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Abstract: The present study describes the influence of potassium and hydroxyl substitutions
on the structural, thermal and mechanical properties of fluorapatite bioceramics. A set of non-
stoichiometric ion-substituted compounds, with a chemical formula of Ca10−xKx(PO4)6F(2−2x)(OH)x

with 0 ≤ x ≤ 1 synthesized by the wet precipitation method, were found to be single-phase apatites
crystallizing in the hexagonal P63/m space group. The structural parameters, as well as the crystallite
sizes, increased accordingly to the amount of added dopant-ions. The thermal behavior of these
compounds, studied within the temperature range 500–1200 ◦C, indicated a partial decomposition
of the apatitic phase and its transformation to tricalcium phosphate β-Ca3(PO4)2 at temperatures
exceeding 750 ◦C. A relative density of the sintered samples achieved the highest value with x = 0.25
and reached about 95% after sintering at 1050 ◦C for 1 h. The microstructures of the sintered samples
were of a trans-granular aspect and experienced an increase in the radius of their pores as x increased.
The prepared bioceramic materials were mechanically characterized by means of Young’s modu-
lus, flexural strength and fracture toughness measurements. The overall trend of these parameters
evolved comparably to the relative density, and the maximum values obtained for x = 0.25 were
measured to be 96 MPa, 47 MPa and 1.14 MPa·m1/2, respectively.
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1. Introduction

Following the increasing prevalence of bone diseases, such as bone erosion, and the
unceasing incidence of trauma accidents, both of which can damage the human skeletal
system, there is an exhaustive demand for implantable biomaterials to replace organs that
have failed. These biomaterials must comply with explicit specifications, such as non-
toxicity, biocompatibility, bioactivity, osteoconductivity, etc. It is worth remembering that
the bones and teeth of mammals are composites which consist of a mineral phase, where
they are composed of calcium phosphates with an apatitic structure, and a bioorganic
collagen-dominated phase [1–5]. Thereby, for a long time, synthetic calcium phosphates
have been materials of interest for biomedical applications, and their properties are being
continually improved to extend their applications as implantable biomaterials [6–11].
Among them, hydroxyapatite (Ca10(PO4)6(OH)2, OHAp) has both a composition and
a structure that are similar, but not fully identical, to the biologically formed apatites
of calcified tissues. Moreover, if implanted, this material has an excellent bioactivity
and allows bone growth by forming chemical bonds with living skeletal tissues [12].
That is why a synthetic OHAp is considered as the most popular biomaterial used in
orthopedical and dental surgery [13–16]. Fluorapatite (Ca10(PO4)6F2, FAp), a less soluble
F-containing isotype of OHAp, also has rather similar properties to the mineral part of
bones and teeth. Therefore, FAp is also considered as a biomedical material that plays a key
role in preventing dental caries, increasing resistance to acid dissolution and decreasing
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mineral solubility [17–19]. In addition, due to their specific structure, all apatitic materials
appear to allow various cationic and anionic substitutions that are used with the aim of
achieving a composition resembling bone tissue. Thereby, partial substitutions of fluorides
for hydroxides in FAp give rise to the formation of homogenous hydroxyfluorapatite
(OH–FAp) bioceramics. It has been proven that OH–FAp minerals occur particularly in
dental enamel [20]. In consequence, OH–FAp might be used in orthopedic and dental
surgery as a surface coating for prothesis and dental implants. It should be noted that
the fluorides present in the OH–FAp allow acid resistance and decrease solubility, both of
which are indispensable for the teeth [21]. Moreover, many authors have suggested that
OH–FAp has a better thermal and chemical stability compared to HAp [22,23].

Regarding ionic substitutions in apatites, potassium, as a minor constituent (0.03–0.07 wt %),
was found to play an important role in bone quality. It can increase bone strength by help-
ing to protect against bone loss and can prevent osteoporosis [24–26]. Moreover, potassium
is indispensable for bone nucleation and biomineralization processes [27]. The literature
reports have revealed that doping by potassium has occurred without any significant
effects on the structural stability of apatites, and that ~20 atom.% were introduced into
the apatite structure [28–30]. Meanwhile, lattice parameters slightly decreased when the
level of substituted K+ increased. Structural investigations showed that introduced K+ in
the FAp lattice was localized on Ca (I) sites, creating vacancies in F− and/or OH− sites to
compensate for charge imbalances [31–33]. However, to date, there are no evident data
on the mechanical characterizations of potassium substituted apatites. Therefore, in the
present study, a series of OH–Fap bioceramics, with variable amounts of potassium as a sub-
stitute for calcium, were studied and sintering properties and mechanical characterizations
were investigated.

2. Materials and Methods
2.1. Sample Preparation

The Fap powders, both pure and K+ and OH− substituted ones, with a general
chemical formula of Ca10−xKx(PO4)6F(2−2x)(OH)x, with x = 0.25, 0.5, 0.75, or 1.0 were
prepared by the classical wet precipitation method [23]. The starting reagents were solid
Ca(NO3)2·4H2O (Riedel-de Haën, 98% assay), KNO3 (Fluka, 98% assay), (NH4)2HPO4
(Fluka, 98% assay), NH4F (Siegfried Handel, 97% assay) and an aqueous solution of
NH4OH (Panreac, 28% assay).

The synthesis of the samples involved dissolving the reagents in deionized water, fol-
lowed by adding the reactants to obtain the final product at the molar ratio (K + Ca)/P = 1.66.
In brief, 750 cm3 of a solution containing dissolved calcium and potassium nitrates with
a total concentration of 5 × 10−3 mol for Ca + K was drop-wisely added using a peristaltic
pump to 750 cm3 of a boiling and vigorously stirred solution of 3 × 10−3 mol dissolved
ammonium phosphate as the source of P and the necessary amount of NH4F as the source
of F. In all experiments, the amounts of (NH4)2HPO4 were always kept constant and were
equal to 3 × 10−3 mol, while the amounts of the other reagents depended on the numerical
values of x. Namely, for x = 1, 10 mol.% of calcium nitrate were replaced by KNO3 (i.e., the
solution contained 4.5 × 10−3 mol Ca(NO3)2 and 0.5 × 10−3 mol KNO3), with the subse-
quent decrease in the amount of NH4F. The pH of the reaction was adjusted to 9 and was
kept constant by means of automatic ammonia addition. Once the whole amounts of the
solutions were added, the suspension was kept maturated for 2 h under continuous stirring
at 95 ◦C. Afterwards, it was hot filtered, and the precipitates were washed with distilled
water and then dried in an oven at 70 ◦C for 12 h until a constant weight was obtained.

2.2. Powder Characterization

Phase identifications, lattice parameters and crystal size determinations were per-
formed by X-ray diffraction (XRD) analysis (PRO PANALYTICALX’pert PRO, Faculty of
Sciences, Bizerte, Tunisia) using Cu Kα radiation at 30 kV and 20 mA. The XRD analyses
were carried out over the 2θ range of 20◦ to 60◦ with a step size of 0.02◦ per second and
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a counting time of 0.5 s per step. Crystallographic identifications of the studied samples
were accomplished by a comparison with the standards compiled by the Joint Committee
on Powder Diffraction and Standards (JCPDS cards # 34–0011 and # 09–0432 for FAp and
OHAp, respectively).

The infrared spectra of the synthesized apatites were recorded by a Nicolet Magna-IR
550 spectrophotometer (Faculty of Sciences, Gabes, Tunisia) in the 4000–400 cm−1 spectral
range. The measured data were collected in the attenuated total reflectance (ATR) mode.
The 31P nuclear magnetic resonance (31P NMR) measurements were performed on a Bruker
300 WB spectrometer (ENI, Sfax, Tunisia) at a frequency of 121.49 MHz. The chemical
analysis for calcium, potassium and phosphorus of the prepared samples was carried
out by dissolving them in an excess of 0.1 N nitric acid, followed by using an ICP-OES
Perkin Elmer, Optima 3000 DV model apparatus (CPG, Gabes, Tunisia), while the fluoride
amounts were potentiometrically controlled with a PF4-L specific F−-selective electrode. In
addition, differential and thermogravimetric analyses (DTA–TGA) were performed using
a Setaram 92–16.18 apparatus (ENI, Gabes, Tunisia) with a heating rate of 10 ◦C/min.

2.3. Sintering and Mechanical Assays

After being prepared, the dry powders of K-doped apatites were uniaxially isostati-
cally cold compacted using a die of 30 mm in diameter and 3 mm thick under a pressure
of 100 MPa. After that, they were pressurelessly sintered between 950 and 1250 ◦C with
a step of 50 ◦C and a fixed dwelling of 1 h. A programmable Carbolyte type furnace
(EPEI, Monastir, Tunisia) rassured the sintering had 10 ◦C/min heating and cooling rates.
The densities of the sintered bodies were determined by Archimed’s method. The mor-
phology of the fracture surfaces was investigated using a scanning electron microscope
(SEM, Philips XL 30, (ENI, Sfax, Tunisia) operated at 20 kV with a tungsten filament. To
perform the observations, the dry samples were gold spattered in a vacuum for 5 min.
Afterwards, the mechanical properties of the dense specimens were investigated by mea-
surements of Young’s modulus (E), which was determined by the pulse-echo method using
a Grindo sonic system Lemmens (ENSI, Limoges, France). In addition, flexural strength
was measured by a three-point-bending technique using a Wolpert 5TZZ 771 instrument.
Finally, fracture toughness (KIC) was determined by means of the Vickers indentation
technique durometer Zwick 3212 (ENI, Monastir, Tunisia). The KIC values were calculated
using the equation derived from the Evans and Charles model and have been previously
detailed [34,35]. All measurements were performed for 4 individual samples in a row and
the average values were calculated.

3. Results
3.1. Phase Analysis

The XRD patterns of the synthesized powders given in Figure 1 revealed that all
samples were of an apatitic structure. The patterns appeared to be comparable for all
samples and coincided with the ICCD standard of FAp (JCPDS # 34–0011), and no evidence
of any crystalline phases other than apatite were detected. The peaks of the K-substituted
OH–FAp samples were sufficiently intense and did not differ from those of unsubstituted
FAp. As expected, the incorporation of K+ and OH− ions into the FAp structure was ac-
companied by a reduction in lattice parameters a and c compared to the unsubstituted FAp.
The calculation results by the least squares method listed in Table 1 showed a particular de-
crease for a parameter while c parameter was slightly varied. The a variation was governed
by two antagonist effects: firstly, the substitution of K+ (0.138 nm) for Ca2+ (0.100 nm)
induced an increase in the a values; however, as it was reported in the literature, the
substitution of a divalent cation by a monovalent one decreased the channel diameter of
a parameter and in consequence, a markedly decreased [28,29,31]. Secondly, the bibliogra-
phy on hydroxfluorapatites reported that a parameter increased with a decreasing degree
of fluoridation [36,37]. In present work, a contraction of the lattice parameters suggested
was attributed to K+ substitution.
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Table 1. Lattice parameters, unit cell volume and crystallite sizes for Ca10−xKx(PO4)6F(2−2x)(OH)x

for 0 ≤ x ≤ 1.

x a (pm) c (pm) V (106pm3) D300 D002 D022

0.00 934.3(1) 685.4(1) 517.0(1) 462(2) 437(2) 423(4)
0.25 932.4(2) 685.2(2) 515.4(2) 448(2) 432(3) 419(3)
0.50 931.8(1) 685.7(1) 514.69(3) 434(3) 442(2) 408(2)
0.75 931.3(1) 686.1(1) 515.32(1) 413(3) 436(3) 402(3)
1.00 930.7(2) 686.3(2) 514.81(2) 407(4) 448(4) 393(3)

The crystallite sizes (value D) for all samples were calculated using the Debye–Sheerer
equation from the XRD reflections (300), (002) and (022) [38]:

D =
Kλ

β1/2COSθ
(1)

where K is equal to 0.9 for the apatite crystallites, λ is the X-ray monochromatic radiation
wavelength, β1/2 is the full width at half maximum of the chosen reflection and θ is the
Bragg’s diffraction angle. The numerical values given in Table 2 indicated that substitutions
of K+ and OH− in the FAp structure decreased the crystallite sizes when amounts of the
doping-ions increased.

Table 2. Chemical analysis results in mmol/g of Ca10−xKx(PO4)6F(2−2x)(OH)x for 0 ≤ x ≤ 1.

x Ca K P F Ca/P
Molar Ratio

(K + Ca)/P
Molar Ratio

0.00 9.89(2) - 5.94(3) 1.97(2) 1.67(3) 1.66(3)
0.25 9.70(3) 0.22(2) 5.95(3) 1.46(3) 1.64(3) 1.66(3)
0.5 9.42(3) 0.45(3) 5.94(3) 0.95(2) 1.59(3) 1.66(3)

0.75 9.20(2) 0.71(3) 5.95(2) 0.47(3) 1.54(2) 1.66(3)
1.00 8.95(2) 0.95(3) 5.94(3) traces 1.50(3) 1.66(3)

Figure 2 illustrates the infrared spectra of the synthesized samples. The spectra
revealed typical FAp absorption bands. Namely, the bands attributable to the PO4

3−

group were detected as the following: the bands assigned at 960, 1030 and 1100 cm−1

were characteristic of the P–O stretching vibrations while those at 570 and 600 cm−1 were
assigned to O–P–O bending. The additional bands assigned to impurities contained in the
prepared powders were also present. Namely, an absorption band observed at the region
1380–1480 cm–1 was attributed to the traces of nitrates; their presence originated from the
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starting precursors and was completely removed by calcination at 500 ◦C. The presence of
nitrates was previously detected in ion-substituted apatites [35].
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Figure 2. Infrared spectra of synthesized Ca10−xKx(PO4)6F(2−2x)(OH)x for 0 ≤ x ≤ 1. Arrows indicate
the traces of OH and nitrates.

As advanced by Šupová [39], a substitution of divalent Ca2+ by monovalent K+ caused
a charge imbalance, and the electroneutrality could be maintained by creating vacancies or
by simultaneous anionic and cationic substitutions. As there a substitution of F− by OH−,
we deduced that no vacancies within the F− site might be present. A very weak absorption
band of OH− at 3495 cm−1 supported this. One needs to stress that this absorption band
was observed solely for K-substituted samples.

The solid phase 31P NMR spectra at magic angle spinning at 8 KHz for x = 0.25
and x = 0.75 samples are shown in Figure 3. These spectra exhibited a single isotropic
signal indicating the existence of a unique crystallographic site for phosphorus in K-doped
OH–FAp environment. The chemical shift of both samples found around 3.8 ppm was
consistent with studies on substituted FAp [35,40].
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The quantitative results of chemical analyses for the elements contained in the samples
are shown in Table 2. As seen in the K column, the amount of potassium in the samples was
close to those introduced and given by x values showing that all K+ was incorporated in
the synthesized samples. Namely, the Ca/P molar ratios decreased as potassium amounts
increased, indicating once again that calcium for potassium substitution had occurred.
The (Ca + K)/P molar ratios were very close to 1.67, the stoichiometric value known for
the calcium apatite. On the other hand, the fluorine contents given in the F column were
in accordance with the nominal compositions given by 2 − 2x calculations. The overall
results of chemical analyses indicate that potassium and hydroxyl substitutions in FAp
bioceramics occurred.

3.2. Thermal Behavior

The differential thermal (DTA) and thermogravimetric (GTA) analyses curves plotted
in Figure 4 showed that the transformations occurred during the heating of the sample
x = 0.5 from room temperature to 1000 ◦C. The GTA plot showed a continuous weight loss
with increasing temperature; namely, in the temperature range between 50 and 200 ◦C, the
samples were the subject of a weight loss of ~4%. This meets an endothermic phenomenon
occurring around 92 ◦C due to the elimination of absorbed water. At the temperature range
210–340 ◦C, a 5% weight loss coincides with an endothermic peak at around 230 ◦C and
corresponds to the decomposition of nitrates. Finally, the exothermic peak at around 750 ◦C,
accompanied by a weight loss of about 4%, was attributed to a partial decomposition of
apatites to tricalcium phosphate, as reported in many studies [35,37]. The presence of
formed β-Ca3(PO4)2 was confirmed by XRD spectra shown in Figure 5.
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Figure 5. XRD spectra of Ca10−xKx(PO4)6F(2−2x)(OH)x for 0 ≤ x ≤ 1, calcined at 1050 ◦C.

3.3. Sintering

The impact of the sintering temperature on the relative densities of the sintered sam-
ples when x rises is shown in Figure 6. All plots have roughly the same trend, suggesting
that the sintering mechanism was the same. The densities did not exceed ~92% at tempera-
tures 900 and 1000 ◦C, then markedly increased at 1050 ◦C to attain ~96%, after which they
gradually decreased. We consider that 1050 ◦C and a holding time of 1 h are the optimal
conditions for maximum densification. On the other side, the effect of K+ and OH− doping
levels on the densification of FAp samples sintered at various temperatures is shown in
Figure 7. It was found that the obtained densities decreased as the doping levels increased.
The highest density values were obtained for undoped FAp, whereas within substituted
samples, the composition where x = 0.25 exhibited the highest relative density values
(~95%). A similar densification behavior was noted for the OH–FAp samples containing
magnesium and silica as substituents [37,41].
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Figure 7. SEM micrographs of the fracture surfaces of the Ca10−xKx(PO4)6F(2−2x)(OH)x for 0 ≤ x ≤ 1
samples sintered at 1050 ◦C for 1 h.

The SEM micrographs of the sintered samples given in Figure 7 revealed that fracture
modes were fully trans-granular. Few pores crossed the fracture surface of pure FAp and
coincided with the obtained density ratios (~96%). However, inter-granular porosity was
observed with the K-substituted compacts. The occurrence of such porosities increased
as x rose.

3.4. Mechanical Characterizations

During mechanical characterizations of the studied K–OH–FAp samples, the nu-
merical values of the Young’s modulus E were found to be of a similar trend to that of
densification. The values for unsubstituted FAp were slightly higher than those for K-
substituted ones and a maximum of 102 MPa was obtained at 1050 ◦C, whereas as the
doping with potassium and hydroxide level increased, the E values decreased (Figure 8).
This decrease might relate to porosity increasing for the substituted samples. As previously
indicated, K+ and OH− substitutions increased the crystallite dimensions disproving the
material densification.
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Figure 8. Numerical values of the Young’s modulus for Ca10−xKx(PO4)6F(2−2x)(OH)x for 0 ≤ x ≤ 1
sintered at various temperatures.

Figure 9 shows the flexural strength values for both the unsubstituted FAp and the
substituted K–OH–FAp samples at various sintering temperatures. The plots appeared
to be of a similar trend and indicated that maximum values were in accordance with
the highest density values. This was in agreement with the Duchworth–Knudsen model,
indicating that the higher the relative density, the higher the strength. Thus, the highest
value of 46.7 MPa at 1050 ◦C was given with unsubstituted FAp sample, and then slightly
decreased to 45 MPa for x = 0.25 at the same temperature. The obtained values were
close to those reported in the literature [35,42,43]. For sintering temperatures exceeding
1050 ◦C, the values significantly decreased to ~30–35 MPa at 1200 ◦C. An abundant porosity
should be responsible for this decrement. For K–OH–FAp samples, the slight decrease in
the flexural strength may be related to the abnormal grain growth and the formation of
large pores.
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Figure 9. Numerical values of the flexural strength of Ca10−xKx(PO4)6F(2−2x)(OH)x for 0 ≤ x ≤ 1
sintered at various temperatures.

The trend of fracture toughness shown in Figure 10 was almost similar to that of
flexural strength. The toughness increased as temperature rose. The maximum value of
1.16 MPa·m1/2 at 1050 ◦C was obtained with FAp and then decreased as the potassium and
hydroxyl were added. This decrease was marked when x ≥ 0.5. These values, which were
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lower for substituted samples, were probably due to the presence of the secondary phase
β-Ca3(PO4)2 indicated by the XRD diffractograms of the Figure 5.
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4. Conclusions

The objective of the present work was to emphasize the properties of potassium-
and hydroxide-doped FAp bioceramics. Ion-substituted FAp samples were prepared
via the standard wet synthesis method. A slight increase in the lattice parameters and
the crystal sizes was found to be coherent with the relative sizes of the doping ions.
Typical of multiple substituted hydroxyflurapatites with Ca/P ≈ 1.66, a heat treatment at
temperatures exceeding 750 ◦C induced a partial decomposition of apatites, with formation
of tricalcium phosphate as a result. Pressurelessly sintered K–OH–FAp samples were
transformed to dense specimens; the densest one was prepared from x = 0.25, which
reached ~95% of the theoretical density after 1 h dwelling at 1050 ◦C. The numerical
values of the mechanical data (Young’s modulus, flexural strength and fracture toughness)
indicated that these parameters were in good agreement with those found in the literature
for similar compositions.
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