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Abstract: Ti-23Nb (at.%) coatings on an NiTi alloy with metallurgical bonding were prepared by laser
cladding (LC) technology using Ti-Nb mixture powders. The effects of laser processing parameters
on the microstructure and mechanical properties of the coatings were systematically investigated
and the corrosion resistance of the coatings was assessed. The coatings were composed of TiNb,
(Ti, Nb)2Ni, and β-Nb phases. The coatings increased the hardness of the NiTi alloy by a combined
strengthening effect of the eutectics and fine microstructure. The corrosion resistance of the coated
part was improved. The coatings with great corrosion resistance could keep the coated parts inert in
an aggressive environment, and effectively restrain the release of toxic Ni ions, which means that the
Ti-Nb alloy coatings are likely to be used as a biomaterial for medical applications.

Keywords: laser cladding; Ti-Nb alloy coating; NiTi(Nb) phase; microstructure; corrosion resistance

1. Introduction

Titanium alloys are widely employed as biomaterials because they offer great func-
tionality, biocompatibility, great corrosion resistance, and mechanical properties [1–4].
Among them, NiTi shape memory alloys (SMAs) have been extensively assessed in terms
of superelasticity (SE) [5–7], usage for orthodontic arch wire, self-expanding stent, and
embracing fixator, etc. [8–10].

The applications of the NiTi alloys are still limited, owing to the damaged surface
of the alloys, and further leading to release of toxic Ni ions [11,12]. The release of toxic
ions has increasingly attracted concerns, because if the toxic ion content in the human
body environment exceeded a certain threshold value 0.2 µg·cm−2, it would cause toxic
and allergic reactions and influence gene expression and cholesterol metabolism [13,14].
Besides, “Nickel cases” constantly appear, despite the fact that nickel recovery is very low
in in vitro physiological studies or drops to undetectable levels in a physiological environ-
ment [15]. Therefore, preventing Ni ions releasing from biomaterials into the human body
is compulsory for NiTi alloys to be successfully used for biomedical applications [16,17].

To prevent Ni ions release, an increasing number of studies started to focus on improv-
ing the corrosion resistance of titanium alloys via surface modification methods [18], while
maintaining the mechanical properties of the substrate [19,20]. For example, the resistance
to corrosion can be improved by laser surface melting, coating, and magnetron sputtering
techniques. Sun et al. [21] reported the (Si, O, N)/(Ti, O, N)/Ti composite coating, which
was fabricated by magnetron sputtering following plasma immersion ion implantation
and deposition (PIIID), could promote corrosion resistance in the in vitro environment,
and bioactivity of NiTi alloys. Compared to traditional methods, the laser cladding (LC)
technique is becoming increasingly popular due to its low cost, high flexibility, and strong
metallurgical bond with no risk of coating delamination [22,23]. Besides, the technique
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is capable of producing fine microstructures with outstanding mechanical properties, in-
cluding strength and fracture resistant [24–26]. Fallah et al. [27] reported that LC-built
Ti-Nb alloys could restrain toxic V ions releasing from Ti6Al4V and steel substrates. Ti-Nb
alloys have good biocompatibility and corrosion resistance [28–30], and are even expected
to replace NiTi alloys in the field of biomedical applications [31–34]. Preparing Ti-Nb
components through the conventional method is rather costly due to the high melting
point of Nb. Instead, a possible alternative way to take advantage of the Ti-Nb alloy is to
apply its coatings on the NiTi substrate, rather than producing the bulk of component in
the Ti-Nb alloy, which could be more easily achieved and also cost effective.

In this work, Ti-Nb alloy coatings on the NiTi substrate were fabricated by the LC
technique. We investigated the effects of LC processing parameters on the microstructure
and mechanical properties of Ti-Nb alloy coatings on the substrate. Then, the corrosion
resistance of the coatings and the NiTi alloy was compared. Laser cladding of Ti-Nb
coatings has rarely been studied. Additionally, it is expected that the results from this study
could facilitate further application of the NiTi alloy for long-term biomedical implantation.

2. Material and Methods
2.1. Materials and Preparation Process

Cold rolled NiTi alloy was used as the substrate and was cut into 100 mm× 100 mm× 8 mm
plate. The chemical composition of the NiTi material consisted of 50.9 at.% Ni, 0.039% O,
0.030% C, and 0.003% N, balanced with Ti. Irregularly shaped Ti powders (purity ≥ 99.75 wt.%)
and Nb powders (purity ≥ 99.36 wt.%) were blended in a mixer (Turbula T2F, Switzerland)
for 9 h to achieve a uniform distribution. The proportion of Ti powder and Nb powder
was 77 to 23 at.%. The average size of Nb particles (D50 = 70.5 µm) were smaller than
that of Ti (D50 = 83.1 µm). The mixed powders were handled in a glove box with argon
gas protection. To remove the oxide layer and contaminants on the outer surface of NiTi
substrate, the plate was polished with SiC abrasive papers (400#, 800#, 1200# grit), then
sequentially cleaned with acetone, de-ionized water, and anhydrous ethanol.

A MFSC-500 fiber laser system with a 2.0 mm spot diameter and 1.08 µm wave-
length was used for the cladding while the powders were coaxially fed into the laser spot,
as illustrated in Figure 1a.
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Figure 1. Schematic of the fundamental of laser cladding technique, (a) the experimental setup; (b) dilution in a bulk coating:
A, a solution zone of substrate with coating; B, coating; C, heat affected zone (HAZ).

The substrate was partially melted and mixed with the cladded material, where three
different zones can be observed on the cross-sectional view, i.e., solution zone of substrate
with coating (A), coating material (B), and heat affected zone (HAZ) (C), as indicated in
Figure 1b. To avoid absorption of oxygen and nitrogen into the molten pool during laser
cladding process, the entire working cabin was shielded with the Argon. Further, the
Argon with 25 L·min−1 flow rate was used to convey powder mixture. The laser was
scanned uni-directionally at a velocity between 1.6~3.6 mm·s−1 and an overlap of 70%,
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respectively. Table 1 summarizes the pulsed laser cladding processing parameters. In the
work, the energy density (E) was chosen to measure the unit of energy flow rate. The
energy density E (J·mm−2) shows:

E =
P

VD
(1)

where P is the laser power (W), V is the laser scan speed (mm·s−1), and D is the laser beam
diameter (mm). To observe the structure morphology of the coatings, the cross-section
was further ground with SiC abrasive papers and then polished with OPS reagent (grain
size 0.04 µm). Then, the specimens were chemically etched for about 15 s in a solution
containing 10% HF, 15% HNO3, and 75% deionize water to characterize the microstructure.

Table 1. Processing parameters of the pulsed laser cladding.

Samples Laser Power
(W)

Scanning
Velocity

(mm·s−1)

Beam
Diameter

(mm)

Overlap
Ratio (%)

Energy
Density

(J·mm−2)

c1 350 1.6 2.0 70 109
c2 350 2.0 2.0 70 88
c3 350 2.6 2.0 70 67
c4 350 3.0 2.0 70 58
c5 350 3.6 2.0 70 49

2.2. Material Characterization

The particle size distributions of powders were analyzed by a laser particle size analy-
sis meter (Mastersizer 3000, Malvern Panalytical, Malvern, UK). The CP-Ti powder had a
D50 = 83 µm. Nb powder had a D50 = 77 µm. Phase composition was analyzed by X-ray
diffraction (XRD, Advance D8, Bruker, Billerica, MA, USA) with a continuous scanning
mode over a wide range of 2θ = 30◦~90◦ with a scanning rate of 6◦/min, using a Cu Kα

radiation source (λ = 1.54 Å; 40 mA and 40 kV). Metallographic specimens were prepared
by following the procedures mentioned above. The microstructures of the samples were
characterized via optical microscopy (OM, DM2700P, Leica, Germany), scanning electron
microscopy (SEM, FEI Quanta 250 FEG, Lausanne, Switzerland), and high-resolution scan-
ning electron microscopy (HRSEM, Helios Nanolab G3 UC, FEI, Lausanne, Switzerland).
Element distributions analysis was performed by energy dispersive spectroscopy (EDS,
Aztec Energy X-max 80, Brentwood, NY, USA).

2.3. Nano-Indentation

The hardness and Young’s modulus of the top surface of the laser tracks were mea-
sured by nano-indentation tester (NHT, CSM, Peseux, Switzerland) with loading 40 mN
and loading rate 1 mN·s−1. The Vickers hardness variation with the depth of each cross-
sectional coating was measured under a micro-indentation tester with 200 g load and 15 s
dwelling time. Twenty areas were measured in each depth.

2.4. Electrochemical Corrosion Behavior

The electrochemical corrosion behavior of the Ti-Nb alloy coatings and bare NiTi
alloy was assessed in a typical three-electrode cell containing simulated body fluid (SBF,
pH = 7.4) as the electrolyte at 37 ± 0.1 ◦C, by using a PARSTAT-4000 (Princeton Applied
Research, Oak Ridge, TN, USA) electrochemical station. The ion concentrations in SBF
solution are shown in Supplementary Materials (Table S1). The corrosion cell consisted
of a saturated calomel reference electrode, counter electrode (Pt), and the specimen as the
working electrode. The working surface was 7 × 7 mm2. The OCP (open circuit potential)
was performed for 60 min to reach a relatively stable level. The fluctuation of OCP is less
than 5 mV every 10 min. The polarization tests were carried out at a scanning rate of
1 mV·s−1. Corrosion potential (Ecorr) and current density (Icorr) could be worked out from
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the polarization curves by Tafel analysis. Each test was repeated three times to obtain an
averaged result.

3. Results and Discussion
3.1. Microstructure Characteristics

As shown in Figure 2a,b, the irregularly shaped Ti-23Nb mixed powders show a
uniform distribution. The bright area represents Nb powder in Figure 2a. The blue area
shows Nb powder in Figure 2b. Figure 2c reveals that the NiTi alloy mainly shows the
B2 phase (Pm-3 m) with diffraction peaks of (110) and (211). Ti and Nb phases in the
mixed powder show the α-Ti phase (hcp structure) and bcc structural β-Nb phase (bcc
structure), respectively.
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Figure 2. SEM micrographs of the mixture of pure Ti and Nb powders, showing (a) morphology and
(b) EDS mapping results at a low magnification; (c) XRD patterns of the powder mixture and NiTi
alloy substrate, respectively.

OM images of the cross-section of Ti-Nb alloy coatings are shown in Figure 3. OM
images of Ti-Nb coatings obtained under various cladding conditions showed similar
morphology, which consisted of the molten pool, the HAZ, and the welding line. Due
to the heat impact during the cladding process, an area undergoing microstructural and
property changes could be identified as HAZ, shown in the yellow area. HAZ generally
has coarse cellular grain structures in the bright area up the welding line [35], which will be
explained later. With the laser energy density decreasing from 109 to 58 J·mm−2, the width
of the HAZ became narrower. The coatings with a thickness of about 600 µm bonded well
with the substrate, but few unmolten particles can still be spotted in the coated layer. The
gas pores were trapped and microcracks were also observed in the HAZ of the coating c1,
as shown in Figure 3d. The microcracks extended from the welding line to the surface of
the coating. No cracks were formed in the other coatings. The formation of microcracks in
the HAZ resulted from the stress concentration during the rapid melting and solidification
and trapped pores. Besides, the grains are coarse and brittle in the HAZ [36], which easily
lead to cracks, as shown in Figure 3d. The microcrack of the Ti-Nb alloy coating would
cause premature failure in service, which hinders its further application in industry [37].
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Figure 3. OM images observed in the cross-section of Ti-Nb alloy coatings at different energy densities
respectively: (a) 109 J·mm−2; (b) 88 J·mm−2; (c) 58 J·mm−2; and (d) showing pores and cracks in the
c1 coating.

The microstructures of the Ti-Nb alloy coatings at different energy densities are
shown in Figure 4. The mid-height areas of the coating are shown in Figure 4a,d,g. The
primary phases are shown in equiaxed oval and dendrite structures. The primary phases
were rapidly solidified due to the coarse interface between solid and liquid combining
with large undercooling. Ti and Nb atoms can substitute each other in crystal lattice
and form an infinite solid solution [38]. Because Ni atoms diffused from the substrate
into the coating, the primary phases contained TiNb, (Ti, Nb)2Ni, and NiTi(Nb). When
the temperature of the molten pool dropped, the residual liquid phase started to form
eutectics which were uniformly and continuously distributed in the primary phase matrix.
As the temperature continued to fall, α phase precipitated from primary phases and
eutectics. The α′ and α” phases from the mother phase could be precipitated due to
martensite transformation. The structures at the bottom of the coatings are similar under
high energy density, different from that under low energy density, with the fine equiaxed
dendrite shown in Figure 4b,e,h. Besides, the microstructures of the HAZ are different
from that of the coatings, shown in Figure 4c,f,i. Cellular grains were formed in the HAZ,
because of the positive temperature gradient between solid and liquid interface and the
smaller subcooling degree of composition. The mesh eutectic structure was formed due
to solute atoms segregating at grain boundaries in the heat affected zone, which showed
lamellar-type and rod-like microstructures [38,39]. Such microstructures presented the
NiTi(Nb) alloy microstructure, mainly consisting of primary phase NiTi(Nb) and eutectics
of NiTi(Nb) and β-Nb [40,41]. The eutectic region of the coatings with a high energy density
was continuous. The lower the energy density, the smaller the width of the eutectic area.
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Figure 4. SEM morphologies of cross-sections of the Ti-Nb coatings: (a,d,g) the mid-height and
(b,e,h) the bottom of the coatings under the energy densities of 109 J·mm−2, 88 J·mm−2, 58 J·mm−2;
(c,f,i) the HAZ of those coatings in high magnification, respectively.

As shown in Figure 4, with the decrease of energy density, i.e., the increase of scanning
velocity, the grain size gradually became smaller correspondingly. There are fine equiaxed
dendrites in the molten pool at low energy density, which is consistent with the results
of Co-based coatings containing Nb prepared by plasma cladding [42]. There are coarse
cellular dendrites at high energy density. The growth of dendrites and equiaxed grains can
be influenced by the local composition and temperature gradient [43]. With the increase
of scanning rate, the temperature gradient and undercooling degree in the molten pool
increased, then the driving force for phase transformation and the solidification speed
increased correspondingly. With the increase of undercooling, the critical nucleation radius
decreased and the nucleation rate increased, resulting in the finer grain sizes of the cladding
layer. The fine microstructure would lead to difference in mechanical properties [44]. In a
certain range, finer grain structures are beneficial for improving the strength and toughness
of materials. Besides, the laser processed surface with more Ti content may have better
biocompatibility and corrosion resistance [45]. Therefore, performing the laser cladding at
relatively lower energy density is likely to improve the biomedical properties of LC-built
Ti-Nb coatings.

The elemental distribution in LC-built Ti-23Nb alloy coatings was examined by using
an SEM equipped with EDS. As shown in Figure 5, the distribution of Ti and Nb in the
coating was not homogeneous, similar phenomena reported in literature [46,47] as well.
The bright phase was rich in Ti and Nb but in depletion of Ni, while Ni elements were
enriched in the dark phases. Ni atoms diffused from the substrate into the coatings and the
concentration of Ni gradually decreased from the substrate towards the coating surface.
A few Nb atoms diffused into the HAZ due to heat effect. Zhao et al. [40,48] reported that
low Nb content in NiTi(Nb) alloys could develop a wide hysteresis by pre-deformation. The
biomedical application of the alloys could also be affected correspondingly. The solution
zone between the coating and substrate results from the elemental dilution. Part of the
substrate was melted and mixed into the melt pool with the help of hot flow movement
and mutual diffusion of the elements, then rapidly solidified. In general, a small number of
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percentages of the dilution rate is often desirable in depositing coating materials. However,
it is difficult to achieve and the dilution rate values are typically in the range between 10%
and 40% [49].

Coatings 2021, 11, x FOR PEER REVIEW 7 of 13 
 

 

The solution zone between the coating and substrate results from the elemental dilution. 

Part of the substrate was melted and mixed into the melt pool with the help of hot flow 

movement and mutual diffusion of the elements, then rapidly solidified. In general, a 

small number of percentages of the dilution rate is often desirable in depositing coating 

materials. However, it is difficult to achieve and the dilution rate values are typically in 

the range between 10% and 40% [49]. 

 

Figure 5. EDS mapping analysis results of the coating from the substrate to the coating, (a) show-

ing SEM image with the bright phase and the dark phase; (b–d) showing different elemental dis-

tributions, respectively. 

Figure 6 presents XRD patterns of the Ti-Nb alloy coatings. The results indicated that 

there were mainly the TiNb phase (bcc), (Ti, Nb)2Ni phase (fcc), and NiTi(Nb) phase (B19′) 

in the coatings. With an decrease of the energy density, the volume of the β-Nb grains 

increases, and the NiTi(Nb) phase and (Ti, Nb)2Ni phase decreased remarkably. The Ti-

Nb binary alloy is in the form of infinite solution β phase at high temperature. Metastable 

β phase was maintained to room temperature during rapid solidification. When the tem-

perature lowered to 882 °C, α phase precipitated from β phase, as shown at the peak at 

40.17°. Besides, there was a high peak of the martensite α″ NiTi(Nb) phase in the diffrac-

tion pattern. The martensite α″ phase was formed from the mother phase under marten-

site transformation starting temperature (Ms) [5]. In short, when energy density is lower, 

the LC-built Ti-Nb coatings can obtain more β TiNb phase and β-Nb phase which have 

low elastic modulus. Unmolten Nb particles are hard to eliminate at all times. Nb grains 

in an appropriate range of dimensions in the Ti-Nb alloy coating could strengthen alloy 

strength and toughness [41]. 

Figure 5. EDS mapping analysis results of the coating from the substrate to the coating, (a) showing
SEM image with the bright phase and the dark phase; (b–d) showing different elemental distribu-
tions, respectively.

Figure 6 presents XRD patterns of the Ti-Nb alloy coatings. The results indicated that
there were mainly the TiNb phase (bcc), (Ti, Nb)2Ni phase (fcc), and NiTi(Nb) phase (B19′)
in the coatings. With an decrease of the energy density, the volume of the β-Nb grains
increases, and the NiTi(Nb) phase and (Ti, Nb)2Ni phase decreased remarkably. The Ti-Nb
binary alloy is in the form of infinite solution β phase at high temperature. Metastable
β phase was maintained to room temperature during rapid solidification. When the
temperature lowered to 882 ◦C, α phase precipitated from β phase, as shown at the peak at
40.17◦. Besides, there was a high peak of the martensite α” NiTi(Nb) phase in the diffraction
pattern. The martensite α” phase was formed from the mother phase under martensite
transformation starting temperature (Ms) [5]. In short, when energy density is lower, the
LC-built Ti-Nb coatings can obtain more β TiNb phase and β-Nb phase which have low
elastic modulus. Unmolten Nb particles are hard to eliminate at all times. Nb grains in an
appropriate range of dimensions in the Ti-Nb alloy coating could strengthen alloy strength
and toughness [41].

3.2. Micromechanical Analysis

As shown in Figure 7, the microhardness (H) and elastic modulus (E) of the NiTi alloy
were 233.1 HV and 54.2 GPa, respectively. With an increase of the energy density, H and
E of the coatings decreased. However, the H and E of various coatings were higher than
those of the NiTi alloy. The E of the coating with the energy density of 88 J·mm−2 was
the lowest among the specimens. Figure 7b shows the maximum H over 1000 HV in the
HAZ, which is rarely reported. This result is attributed to the existence of nanocrystalline
eutectics. With the distance of the HAZ in the coatings, the hardness of the cross sections
gradually decreased, owing to the depleted Ni atoms in the coatings.
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The mechanical properties of the Ti-Nb alloy relies on the microstructure of the molten
pool, which is mainly affected by temperature and concentration gradients, and growth of
grain [50]. The grain sizes were finer in the coatings obtained with lower energy density
(Figure 4), while the values of H and E increased accordingly (Figure 7). Accordingly, the
capability of materials resisting deformation at room temperature was improved. Apart
from the fine microstructure, the specific atom-level bonding conditions in the coating were
closely related to such difference in hardness. Bond order (Bo) of the d-d covalent bond
between atoms was evaluated by Mulliken [51]. However, given the specific conditions
of alloys, the bond order of each element is divided by its atomic weight to measure the
relative strength of the bond [52]. With a higher ratio, the ratio of bond order to atomic
weight is stronger, and the molecules are stabler. The ratio for Ti-M mainly depends on the
alloying element, M. The variation trend of the bond order is similar between hcp and bcc
Ti. Therefore, the ratio of Ti-Nb is larger than that of Ti-Ni. Therefore, the strength of the
Ti-Nb alloys coatings is stronger than the bare Ti-Ni alloy.

The H of the cross-sectional coating c2 (the building direction in additive manufactur-
ing) and the top surface (the scanning direction) is 680.6 ± 7.3 HV and 608.10 ± 33.0 HV,
respectively. The difference demonstrates the mechanical anisotropy of the coating and the
lower hardness at the top surface. In recent years, studies about mechanical properties of
Ti-based alloys have been widely reported, as shown in Table 2. In contrast, the LC-built
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Ti-Nb coatings own great mechanical properties, even bond metallurgically well with the
NiTi alloy substrate, which could be used as biomedical appliances.

Table 2. Typical tensile tests and microhardness values of the Ni-Ti alloys, Ti-Nb alloys, and other
Ti alloys.

Alloys Preparation
Methods

Tensile
Strength

(MPa)

Young’s
Modulus

(GPa)

Microhardness
(HV0.2) Reference

Ni55Ti Hot-rolling - - 220 [22]
NiTi LC 320 21 ~430 [53]

Ti30Nb LC - - 850 [47]
Ti-35Nb LC - - 700 [22]
Ti-23Nb LC - 109 ± 7 656 ± 34 This work
Ti-25Nb SLM 748 ± 27 83.5 ± 0.8 264 ± 6 [54]
Ti-30Nb Remelting 527 64.3 233.4 [13]
Ti-23Nb SPS - 455 [8]
Ti-25 Nb SLM 923 ± 38 18.7 ± 1.4 297 ± 3 [55]

Ti-13Nb-13Zr SLM 1020 ± 13 67 - [56]

3.3. Electrochemical Corrosion Analysis

To investigate the corrosion resistance of the scanning direction of LC-built Ti-Nb alloy
coatings in SBF solution, electrochemical tests were carried out. The bare NiTi alloy was
used as the contrast group. The polarization curves of the samples are shown in Figure 8.
The polarization behavior contains two sections: the oxidation of the electrode on the
anode and the hydrogen evolution reaction on the cathode. The coatings exhibited stable
passivation behavior due to a protective film formed, i.e., NbO, NbO2, Nb2O5, and TiO2,
which had great corrosion resistance at high oxidation potential and could restrain further
corrosion of the coatings [22].
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under immersion in SBF. The curves (line, dotted, dashed) in the same clolor are repetitions.

The average corrosion potential (Ecorr), corrosion current density (Icorr), and polariza-
tion resistance (Rp) of the samples in SBF solution were calculated from the polarization
curves, respectively, as presented in Table 3. The Ecorr can measure the difficulty in cor-
rosion of materials. A higher Ecorr indicates that the materials are harder to be corroded.
The Icorr reflects the corrosion speed of materials. A higher Icorr indicates a faster corrosion
rate [57,58]. The Rp is inversely proportional to the Icorr. Rp can also qualitatively judge the
corrosion resistance of materials. A larger Rp exhibits a stronger corrosion resistance. Ti-Nb
alloy coatings have higher Ecorr than the NiTi alloy substrate, laser processed NiTi alloy,
and Ti-13Nb-13Zr alloy. The Icorr of the Ti-Nb alloy coating was significantly lower than
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that of the substrate, laser processed NiTi alloy, and Ti-13Nb-13Zr alloy. Besides, Ti-Nb
alloy coatings possessed larger Rp than the NiTi alloy. Therefore, the LC-built Ti-Nb alloy
coatings have better corrosion resistance than the NiTi alloy, laser processed NiTi alloy,
and Ti-13Nb-13Zr alloy. The Ecorr and Icorr values of the coating c3 were −0.128 ± 0.005 V
and Icorr of 163.7 ± 74.4 nA·cm−2, respectively. Aside from the stable passivation film, the
fine microstructures fabricated by laser cladding technique also enable excellent resistance
against pitting. Therefore, the LC-built Ti-Nb alloy coatings have good corrosion resistance
and could restrain the release of Ni ions.

Table 3. Corrosion parameters observed from potentiodynamic polarization for the LC Ti-Nb alloy
coatings in the SBF at 37 ◦C.

Anodes Ecorr (vs. SCE)/V Icorr (nA·cm−2) Rp (kΩ·cm−2)

c2 coating −0.184 ± 0.005 272.4 ± 15.0 218.7± 37.9
c3 coating −0.128 ± 0.005 163.7 ± 74.4 230.2 ± 18.6
NiTi alloy −0.220 ± 0.004 410.9 ± 67.7 139.6 ± 3.1

Laser processed NiTi [59] −0.200 ~500 -
Ti-13Nb-13Zr [56] −0.556 416.8 -

4. Conclusions

The effects of laser energy density on the microstructures and mechanical properties
of the LC-built Ti-Nb coatings were studied. The corrosion resistance of the Ti-Nb coating
was also evaluated. The main conclusions of this study can be drawn as following:

1. Ti-Nb coatings with a metallurgical bonding with the NiTi alloy were successfully
fabricated by laser cladding. The distribution of the microstructures of the coatings
was uniform. The coatings were mainly composed of β-TiNb, NiTi (Nb), and (Ti,
Nb)2Ni phase. The coatings obtained at lower laser energy density contained a larger
proportion of β TiNb and β-Nb phases. The HAZ had large volume of the eutectics
consisting of NiTi(Nb) and β-Nb phase with nanometer range crystalline.

2. The size of the grains decreased with energy density, leading to an increase of hard-
ness and elastic modulus. Besides, hardness measurements showed a gradually
decreasing trend from the HAZ to the top surface of the coatings, owing to the lim-
ited diffusion of Ni atoms from the substrate into the coatings. When the energy
density was 88 J·mm−2, the microhardness and elastic modulus were 608 ± 33.0 HV
and 111.6 ± 7.8 GPa, respectively, which were higher than those of the NiTi alloy
(233.1 HV and 54.2 GPa). Besides, the hardness of the HAZ was over 1000 HV. Such
high hardness can be associated with the abundant eutectic structure.

3. The LC-built coatings exhibited better corrosion resistance than that of the NiTi alloy,
which could effectively ensure the surface qualities and restrain the release of toxic Ni
ions. This was attributed to the fine microstructure and to the stable oxide film formed.
NiTi alloys with the LC-built Ti-Nb coating are likely to be used as long-time implants.

In the subsequent works, we will continue to regulate a laser scanning strategy to
reduce the elastic modulus of the Ti-Nb alloy coatings and investigate the bonding strength
between the coatings and substrate.
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