics of Maxwell fluid over a stretching sheet with magnetic effect by
using the bvp4c MATLAB function. Further, the authors discussed the physical behavior
of the skin-friction coefficient, heat, and mass transport rates. Additionally, figures and
tables are shown to express the thermodynamic nature of various control parameters on
local profiles.

The structure of this research article is classified into six sections. Section 1 illustrate
the introduction and brief literature review. Section 2 describes the rheological behavior of
Maxwell fluid. Section 3 illustrates the mathematical formulation. The numerical solution
procedure is illustrated in Section 4. Simulated results are discussed in Section 5. Finally,
conclusions of the considered problem are summarized in Section 6.

2. Cauchy Stress Tensor for Maxwell Fluid

The stress–strain relationship of viscous incompressible non-Newtonian Maxwell
fluid is stated using the following Cauchy stress tensor (T) [6]:

T = −pI + S (1)
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In the above Equation (1), the identity vector is denoted by I, p is the pressure, and the
value of extra stress tensor S is obtained as follows:

S + λ

(
DS
Dt

)
= µ ·A1 (2)

In the above Equation (2), viscosity is denoted with µ, relaxation time is λ, D/Dt is
the covariant derivative, and Rivilin–Erickson tensor A1 is stated as follows:

DS
Dt

=
dS
dt
− LS− SLT (3)

A1 = grad(V) + [grad(V)]T (4)

In the above Equation (3), d/dt is substantial time derivation and in Equation (4), V is
the flow field, and the value of L in Equation (3) is defined as follows:

L = [grad(V)] and LT = [grad(V)]T (5)

3. Mathematical Definition of the Problem

The present research article investigates the effect of magnetic field on flow and
heat transfer characteristics of time-independent viscous incompressible Maxwell fluid
with Joule heating and viscous dissipation effect numerically. In the present analysis,
the Maxwell fluid flow is confined to the plane y > 0. The nonlinear flow and the heat
transfer system are considerably simplified by subjecting them to the boundary-layer
approximations. However, the Cartesian coordinate system is implemented to describe
the considered physical problem in which the x-coordinate is measured along the flow
direction, and the y-axis is chosen perpendicular to the x-axis. The geometry of the present
physical problem is illustrated in Figure 1.
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Further, a uniform magnetic field B0 is applied normally to the x-axis. Additionally,
due to the influence of equal and opposite forces, the surface is stretched over the flow
direction with a fixed origin. However, due to the stretching of the sheet along the x-axis,
the fluid flow occurred. Further, it is assumed that the surface of the stretching sheet is
maintained at a wall temperature Tw and wall concentration Cw. Additionally, Tw and
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Cw are supposed to be greater than free stream temperature T∞ and concentration C∞.
With the help of the above assumptions and boundary layer assumptions, the steady-state
governing Maxwell fluid flow equations [6,65,66] are listed as follows:

∂u
∂x

+
∂v
∂y

= 0 (6)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 − λ

(
u2 ∂2u

∂x2 + v2 ∂2u
∂y2 + 2uv

∂2u
∂x∂y

)
−

σB2
0
ρ

u (7)

u
∂T
∂x

+ v
∂T
∂y

=
k
ρCp

∂2T
∂y2 +

µ

ρCp

(
∂u
∂y

)2
+
σB2

0
ρCp

u2 (8)

u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2 − k1(C− C∞) +

DmKT
Tm

∂2T
∂y2 (9)

The partial differential Equations (6)–(9) are governed by the following boundary conditions:

u = uw(x) = ax, v = 0, T = Tw, C = Cw at y = 0
u→ 0, T → T∞, C → C∞ as y→ ∞

}
(10)

In the above Equations (6)–(10), u, v are the velocities in x and y directions, T and C
are the temperature and concentration, ρ is the density, Dm is the diffusion parameter, and
a is the positive constant.

3.1. Implementation of Similarity Transformations

The system of complex coupled partial differential equations (PDEs) are reduced to the
set of ordinary differential equations (ODEs) through suitable similarity transformations.
Thus, the used similarity transformations [65] for the present problem are listed below.

η = y
√

a/ν

ψ = x f
√

aν

u = ax f ′(η)
v =

(
−
√

aν
)

f (η)

θ(η) = T−T∞
Tw−T∞

φ(η) = C−C∞
Cw−C∞


(11)

In the above Equation (11), η is the similarity variable, θ is the dimensionless tem-
perature, ϕ is the dimensionless concentration, ψ is the stream function, and u, v are the
velocity components along x and y directions, respectively.

3.2. Governing Equations in Terms of Similarity Variable Implementation

Thus, the transformations defined in terms of similarity variable η automatically obey
the law of conservation of mass Equation (6). Further, the governing partial differen-
tial Equations (6)–(9) in terms of similarity variable (see Equation (11)) are summarized
as follows:

f ′′′ (η) + f (η) f ′′ (η)−
[

f ′(η)
]2 −M f ′(η) + β

[
2 f (η) f ′(η) f ′′ (η)− f 2(η) f ′′′ (η)

]
= 0 (12)

θ′′ (η) + Pr f (η)θ′(η) + PrEc
{
[ f ′′ (η)]2 + M

[
f ′(η)

]2}
= 0 (13)

φ′′ (η) + Sc f (η)φ′(η)− ScKrφ(η) + SrScθ′′ (η) = 0 (14)
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Additionally, the governing boundary conditions in terms of Equation (11) are stated
as follows:

f (0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1 at η = 0

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0 as η→ ∞

}
(15)

In Equations (12)–(15), the superscript symbol prime indicates the differentiation
with respect to η. Further, dimensionless numbers involved in the above governing
Equations (12)–(14) are summarized as follows:

M = σB2
0/(ρa) is the magnetic parameter, β = aλ is the Maxwell fluid parame-

ter, Pr = ν/α is the Prandtl number, Ec = u2
w/
{

Cp(Tw − T∞)
}

is the Eckert number,
Sc = ν/Dm is the Schmidt number, Kr = k1/a is the chemical reaction parameter, and
Sr = {DmKT/(νTm)}(Tw − T∞)/(Cw − C∞) is the Soret number.

3.3. Engineering Quantities of Interest

Knowing the steady-state flow behavior, temperature and concentration distributions
profiles from the solution of the Equations (12)–(14) with essential boundary conditions
given in Equation (15), it is worth studying the behavior of local skin-friction coefficient
(Cfx), the Nusselt number (Nux) and the Sherwood number (Shx) with respect to different
physical parameters. For the present problem, the non-dimensional local skin-friction
coefficient and Nusselt and Sherwood numbers are given as follows [6,65]:

Cfx =
τw

ρu2
w

(16)

Nux =
xqw

k(Tw − T∞)
(17)

Shx =
xqm

Dm(Cw − C∞)
(18)

In the above Equations (16)–(18), the wall shear stress (τw), heat flux (qw), and mass
flux (qm) are taken as follows:

τw = µ

(
∂u
∂y

)
y=0

(19)

qw = −k
(

∂T
∂y

)
y=0

(20)

qm = −Dm

(
∂C
∂y

)
y=0

(21)

Finally, the non-dimensional equations of skin-friction coefficient and heat and mass
transport rates in view of Equation (11) are obtained as follows:

CfxRe0.5
x = f ′′ (0) (22)

NuxRe−0.5
x = −θ′(0) (23)

ShxRe−0.5
x = −φ′(0) (24)

Here, Rex = ax2/ν is the local Reynolds number.

4. Computational Procedure

The considered physical problem is governed by the system of complex coupled PDEs
and which are diminished to the system of ODEs by using suitable similarity transforma-
tions. Further, the reduced system of nonlinear ODEs (12)–(14) is simplified by utilizing
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the bvp4c MATLAB function [67]. To this end, the system of ODEs (12)–(14) is reduced to
first-order ODEs, which are summarized as follows:

d f0
dη = f1

d f1
dη = f2

d f2
dη =

f 2
1 +M f1− f0 f2−2β f0 f1 f2

1−β f 2
0


(25a)

dθ0
dη = θ1

dθ1
dη = −PrEc

(
M f 2

1 + f 2
2
)
− Pr f0θ1

 (25b)

dφ0
dη = φ1

dφ1
dη = −Sc

(
f0φ1 −Krφ0 + Sr dθ1

dη

)  (25c)

In the above Equation (25a–c), we have considered f (η) = f0(η), θ(η) = θ0(η) and
φ(η) = φ0(η). Additionally, the required initial and boundary conditions to solve Equation
(25a–c) are listed as follows:

f0 = 0, f1 = 1 at η = 0
f1 → 0 as η→ ∞

}
(26)

θ0 = 1 at η = 0
θ0 → 0 as η→ ∞

}
(27)

φ0 = 1 at η = 0
φ0 → 0 as η→ ∞

}
(28)

Thus, the set of first-order ODEs (25a–c) with conditions (26)–(28) is simplified by
employing the bvp4c MATLAB function. The mathematical computations are conducted
by choosing step size ∆η = 0.01 and convergence criteria is 10−3.

5. Results and Discussion

The heat and mass transport characteristics of steady Maxwell fluid flow over a
stretching sheet has been studied under the influence of magnetic field through bvp4c
MATLAB solver. The numerical data are generated for various values of available control
parameters such as β (Maxwell fluid parameter), M (magnetic parameter), Pr (Prandtl
number), Ec (Eckert number), Kr (chemically reaction parameter), Sr (Soret number), and
Sc (Schmidt number) within the boundary layer region. These results are presented in
terms of tables and graphs.

5.1. Validation of Present Solutions

The accuracy of solutions obtained based on bvp4c MATLAB solver is validated with
solutions generated through classical Runge–Kutta method with shooting procedure in
the limiting sense for different values of Maxwell fluid parameter, which are tabulated in
Table 1. Table 1 guaranteed that the present solutions are matching remarkably with the
results of Abel et al. [65] and Sadeghy et al. [66]. The excellent agreement is an encourage-
ment for the authors to analyze the effects of various control variables on Maxwell fluid
flow over a stretching sheet.
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Table 1. Comparison of present solutions with Abel et al. [65] and Sadeghy et al. [66].

Numerical Values of Skin-Friction Coefficient f”(0)

Parameter Sadeghy et al. [66] Abel et al. [65] Present solutions

β = 0
M = 0 M = 0 M = 0.2 M = 0 M = 0.2
−1.0000 –0.999962 –1.095445 −1.0000 –1.095456

5.2. Influence of Governing Parameters
5.2.1. Impact of the Magnetic Number (M)

The effect of the magnetic number on flow profiles with (β = 0) and (β = 2) is depicted
in Figures 2–5. The impact of magnetic parameter on f (η) and f ′(η) profiles are shown in
Figures 2 and 3. Figures 2 and 3 describe that the f (η) and f ′(η) profiles diminished for
the rising values of magnetic number. Enhancing magnetic number increases the Lorentz
force in the flow region and hence the flow profiles are diminished. However, the velocity
field is significant for β = 0, when compared to β = 2. Figures 4 and 5 describe the impact
of the magnetic number on thermal and concentration distribution for β = 0 and β = 2.
Enhancing the magnetic number magnifies the thermal distribution. Additionally, the
thermal boundary layer thickens for higher values of the magnetic number. Furthermore,
the increased temperature field is due to the enhanced Lorentz force, and it dissipates more
heat energy into the flowing fluid, and thereby, the temperature field shows the increasing
behavior. Further, Figure 5 shows that the magnifying magnetic number enhances the
concentration profile. Additionally, the concentration boundary layer is observed to be
thicker for higher values of the magnetic parameter.
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5.2.2. Impact of Maxwell Fluid Parameter (β)

The impact of the Maxwell fluid parameter on the flow field is demonstrated in
Figures 6–9. Figures 6 and 7 illustrate that the f (η) and f ′(η) profiles diminished for the
rising values of β. Since increasing Maxwell fluid parameter offers increasing resistance to
the flow, f (η) and f ′(η) decreased in the flow regime. Additionally, the momentum boundary
layer is diminished for the rising values of the Maxwell fluid parameter. Figure 8 describes
the impact of the Maxwell fluid parameter on the temperature profile. Enhancing the
Maxwell number magnifies the thermal profile. Further, the influence of β on concentration
distribution is shown in Figure 9. It is recorded from Figure 9 that the magnifying β raises
the concentration profile in the flow regime and the concentration boundary layer thickens
for rising β.
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5.2.3. Effect of the Eckert Number (Ec)

Figures 10 and 11 describe the influence of Ec on temperature and concentration
distribution profiles. It is recorded from Figure 10 that the enhancing Ec magnifies the
thermal profile. The occurrence of frictional forces in the fluid medium acts as the source for
the production of temperature energy in the liquid, and this situation strengthened the heat
energy in the flow regime. This fact is well predicted in view of the Eckert number. Further,
the Eckert number influences the heat energy because Ec directly influences the energy
equation (refer to Equation (13)). Additionally, thickening the thermal boundary layer is
considered for enhancing Ec values. Further, it is found from Figure 11 that enhancing the
Eckert number decays the concentration distribution in the flow direction.
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5.2.4. Impact of the Prandtl Number (Pr)

Figures 12 and 13 portray the influence of Pr on thermal and concentration fields for
β = 0 and β = 2. Figure 12 demonstrates that the thermal profile decayed for rising Pr.
Additionally, enhancing Pr diminished the temperature boundary layer thickness. Since
the thermal diffusion of the fluid decays with the upsurge in Pr, and hence, thermal field
decreases. Further, Figure 13 shows that the magnifying Pr enhances the concentration
distribution in the flow regime.
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5.2.5. Impact of the Schmidt Number (Sc) on Concentration Distribution

Figure 14 demonstrates the impact of Sc on concentration distribution for β = 0
and β = 2. It is clearly recorded from Figure 14 that the amplifying Sc decayed the concen-
tration distribution in the boundary layer regime for β = 0 and β = 2. Concentration profile
is a diminishing function of Sc because the greater Sc values are related to the lower mass
diffusion, and hence, the concentration profile decreases. Additionally, the concentration
boundary layer thickness is decayed with rising Sc.
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5.2.6. Influence of the Soret Number (Sr)

Figure 15 illustrates the concentration distribution for various values of Sr for β = 0
and β = 2. The concentration distribution field is amplified for the enhancing values of Sr.
This situation is due to the generation of extra mass fluxes due to the thermal gradients for
the enhancing values of Sr. Additionally, the enhancing values of Sr magnifies the thermal
boundary layer thickness.
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5.2.7. Influence of Chemical Reaction Parameter (Kr)

Influence of β = 0 and β = 2 for various values of Kr for both Kr < 0 (genera-
tive chemical reaction) and Kr > 0 (destructive chemical reaction) is demonstrated in
Figure 16. Figure 16 reveals that the concentration distribution diminished for the mag-
nifying Kr values. Additionally, the concentration distribution is greater for β = 2, when
compared to β = 0 condition.
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5.3. Effect of Control Variables on Engineering Quantities

The impact of different physical parameters on momentum transport coefficient
and heat and mass transport rates are illustrated in Table 2. It is clearly remarked from
Table 2 that the rising magnetic parameter raises the value of the skin-friction coefficient
and diminishes Nusselt and Sherwood numbers. Additionally, enhancing Maxwell fluid
parameter magnifies the skin-friction coefficient and decays the thermal and concentration
transport rates. Amplifying the Soret number decays the concentration transfer rate, and
enhancing the chemical reaction parameter amplifies the Sherwood number.

Table 2. Impact of physical parameters on engineering quantities of interest.

M β Ec Pr Sr Sc Kr CfxRe0.5
x −NuxRe−0.5

x −ShxRe−0.5
x

0.1

0.5 0.1 0.7 0.1 0.7 0.1

1.16916 0.37399 0.48972
0.3 1.25083 0.35436 0.48166
0.5 1.32770 0.33654 0.47450
0.7 1.40050 0.32025 0.46809

0.5

1.0

0.1 0.7 0.1 0.7 0.1

1.42514 0.31172 0.46062
1.5 1.51744 0.29046 0.44912
2.0 1.60514 0.27206 0.43946
2.5 1.68877 0.25595 0.43124

0.5 0.5

0.2

0.7 0.1 0.7 0.1

1.32770 0.28107 0.47810
0.4 1.32770 0.17014 0.48530
0.6 1.32770 0.05920 0.49250
0.8 1.32770 −0.05172 0.49969

0.5 0.5 0.1

1.0

0.1 0.7 0.1

1.32770 0.43110 0.46910
1.5 1.32770 0.56916 0.46115
2.0 1.32770 0.68598 0.45431
2.5 1.32770 0.78747 0.44826

0.5 0.5 0.1 0.7

0.2

0.7 0.1

1.32770 0.33654 0.46190
0.4 1.32770 0.33654 0.43670
0.6 1.32770 0.33654 0.41149
0.8 1.32770 0.33654 0.38629

0.5 0.5 0.1 0.7 0.1

1.0

0.1

1.32770 0.33654 0.59678
1.5 1.32770 0.33654 0.77300
2.0 1.32770 0.33654 0.92528

2.05 1.32770 0.33654 1.06103

0.5 0.5 0.1 0.7 0.1 0.7

−0.2 1.32770 0.33654 −0.04080
−0.1 1.32770 0.33654 0.23554
0.0 1.32770 0.33654 0.37598
0.1 1.32770 0.33654 0.47450
0.2 1.32770 0.33654 0.55321
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6. Conclusions

The present numerical analysis deals with the study of heat and mass transfer behavior
of the viscous incompressible time-independent laminar two-dimensional flow of Maxwell
fluid over a stretching sheet under the influence of the Soret effect and magnetic field. In the
present analysis, the behavior of non-Newtonian Maxwell fluid is differentiated from those
of Newtonian fluids by using the well-known Maxwell fluid model. Further, the equations
governing the 2D flow of viscous Maxwell fluid along the stretching sheet are derived
and which are nonlinear and coupled in nature. Governing nonlinear system of partial
differential equations are solved by utilizing the bvp4c MATLAB function. Additionally,
numerical simulations are performed for various values of physical parameters. Further,
the significant results of the present study are listed below.

- Normal and axial velocity fields decrease with the increasing values of M;
- Temperature and concentration fields enhance with the rising values of M;
- Normal and axial velocities decay with the rising values of β;
- Thermal and concentration profiles increase with the rising values of β;
- Enhancing the Soret parameter magnifies the concentration field in flow regime;
- Thermal profile decays with the enhancing values of Pr;
- Concentration profile decreases with the enhancing values of Sc;
- The magnitude of the skin-friction coefficient increases with rising values of M and β;
- The Nusselt number increases with increasing values of Pr;
- The Sherwood number magnifies with enhancing values of Sc and Kr.
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Nomenclature

C Concentration distribution
f ′, f Non-dimensional flow components
k Thermal conductivity of the fluid
Kr Chemically reaction parameter
M Magnetic parameter
Pr Prandtl number
Sc Schmidt number
Sr Soret number
T Temperature distribution
u, v Flow components along x, y directions
Greek symbols
α Thermal diffusivity
β Maxwell fluid parameter
η Similarity variable
θ Dimensionless temperature
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ϕ Dimensionless concentration
ψ Stream function
µ Dynamic viscosity
υ Kinematic viscosity
ρ Fluid density
Subscripts
w Surface conditions
∞ Ambient conditions
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