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Abstract: A conductive metallic particle in a gas-insulated metal-enclosed system can charge through
conduction or induction and move between electrodes or on insulating surfaces, which may lead to
breakdown and flashover. The charge on the metallic particle and the charging time vary depending
on the spatial electric field intensity, the particle shape, and the electrode surface coating. The charged
metallic particle can move between the electrodes under the influence of the spatial electric field,
and it can discharge and become electrically conductive when colliding with the electrodes, thus
changing its charge. This process and its factors are mainly affected by the coating condition of
the colliding electrode. In addition, the interface characteristics affect the particle when it is near
the insulator. The charge transition process also changes due to the electric field strength and the
particle charging state. This paper explores the impact of the coating material on particle charging
characteristics, movement, and discharge. Particle charging, movement, and charge transfer in
DC, AC, and superimposed electric fields are summarized. Furthermore, the effects of conductive
particles on discharge characteristics are compared between coated and bare electrodes. The reviewed
studies demonstrate that the coating can effectively reduce particle charge and thus the probability
of discharge. The presented research results can provide theoretical support and data for studying
charge transfer theory and design optimization in a gas-insulated system.

Keywords: metal particles; high-voltage power transmission; coating; insulator; movement characteristics

1. Introduction

The importance of insulation breakdown and discharge caused by conductive particles
in gas-insulated systems has attracted industrial attention. Understanding conductive par-
ticle charging, movement, and charge transfer is essential since these factors are important
for designing gas-insulated systems, maintaining equipment, and developing insulation
detection methods [1–8].

Theoretical and experimental research on the characteristics of conductive particle
movement emerged with the development of gas-insulated switchgear (GIS) and gas-
insulated power transmission lines (GILs). Since the advancement of SF6 application in
the mid-1960s, Western European countries (BBC of Switzerland and Delle of France) and
Japan have directed more attention to GIS development. The Soviet Union and China
completed 110 kV GIS research and trial production in the early 1970s; their initial research
focused on withstand tests [9–16] and test methods [17–19].

As the power level increases, the movement of metal particles becomes the main factor
affecting the internal insulation of GIS/GILs. Figure 1 (investigated by China Electric
Power Research Institute in 2015) shows different possible causes of GIS failures, of which
about 20% are related to metal particles [20–22]. The particle movement mechanism has
been extensively researched through modeling. When the voltage level is higher than
500 kV, gas insulation failure in a GIL is mainly caused by metal particles. According to
the statistics on gas-insulated system failures reported in China over the past decade [21],
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particle suppression has become the primary factor to consider when designing the internal
structure of gas-insulated equipment [3–15].
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The charge transfer and defects/deterioration due to conductive particles in gas-insulated
systems were studied in the early 21st century through modeling. M. M. El Bahy et al. an-
alyzed conductive particle charging on the electrode surface and coating surface to in-
vestigate the effects of the particle shape and electric field distribution on the charging
characteristics [16]. The conductive particle motion behavior and collision characteristics in
a wedge-shaped, slightly uneven electric field were numerically studied in a coupled man-
ner to explore the gas-insulated system’s structural and field distribution characteristics
and the conductive particle motion law near the insulating support [10]. In addition, parti-
cle charging behavior and electrical conduction were studied to verify the efficacy of the
insulating support structure. UHV transmission and transformation projects are being con-
ducted internationally as power system globalization accelerates. However, further studies
on conductive particle charging and movement on bare and coated electrode surfaces are
necessary to gain a better understanding of charge transfer, which is valuable information
for designing high-voltage equipment and optimizing withstand voltage test methods.

This paper reviews and summarizes the research progress of experimental work on
the movement characteristics of conductive particles, associated models, and the inhibitory
effect of electrode coating on surface particle charging. The current issues and problems
involving gas-insulated switchgear and transmission line equipment in power systems are
also analyzed. These analyses, together with theoretical developments of conductive parti-
cle charge transfer, can lay the foundation for future studies on electric conductor charging
and gas discharge theories, providing a theoretical basis for GIS and GIL engineering
design, defect detection, and the development of insulation test methods.

2. Charging Process of Conductive Particles on the Electrode Surface

Analyzing the force and movement of particles requires studying the charging process
of conductive particles on the electrode surface and its influencing factors and rules [9–13].
The charging of conductive particles is explored from the following three aspects: the
conductive particle charge in a high-voltage electric field, the influence of surface-coating
materials on the amount of charging, and the impact of the charging process.

2.1. Charging Mechanism of Conductive Particles on the Bare Electrode Surface

Under an electric field, the metal particle surface on the ground electrode generates
an electric charge. N. N. Lebedev et al. initially calculated the charge of spherical metal
particles in a uniform electric field [11]. A. T. Pérez et al. confirmed their conclusion in
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subsequent work. In a uniform electric field, the charge of metal particles is proportional
to the area of the particles and the electric field intensity, expressed as [23,24]:

q± = 2π3r2ε0ε1E/3 (1)

where q± is the charge carried by spherical conductive particles, C; r is the radius of the spher-
ical conductive particle, mm; ε0 is the absolute dielectric constant, ε0 = 8.85 × 10−12 F/m;
ε1 is the relative dielectric constant of the gas in the space; and E is the electric field
intensity, kV/cm.

The orientation (horizontal or vertical) changes the calculation of linear particle charge.
When conductive particles are placed horizontally, the carried charge qwire is [25]:

qwire = 2πε0ε1rlE (2)

When metal particles are oriented vertically, the carried charge qwire is [25]:

qwire =
πε0ε1l2E

ln(2l/r)− 1
(3)

In Equations (2) and (3), r is the cross-sectional radius of the wire conductive particle,
mm; ε is the permittivity of free space; l is the length of the metal particle, mm; and E is the
electric field intensity, kV/cm.

Table 1 shows the equivalent charges for conductive particles in other shapes.

Table 1. Charges of metal particles in uniform and slightly uneven electric fields.

Particles Sphere
(Radius r)

Hemisphere
(Radius r)

Semi-Ellipsoid
(Radius r, Length l)

Charge 6.57πεr2E 3πεr2E
πεl2E

ln(2l/r)− 1

Particles Linear Particles
(Radius r, and Length l)

Half Cylinder
(Radius r, and Length l)

Thin Foil
(Area S (Small), and Height h)

Charge 2πεrlE 4πεrlE εSE

2.2. Mechanism of the Particle Charging Process on a Coated Surface

When the electrode surface is coated with a film, the charging time of metal parti-
cles increases, or the charge decreases accordingly. After coating, there are three main
mechanisms of particle charging on the surface: (1) the surface of the medium has a
charge, and the particles are charged by contact with the electrode film; (2) the particles
are charged by the electric current in the medium; (3) the discharge of particles is based
on the micro-discharge between the particles and the medium. Reference [16] shows that
after the DC system is coated, the particle charge is essentially generated by the film’s
conduction. C. Li et al. established a conductive and micro-discharge model and calculated
the charge of metal particles using the different models [2,12]. After comparing their results
with measured values, they concluded that both charging mechanisms exist when the
electrode is coated. Additionally, Y. Khan et al. determined the primary mode of particle
charging by testing whether the gas pressure alters the intensity of the particle lifting
field [26]. Specifically, if the SF6 gas pressure has little influence on the lifting field intensity,
then conduction is the primary driving mechanism of coated particles; when SF6 is more
influential, the primary driving mechanism is micro-discharge.

As reported in references [27,28], the coating reduces the particle charge and changes
the electric field distribution around the particles, increasing the field intensity between
the particles and the film. Furthermore, the charge analysis includes the Coulomb force,
gravity, friction force, the viscous resistance of air, and the electric field gradient force [18].
Therefore, the relationship between the initial voltage of particle movement and the initial
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particle position is calculated according to the force analysis and the motion equation,
and the charge is estimated. By introducing the charge coefficient for the coated electrode
surface, the charge of coated particles is:

q±film=ξq±bare (4)

where q±bare is the charge when the electrode surface is not coated, and ξ is the
charge coefficient.

J. Wang et al. proposed a charging model for metal particles with a coated electrode
under DC stress [26]. Since the coating does not affect the final charge of the particles, the
calculation formula for the charge of coated particles is:

qcoated(t) =
∫ t

0
ichargedt = qbare

(
1− e−

t
τ

)
(5)

where icharge is the particle charging current, τ is the time-varying characteristic of the
particle charging current, and t is the particle charging time.

The above formula shows that as absorption develops during the polarization process,
the interface charge increases. Furthermore, the particle charge finally stabilizes, and
qconcluded(∞) = qbare. This proves that the coating measures only extend the charging time
compared to the bare electrode and do not affect the final charge.

When DC voltage is applied to the upper plate and t = 0, the overall electrode model
is equivalent to a double-layer dielectric capacitor. At this point, the particles are charged
due to current conduction. Based on the research conclusion about the accumulation and
dissipation of the insulator surface charge, the conduction current of the particles comprises
the electrical conduction current of the insulating film. C1 is the capacitance between the
metal particles near the gas medium and the upper plate, and C2 is the capacitance between
the insulating film-side particles and the insulating film (see the following expression) [26].

C1 =
2π3ε0ε1r2

3d0
(6)

C2 =
ε0ε1S
3d1

(7)

where d0 is the distance between the electrodes, mm; d1 is the distance between the
insulating film, mm; S is the contact area between the metal particles and the lower
electrode plate; and r is the radius of the spherical conductive particle, mm.

The particle charging current is:

ic(t) =
C1U0

R2(C1 + C2)
e−

t
τ (8)

where R2 is the equivalent resistance on the insulating film side, U0 is the voltage of the
ideal power supply near the gas, τ is the time-varying characteristic of the particle charging
current, and t is the particle charging time.

Through time integration of the particle charging current, the particle charge qc(t) is
obtained as follows:

qc(t) = q0

(
1− e−

t
τ

)
(9)

where q0 is the particle charge under the bare electrode, τ is the time-varying characteristic
of the particle charging current, and t is the particle charging time.

2.3. Experimental Study of Electrode/Coating Surface Particle Charging

The Faraday cup method is used to measure the particle charge with electrode surface
charging [27–29], as shown in Figure 2. When the particle lifts off vertically from the surface
due to the electric field, it is also moved horizontally by air currents. When it drops into the



Coatings 2021, 11, 750 5 of 24

Faraday cup and collides with the bottom, the charge can be measured by a coulombmeter
since it contains an integrated circuit design; the charge is calculated by the impulse current,
and then the total charge of particles is output.
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In Figure 3, the straight line is the theoretical charge. With bare electrodes, the
measured charge is generally lower than the theoretical value. The reason is that when
particles are blown off, a small part of the charge is lost as they collide with the organic
glass [30].
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Figure 3. Charge of metal particles on the bare electrode.

L. E. Lundgaard et al. used anodized aluminum as the electrode coating material
in experiments [31,32]. The particle charge was the same as that of the bare electrode.
Jia et al. coated the electrode surface with a 100 µm thick polyethylene terephthalate (PET)
film and calculated the particle charge to be about 30–60% of that obtained when the
electrode was not coated based on the starting voltage of the particles under a wedge-
shaped plate. Moreover, Y. Khan et al. used high-speed cameras to capture images of
moving particles [8,25,26,32]. After processing the images, they obtained the instantaneous
displacement of particle motion and calculated its acceleration. As a result, the charge can
be calculated by inversion (see Table 2).



Coatings 2021, 11, 750 6 of 24

Table 2. Charges on the surface of bare and coated electrodes.

SF6 Gas Pressure, p, MPa
Charge q/pC

qbare qfilm

0.1 −152 −78.71

0.2 −220 −106.93

0.3 −258 −130.55

References [32–35] describe particle charging based on the new relationship between
particle charge and the electric field force and field strength established in the Parekh
model. After coating and before the field strength reaches the critical value at which
micro-discharge occurs between the particles and the film, the particles are uncharged.
When the field strength exceeds the critical value, the particle charge increases rapidly, but
it is still less than the charge of bare electrode particles under the same field strength (see
Figure 4) [19,23,24].
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However, M. Runde et al. hypothesized that electrostatic adsorption occurs between
coated particles and the surface of the insulating film, so the higher initial voltage over-
comes the electrostatic force instead of resulting in reduced particle charge [31]. The coating
only increases the time required for the particle to obtain the charge without affecting its
final charge (see Table 3).

Table 3. Charges of particles (r = 0.5 mm) at different times with different film thicknesses (20 kV).

Time
t/min

Charge q/pC

qbare qfilm (25 µm PET) qfilm (50 µm PET) qfilm (100 µm PET)

1 −221 −116 −61 −20

3 −221 −170 −151 −130

5 −221 −183 −180 −176

3. Movement Process of Conductive Particles
3.1. Lifting Process of Charged Conductive Particles

After being charged, metal particles move under the electric field force. They are
affected by the electric field gradient force, gas drag force, and friction force during their
movement [31–38].

Table 4 shows the instant force expression on the surface of metal particles.
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Table 4. Surface force on metal particles.

Force (Wedge Electrode) Direction Amplitude

Electric field force, Fq
−θ (qz,V > 0)
+θ (qz,V < 0)

Fq = 0.832|q±Erθ|(d = 0)
Fq = 0.832|q±Erθ|(d 6= 0)

Electric field gradient force, Fgrad −r Fgrad = 2πr3ε0εs
∣∣∇Erθ

2
∣∣

Viscosity, Fv Opposite the direction of movement Fv = 6πρsrv

Gravity, Fg −z Fg = (4/3)πr3g(ρp − ρs)

Note: qz represents the particle charge when it is on the electrode; q± represents the particle charge when it lifts off from the electrode;
Erθ represents the electric field of a wedge-shaped electrode and θ is the angle of the two electrodes; r is the radius of the spherical
conductive particle, mm; v is the velocity of the particle; g represents the gravitational acceleration; ρp is the particle density, kg/m3; ρs is
gas density, kg/m3.

When the metal particles move, they are subjected to drag force exerted by the gas.
The gas drag force Fd can be expressed as:

Fd =
dy
dt
πr

(
6µKd

(
dy
dt

)
+ 2.656

(
µρsgl

dy
dt

)1/2
)

(10)

where µ is the viscous fluid coefficient (SF: 15.5 × 10−6 kg/m at 20 ◦C); r is the radius of
the spherical conductive particle, mm; ρs is the gas density, kg/m3; l is the particle length,
mm; Kd is the gas drag force coefficient; and g is the gravity acceleration [39].

The following empirical formula can be used to determine the influence of gas pressure
p on drag force ρg:

ρg = 7.118 + 6.332p + 0.303p2 (11)

where p is the gas pressure.
Based on the force analysis of metal particles and the parallel electrode model,

H. Anis et al. calculated the floating voltage of spherical and linear particles while considering
the effects of gravity and the electric field force, as shown in Equations (12) and (13) [33,40].

El = 473.8
√

rρs

K
(12)

El =

[
ln
(

2l
r

)
− 1
]√

r2ρsg
εl[ln(l/r)− 0.5]

(13)

where r is the cross-sectional radius of wire conductive particles, mm; K is the correction
coefficient, taken as 0.832 in this work; ρs is the gas density, kg/m3; l is the particle length,
mm; and ε is the dielectric constant.

Focusing on the slightly uneven electric field in GIS, Japan’s Koh-ichi Sakai et al.
proposed a wedge-shaped electric field model of metal particle movement. In the electric
field, the critical field strength and the floating field intensity of the horizontal movement
of spherical metal particles are obtained, accounting for the impact of the electric field
gradient force EH and the gas buoyancy EL, as shown in Equations (14) and (15) [11,26].

EH =

{
2rµ
(
ρp − ρs

)
(g− β)l0

ε0ε1[0.832π2(r + µx0 + 6r)]

}1/2

(14)

EL =

[
2r
(
ρp − ρs

)
(g− β)l0

0.832π2ε0ε1

]1/2

(15)

where µ is gas viscosity coefficient; ρp is the particle density, kg/m3; ρs is the gas density,
kg/m3; β is the buoyancy correction parameter; r is the radius of the spherical conductive
particle, mm; l0 is the distance between the edge of the wedge electrode and the origin of
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the wedge electrode, that is, the extension line intersection, mm; x0 is the distance between
the particle and the edge of the wedge electrode, mm; ε0 is the vacuum dielectric constant;
and ε1 is the relative dielectric constant of the gas.

Without considering the static friction at the metal particles’ initial moment, when the
metal particles move horizontally, the voltage UL is calculated as [41,42]:

UL = 165.9rθ0

√
Rp(g− β)

(
ρp − ρs

)
cos θt (16)

Once certain conditions are met, the metal particles float, and the critical voltage UH
at this time is:

UH = 475.6rθ0

√√√√√µRp(g− β)
(
ρp − ρs

)(
cos θt +

sin θt

µ

)
6Rp + 0.832π2µr

(17)

In Equations (16) and (17), r is the radius of the spherical conductive particle, mm; θ0
is the wedge electrode angle; Rp is the quality of particles; and θt is the angle between the
direction of the electric field and the direction of gravity.

In a wedge-shaped electric field under DC voltage, metal particles are affected dif-
ferently by the electric field gradient force at various positions. The initial voltage of the
spherical metal particles, Vh, is obtained when its horizontal movement reaches a specific
position. The following equation is used to calculate Vh while considering gas buoyancy
and neglecting friction force [28]:

Vh = 165.9rθ0

(
rµρpg

1.731l + µx0

)1/2
(18)

When the floating condition is satisfied instead of the initial condition for horizontal
movement, the metal particles float. The floating voltage, Vl, can be expressed as:

Vl = 165.9rθ0
(
lρpg

)1/2 (19)

In Equations (18) and (19), µ is the gas viscosity coefficient; ρp is the particle density,
kg/m3; r is the radius of the spherical conductive particle, mm; l is the length of the wire
particle, mm; θ0 is the wedge electrode angle; x0 is the distance between the particle and
the edge of the wedge electrode, mm; and g is the gravity acceleration.

In the coaxial electrode, the floating voltage of linear metal particles, El, on the shell
surface represents the particles [36,42]:

El =

√
ρsgr

1.43ε0
(20)

where g is the gravity acceleration; ε0 is the dielectric constant of the gas; r is the radius of
the spherical conductive particle, mm; and ρs is the gas density, kg/m3.

The floating field intensities of spherical and linear metal particles have been compared
using different calculation models [20–22,43]. In Figure 5, the left diagram shows the
changing strength of the floating field of spherical metal particles with different radii under
four different models. The figure on the right shows the varying strength of the floating
field of linear metal particles with different lengths under four different models.

The metal particle material also changes the floating field intensity. For copper metal
particles, the floating field intensity increases significantly. Compared with aluminum, the
floating field intensity of copper with the same length reaches 12 kV/cm (r = 0.12 mm); for
copper with the same maximum radius, the stress reaches 25 kV/cm. Table 5 shows the
critical floating field strength of metal particles.



Coatings 2021, 11, 750 9 of 24

Coatings 2021, 11, x FOR PEER REVIEW 9 of 24 
 

Particles' radius r（mm）
0.2 0.4 0.6 0.80 1.0

4

0

8

12

16

L
if

t-
o
ff

 F
ie

ld
 E

L
  (

k
V

/c
m

)

Indira Model

Asano-FCM Model

Asano-HCM Model

Al

Felici Model

 Particles' length l（mm）

4 5 6 7 8

4.0

4.5

5.0

5.5

L
if

t-
o
ff

 F
Ie

ld
 E

L
  (

k
V

/c
m

) Al （r= 0.11 mm）

≈≈
9 10

Indira Model

Asano-FCM Model

Asano-HCM Model

Felici Model

 

(a) (b) 

Figure 5. Floating field intensity of spherical and linear metal particles; (a) changing strength of the floating field of spher-

ical metal particles (influenced by the particle radius); (b) changing strength of the floating field of spherical metal particles 

(influenced by the particle length). 

The metal particle material also changes the floating field intensity. For copper metal 

particles, the floating field intensity increases significantly. Compared with aluminum, 

the floating field intensity of copper with the same length reaches 12 kV/cm (r = 0.12 mm); 

for copper with the same maximum radius, the stress reaches 25 kV/cm. Table 5 shows the 

critical floating field strength of metal particles. 

Table 5. Critical floating field intensity of metal particles. 

Characteristics Sphere (Radius r) Hemisphere (Radius r) 
Semi-Ellipsoid 

(Radius r, and Length l) 

Critical field strength 0.49
ε

r g
 0.27

ε

r g
 

20.82[ln( ) 1]

2 1
ε ln( )

2

l
r g

r
l

l
r



 
 

 

 

Characteristics 

Linear particles 

(radius r, 

additionally, length l) 

Half cylinder 

(radius r, and length l) 

Thin foil 

(area S 

(small), and height h) 

3.2. Movement of Metal Particles under DC Voltage 

Whether metal particles move toward the high-voltage electrode and discharge is 

related to the ionization factor K [44]. When Equation (12) is satisfied, the metal particle 

will discharge. After discharge, the charge of the metal particles changes, and the force’s 

movement varies accordingly: 

∫ �̅�
d

𝑑𝑧 ≥ 𝐾 (𝐾 = 10)

 

 (21) 

where ᾱ is ionization factor, and K is a constant (K = 10 for air; K = 10.5 for SF6). The metal 

particles discharge when the above conditions are met. 

The metal particles are charged, float, and move to the high-voltage electrode under 

DC voltage. If there is no micro-discharge, the particles collide with the high-voltage elec-

trode (d = 25 mm) and discharge. They then charge in reverse polarity and move back at 

a lower speed than before the collision [45]. 

Figure 6 shows that spherical metal particles with different radii gradually increase 

their flight heights with the extension of flight time under DC voltage. With increased 

voltage, the floating process differs between spherical and linear metal particles: spherical 
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Table 5. Critical floating field intensity of metal particles.

Characteristics Sphere (Radius r) Hemisphere (Radius r) Semi-Ellipsoid
(Radius r, and Length l)

Critical field strength 0.49
rρg
ε

0.27
rρg
ε

0.82[ln(
l
r
)− 1]r2ρg

εl
[

ln(
2l
r
)− 1

2

]
Characteristics Linear particles

(radius r, additionally, length l)
Half cylinder

(radius r, and length l)
Thin foil

(area S (small), and height h)

3.2. Movement of Metal Particles under DC Voltage

Whether metal particles move toward the high-voltage electrode and discharge is
related to the ionization factor K [44]. When Equation (12) is satisfied, the metal particle
will discharge. After discharge, the charge of the metal particles changes, and the force’s
movement varies accordingly: ∫

d
αdz ≥ K (K = 10) (21)

where α is ionization factor, and K is a constant (K = 10 for air; K = 10.5 for SF6). The metal
particles discharge when the above conditions are met.

The metal particles are charged, float, and move to the high-voltage electrode under
DC voltage. If there is no micro-discharge, the particles collide with the high-voltage
electrode (d = 25 mm) and discharge. They then charge in reverse polarity and move back
at a lower speed than before the collision [45].

Figure 6 shows that spherical metal particles with different radii gradually increase
their flight heights with the extension of flight time under DC voltage. With increased
voltage, the floating process differs between spherical and linear metal particles: spherical
particles float directly, and linear metal particles usually float after rising [46–48]. This is
because linear metal particles usually have various charges when placed flat and erect.
Since the floating heights of metal particles under voltage are comparable, research shows
that, for a coaxial electrode (ri = 10 mm, and r0 = 35 mm) under switching DC voltage,
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spherical metal particles (r = 0.75 mm) and linear metal particles (Φ1 mm × l3 mm) have a
similar floating height [49–51].
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3.3. Movement of Metal Particles under AC Voltage

The research on the movement of metal particles within electrodes includes their
movement in space and their collision with the insulation or the electrode surface. The
motion characteristics are primarily affected by the frequency and initial phase angle [30,46].
The electrode adopts a wedge shape under the following AC conditions: f = 60 Hz, and
particle radius a = 0.5 mm. Spherical conductive particles based on AC voltage roll along
the ground electrode surface to the high-field intensity area. Since the voltage polarity
changes many times during movement between two collisions with the electrode, the
direction of the electric field force experienced by the particles also changes multiple times,
resulting in an uncertain direction of particle movement. In other words, the particles
are characterized by a certain degree of randomness. Spherical conductive particles that
move horizontally along the electrode surface always move in the direction of the stronger
electric field. Its movement speed is related to the horizontal and the total electric field
intensity distribution and intensity. The horizontal movement is affected by the horizontal
and total electric field intensity distribution for linear conductive particles. Their vertical
movement is subject to electric field intensity changes in the vertical direction.

In an AC electric field, it usually takes a relatively long time (100 ms) for the metal
particles to float before the second jump occurs [30,45,46]. The movement of metal particles
largely depends on the voltage frequency f and initial phase angle ϕ.

The minimum return position xmin and floating position xBD of metal particles under
the wedge electrode are influenced by the voltage frequency (0–500 Hz) [46] (see Figure 7).
The trajectory of spherical conductive particles in an uneven electric field has the following
two modes: the particles roll horizontally along the ground electrode surface, and the
particles are lifted by the electric field force and make small “jumps” on the ground
electrode surface, accompanied by horizontal directional and time-variable directional
movement. When the voltage is constant, and 0 ≤ f ≤ 40 Hz, the particles jump with
penetrability and move to the high-field strength area; when 40 ≤ f ≤ 180 Hz, xmin
decreases as the frequency increases, and when f > 180 Hz, the particles do not collide with
the high-voltage electrode and move in the direction of high field strength.

However, the trajectory of linear conductive particles in an uneven electric field has
one mode: the particles float under the electric field force and make small “jumps” on the
ground electrode surface, followed by horizontal and time-variable directional movement.
This is because the friction on the particle is greater than the horizontal component of the
electric field force when the particle is on the electrode surface.
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Figure 7. Relationship between the smallest takeoff position and voltage frequency under the wedge
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3.4. Movement of Metal Particles under the Superimposed Electric Field
3.4.1. Movement Characteristics of Particles on the Surface of a Bare Electrode

The floating height of metal particles has a higher amplitude (coaxial electrode 40/137)
under AC and impulse voltage. At this time, the height of the alternating current (200 kV)
is 9.7 mm, and that of superimposed lightning impulse voltage (1050 kV) is 55.2 mm.
Figure 8 shows the movement characteristics of metal particles under AC and superim-
posed impulse voltage [47–49].
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3.4.2. Movement Characteristics of Particles on the Coated Electrode Surface

Under AC voltage, the particle lifting voltage is significantly increased with coated
electrodes. Under the same conditions, the lifting voltage of silicone rubber coating is
higher than that of polyethylene terephthalate (PET). Moreover, the lifting voltage after
the coating is 1–2 times that of the bare electrode. The particle lifting voltage increases to a
greater extent under AC voltage compared with DC voltage. Figure 9 compares the lifting
voltage of parallel plate electrodes coated with PET film and electrodes coated with silicone
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rubber film. The red line is the change curve of the lift voltage when the PET film is the
coating, and the black line is the curve when the rubber film is the coating [28,50,51].
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Figure 9. Relationship between particle lift-off voltage and thickness of silicone rubber and
PET coatings.

When the lightning voltage is superimposed on the surface of the shell of the power
frequency voltage, the metal particles with the coated electrode are affected by the lightning
pulse as the applied voltage increases. Its maximum radial motion increases and is larger
on the coated electrode surface than the bare one. As the thickness of the film increases, the
maximum value decreases. Table 6 shows the radial motion of Cu particles [39].

Table 6. Radial motion of Cu particles on the bare electrode surface and coated surface.

Voltage (kV)
Maximum Radial Motion (mm)

Bare Electrode Coating (50 µm) Coating (100 µm)

100 3.66 0.0130 0.0120
132 10.08 0.0137 0.0716
145 12.19 0.2161 0.1379

Compared with the coated electrode system, movement in the uncoated electrode
system is significantly greater. When the coating thickness increases, the particle charge
decreases, and the maximum scale of movement decreases. Figure 10 shows the motion
model of the coated bus’s superimposed lightning impulse.
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The coated electrode does not affect the final particle charge but prolongs the charging
time compared with the bare electrode.

Interfacial polarization refers to the process of electrode surface charge transfer to
the medium and gas interface. The particles on the coated electrode are subjected to the
Coulomb force and electrostatic adsorption force [27].

The Coulomb force Fc is:
Fc = F0

(
1− e−

t
τ

)
(22)

where F0 is the Coulomb force exerted by particles on the bare electrode, τ is the time-
varying characteristic of the particle charging current, and t is the particle charging time.

The electrostatic adsorption force Fa is:

Fa =
1

2k1

(
1− 1

ε2

)
Fc (23)

where k1 is the correction coefficient caused by the surface charge, and k1 = 0.832.
Figure 11 shows the Coulomb force and electrostatic adsorption force on the particles

when ε2 = 3.8; the black line is Fc, and the red line is Fa. They increase because the charge
on the particle increases with time.
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In the charging process of particles with the coated electrode, the Coulomb force and
electrostatic adsorption force gradually increase. Under this condition, even if the applied
voltage reaches the movement’s lifting voltage, the particles experience a time lag instead
of moving immediately.

During lifting, the particles move vertically upwards and collide with the upper plate.
After the collision, they move with acceleration toward the downward plate, and their
electric charge becomes positive. However, instead of changing the electrical properties, the
particle charging time reduces the charge during the short collision process. Consequently,
the decrease causes the particles to bounce and accelerate their downward movement
once more. In addition, the inelastic collision between the particles and the insulating
film leads to a momentum loss, and as a result, the particles cannot reach the height
of the upper electrode plate when flying away from the insulating film. The particles
continuously collide with the film of the lower plate and bounce until they are stationary,
continuously reducing their bounce height. This damped oscillation frequency is lower than
the persistent oscillation frequency of the bare electrode. Once the particles are stationary
on the insulating film, a certain amount of time is required to charge for “re-lifting”.

Figure 12 shows the phenomenon of the continuous, intermittent lifting of particles [27,28]
on the electrode surface coated with PET.
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Figure 12. Lifting of the coating particle.

The particle re-lifting time is significantly shorter than the delay of the first particle
charge because the particles collide with the film many times when they have a damped
oscillation. Their positive charge is significantly reduced, or the particles acquire a certain
amount of negative charge. Therefore, the recharging time is greatly shortened. The voltage
affects the charging speed so that the re-lifting time decreases as the voltage increases (see
Figure 13) [27].
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3.5. Current Shortcomings and Prospects

Metal particle charging and movement have been studied for more than 20 years. The
uniform electric field and the slightly uneven charged movement of metal particles have
been extensively researched.

However, this research area has the following practical shortcomings:

• The metal particle charge in an uneven electric field. The electrification of metal
particles in a uniform electric field can be analyzed according to N. N. Lebedev’s
model. However, whether the particles are charged according to this rule in an uneven
electric field remains unclear. There is a considerable gap between the calculated
electrification and the actual measurement.

• The charging process of metal particles. Although the metal particle charge can be
calculated, the response to the transient process has yet to be analyzed, resulting in
uncertainty in the metal particle movement when affected by overvoltage.

• The impact of the electric field on metal particle discharge. Research on calculating
metal particle discharge and residual charge near different electrodes is not compre-
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hensive. As a result, there is an urgent need to conduct such studies since conclusions
are lacking.

Subsequent work will analyze the metal particle charging and discharging process
(charge transfer process) to understand the mechanism of electric field and voltage effects
on the movement of metal particles.

4. Movement of Conductive Particles near the Insulating Support
4.1. Movement of Conductive Particles near the Uncoated Electrode Insulator

A polypropylene insulating support structure was used to observe the movement of
metal particles near the insulating support between wedge-shaped electrodes, wherein
the electrode radius R was 160 mm, the center height was 10 mm, and the DC test voltage
was 0–15 kV. The metal particles were in the form of stainless steel balls (r = 0.5 mm) and
aluminum linear particles (diameter D = 0.25 or 0.5 mm and length l = 2–3 mm) [21]. The
results showed that the metal particle movement was significantly different from that
without an insulator when the particles were 4 mm from the insulator support under
experimental conditions. Under an electric field force, the particles moved toward the
high-voltage electrode.

Additionally, the results showed that insulators reduced the initial movement voltage
of the metal particles [19]. The insulator type is shown in Figure 14. When the particle
was near T-type and C1-type insulators, its initial movement voltage decreased by less
than 10% compared with that without an insulator. R-type insulators reduced the initial
movement voltage of the metal particles. The initial voltage near T-type and C1-type
insulators decreased by less than 10% compared with that without an insulator. At a
distance of x0 = 2 mm from the R-type insulator, it was reduced by 27% compared with
that without the insulator.
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The movement of metal particles near a polytetrafluoroethylene (PTFE) insulator
has similar characteristics to those described in references [19,26]: the particles move
horizontally and then float, float directly, or move horizontally until they adhere to the
surface of the insulator. Furthermore, the range of insulator influence on particle movement
is related to the insulator shape. Specifically, the spatial distortion of the electric field caused
by the insulator is the main reason for the change in the particle trajectory. The particles in
the distorted electric field can quickly move toward the insulator.

Under AC voltage (a = 0.5 mm, l = 2 mm, and D = 0.15 mm in a slightly uneven electric
field below 10 kV), the embedded electrode arrangement can improve the electric field
distribution near the insulator and prevent free conductive particles from adhering to its
surface. It also increases the voltage required for particle floating near the insulator and
suppresses particle floating [30].

K. Sakai et al. similarly adopted a wedge-shaped electrode test device supported by
a PTFE pot insulator to explore particle movement characteristics. The results show that
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the areas of particle movement can be divided into four zones (see Figure 15). In zone
A, the particles move toward high-field strength areas. The particles in zones B and C
move toward the insulator under DC voltage and adhere to the insulator surface after
the collision. However, under AC voltage, the particles in zones B and C change their
movement direction and no longer contact the insulator after the collision. The particles in
zone D also move toward high-field intensity zones.
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4.2. The Influence of Coating on Particle Movement

Li et al. used PET coating on the ground electrode to explore particle movement
characteristics under DC voltage [27]. The results showed that the particle lifting field
intensity increased due to the changed particle charge (the maximum charge was at the
contact between the particles and the film). The particles’ rising height around the insulator
was significantly reduced as the charge weakened, and the electric field direction changed.
However, Wang et al. hypothesized that the coating method only changes the particle
charging time under DC voltage and that the total charge does not change. Specifically, the
lifting field strength of particles is improved by electrostatic adsorption to the coating, and
the charge time causes the “intermittent lifting” of particles around the insulator.

Zhang et al. built a 300 kV GIS test device and used a coating layer made of epoxy resin
to explore the particle movement characteristics under the coating layer condition. The
results showed that, regardless of the applied voltage waveform, polarity, and frequency,
the enhancing effect of the lifting field strength of particles caused by the dielectric coating
was more active under AC voltage than under DC voltage. In their subsequent study [28],
they observed that particles did not move under standard or even high DC voltage. The
particles could only “reciprocate” under positive DC voltage with oscillation. Moreover, the
larger the particle size, the longer the particle “reciprocation” time. A similar experiment is
reported in Ref. [51], but the coating layer consisted of a high-conductivity material. The
coating made the electrode surface smoother and reduced the pre-breakdown current in
the air gap. Therefore, it decreased the charge and rising height of the particles.

K. Sakai et al. discussed the coating’s influence on particle movement when studying
a method of particle suppression. They used a round convex electrode. The angle between
the convex electrode and the plane was 3.5 degrees, and the coating material was polyte-
trafluoroethylene (see Figure 16). When not coated, the particles moved to the insulator
and were eventually adsorbed on its wall or fell into a trap and deactivated. However, the
particles occasionally adhered directly under the insulator walls. As the voltage increased,
these particles escaped from the insulator and reached the high-voltage electrode. Then,
they oscillated back and forth between poles. After coating the ground electrode with a PET
layer, the particles only moved in the horizontal direction due to the increased lifting field
strength. After contacting the insulator, these particles climbed up the insulator because of
their changed charge. As a result, they fell into the insulator wall and became inactivated
without moving to the high-voltage pole.
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4.3. Current Shortcomings and Prospects

A slightly uneven electric field analysis model has been established based on cal-
culating the charged metal particles in a uniform electric field. The obtained results are
the floating and collision characteristics and movement changes of metal particles near
the insulation, with or without insulation support. However, there are still the following
shortcomings in analyzing metal particle movement:

• Although models of the uniform electric field, slightly uneven wedge electric field,
and coaxial electrode electric field have been built, the analysis of the electric field
gradient force on metal particles in each model lacks an individual correspondence,
leading to significant errors in research conclusions.

• The models lack the ability to quantitatively analyze the influence of the insulation
mechanism on metal particles, though four insulating support models have been
established, and the metal particle movement has been analyzed using each one. Due
to this shortcoming, it is difficult to guide the practical design of the electric field
and insulation.

Subsequent work should focus on the final stable motion state of metal particles,
including their resonance motion and the adhesion criterion on insulating surfaces.

5. Discharge Characteristics of Conductive Particles on the Insulating Surface

Conductive particles attached to the insulating surface can cause a surge in surface
charge accumulation [52–58]. The conductive particles attached to the middle position
induce a substantial increase in the charge. However, suspended particles have little
effect on the surface charge accumulation. Research has found that when the vertical
distance from the suspended particles to the insulator surface exceeds four times the
particle diameter, the impact on the insulator surface charge can be neglected [10,12,55,56].
The charges accumulated on the insulating surface also produce a Coulomb effect on the
conductive particles and modify the electrical field gradient force that they experience,
thus changing their discharge characteristics.

5.1. Charging Behavior of Conductive Particles on Insulating/Coated Surfaces

Studies have shown that multiple factors alter the charging behavior of conductive
particles on the insulating surface. From a quantitative perspective, researchers around the
world have always assumed that the particle shape does not affect the particle mechanism
or force types and often study spherical particles [46,47]. To find the source of metal particle
charging in a uniform DC field, researchers have studied the charging of metal particles
when they are stationary on the electrode surface [16,27]. They used the potential function
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caused by multi-pole expansion to solve the partial differential equations in the electrostatic
field zones and obtained the spherical metal particle charge qb:

qb =
∮

s
Dds =

2
3
π3ε0ε1r2E0 (24)

where D is the electric flux density; ε0 is the vacuum permittivity; ε1 is the relative dielectric
constant of the gas between the electrodes; r is the radius of the spherical conductive
particle, mm; and E0 is the electric field intensity, kV/cm.

Li et al. studied linear conductive particle charging. The charge is related to the
particle position and shape [25,27], and the charges of particles positioned vertically and
horizontally on the electrode surface are derived from this relationship, respectively. After
being charged, the metal particles move because of the electric field force.

Coating the insulating surface improves some of its properties, such as surface rough-
ness. The surface-coated insulator has an enhanced surface electric field distribution and
decreased surface charge accumulation, increasing the flashover voltage along the insulator
surface. From another perspective, when colliding with the coated insulating film, the
conductive particles become charged. The obtained charge is significantly less than that of
particles colliding with the bare electrode, thereby reducing the movement activity. This
may be related to the time effect of the charge accumulation on the insulating film’s surface.
In Ref. [27], the conductive particle charge was measured using the Faraday cup method
(see Table 7), which demonstrated that particle charge decreased when it lifted off from the
filmed surface.

Table 7. Particle charge measured by the Faraday cup method.

Voltage Type x0/mm Vh/kV qfilm/pC (Measured Value) qbare/pC (Calculated Value)

DC
95 8.8 −98 −215

130 14.0 −134 −340
180 20.2 −24.7 −505

AC
90 8.2 102 205

115 12.4 −174 310
145 16.4 −148 410

Table 7 shows that the conductive particle charge is about 30–60% under DC voltage
when the insulation is not coated. Additionally, the charge polarity is the opposite of that of
the applied voltage. Under AC voltage, the charge dispersibility of the conductive particles
is greater, and their polarity can be positive or negative.

5.2. Movement Characteristics of Conductive Particles on Insulating/Coated Surfaces

Research has found that conductive particles are lifted under the electric field gradient
force and radial Coulomb force. Due to the electric field distortion caused by the charge
accumulation on the surface and the insulator, the conductive particles may be subjected
to the axial Coulomb force and the electric field gradient force. As a result, the particles
move toward the insulator and may eventually reach the surface. However, if there are
defects on the insulator surface, particles may adhere to it or gather at the junction of the
insulator and the electrode. The two ends of the metal particles attached or fixed to the
insulator surface generate partial discharge, which intensifies the charge accumulation on
the surface to affect the electric field distribution near the insulator (see Figure 17) [27].
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Figure 17. Trajectories of metal particles on insulating surfaces.

The movement behavior of conductive particles is the leading factor altering the
insulation strength of GIS/GILs, and the movement characteristics are related to the
applied voltage type. Studies have shown that in a DC GIL, the particle movement activity
becomes more energetic due to the unipolar electric field force. Therefore, the particles
can penetrate the electrode gap when they are lifted. The studies also report that the
gas pressure, voltage polarity, and particle length do not affect the electric field intensity
required for lifting. In addition, the conductive particles jump vigorously under the impulse
voltage and penetrate the electrode gap [10,26]. The voltage required for particles to lift
off or to penetrate the electrode gap is higher under impulse voltage than under AC or
DC. Specifically, this involves linear particles accompanied by hovers and jumps of corona
discharge near the negative electrode [49].

Many scholars around the world have studied the movement characteristics of conduc-
tive particles on an insulating surface. Their findings indicate that the particle movement
characteristics are related to the initial particle position, voltage type, voltage amplitude,
and reflection coefficient. Conductive particles with various initial positions have diverse
trajectories under the same voltage. In the same condition, the particle trajectories change
when step voltages with different amplitudes are applied (see Figure 18).
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Figure 18. Relationship between particle trajectory and voltage amplitude.

When reciprocating in the electrode gap, the conductive particles collide with the
electrode and reflect. The tangential reflection coefficient γl and normal reflection coefficient
γn are usually used to express the relationship between particle incident and reflection
velocities. Figure 19 shows the particle trajectories with different reflection coefficients.
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In addition, γn affects the position at which the particle finally resonates, and γl 
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In addition, γn affects the position at which the particle finally resonates, and γl
changes the time required for the particle to reach resonance.

5.3. Influence of Conductive Particles on Discharge Characteristics

Conductive particles move with the electric field force in GIS/GILs, which can cause
breakdown between the electrodes or induce flashover along the insulator. Studies have
shown that conductive particles reduce the gas insulation performance between electrodes.
The comparison shows that the gas insulation strength decreases significantly as the
conductive particle length increases and the particle diameter decreases (see Figure 20a).
Under AC conditions, when the conductive particles in the coaxial electrode (76/254, bare
electrodes) increase to 6.5 mm, the insulation strength is reduced by 35% compared with
that with no particles (see Figure 20b) [17,22,23,57].
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When metal particles are attached to the insulator surface, their impact on the insula-
tor’s flashover voltage is related to the particle length and distribution on the insulator. The
flashover voltage drops by about 25% when the particles in the middle of the supporting
insulator increase from 3 to 6 mm. Since the metal particles studied by the free-spread
method increase from 2 to 5 mm, the tangential electric field component is reduced by
more than 30% during flashover [18,57,58].
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In references [18,54], when conductive particles with a length of 2.3 mm were attached
to the insulator surface, the field strength in the vicinity increased to about 1.2 times the
original field strength. However, when conductive particles of the same size adhered to
the insulator surface, they had a more significant impact on the field strength, increasing it
to 3.4 times the original strength. Furthermore, the study found that the particle position
also changed the electric field distribution: the degree of the surface electric field distortion
decreased as the electrode distance increased.

6. Conclusions and Prospects

The coating material applied to the electrode and insulator influences particle charging
characteristics, movement, and discharge. Particle charging, movement, and charge transfer
in DC, AC, and superimposed electric fields were compared between different surfaces,
and several conclusions are summarized as follows:

• The charge of metal particles on the bare electrode surface is mainly due to induced
charges and is proportional to the applied electric field. The particle can be charged
instantaneously. The charge of metal particles on the coated electrode surface is mainly
affected by conduction. When the applied electric field passes a certain threshold, the
metal particle charge markedly increases and accumulates as time increases. The time
effects on the charge of insulating coating surface particles have not been researched.
Research trends suggest that future studies will focus on the relation between the
surface charge and spatially charged conductive particles.

• When the electrode is bare, the same field strength is needed for the floating of metallic
particles in AC and DC electric fields. When the electrode is coated, the field strength
needed for metallic particles to float is higher in the DC electric field than in the AC
electric field. The metallic particle oscillates between electrodes in the DC electric
field, preferring to move toward higher electric field strength. In the AC electric field,
the metallic particle jumps on the electrode surface with a small distance, and the
distance decreases as the power frequency increases, which increases the chance of
collision between the metallic particle and the electrode. In the DC electric field with a
coated electrode, the metallic particle has interval and single directional movement.
It is easier to recognize metallic particle defects. Therefore, future research can focus
on effective methodologies for the detection of metallic particle defects by applying a
combination of pulsing, DC, and AC electric fields.

• When the bare electrode is used in a DC electric field, the metal particle oscillates along
the insulator surface near the insulating support, and flashover readily occurs. In
the AC electric field, the distance of metallic particle movement around the insulator
increases. When the electrode is coated, the distance of metallic particle movement
decreases, and the metallic particle motion becomes predictable and controllable. Fur-
thermore, when the electrode is coated, it increases the activation potential of metallic
particles, reducing the chance that it will be lost. Investigating the functionalities of
innovative coating materials, together with insulator dielectric properties and metallic
particle trapping designs, is a promising research direction.
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