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Abstract: The present study manifests an innovative and green approach to graft metal ion adsor-
bent, polyethylenimine (PEI), onto an electrospun chitosan (CS)/polycaprolactone (PCL) composite
membrane via atmospheric pressure nitrogen plasma grafting polymerization. FTIR absorption peak
at around 1690 cm−1 was attributed to the bending vibration of N-H from PEI. Since the plasma
exposure time is a dependent factor of –NH bond formation, an increased nitrogen content up to
3.3% was observed with an extensive reaction time under plasma treatment. In addition, N1s spectra
showed a clear PEI dominating characteristic at 401.7 eV, which suggested a successful grafting of
PEI onto the CS/PCL membrane. According to the EDX analysis, a significant amount of copper ions
was detected in PEI-CS/PCL membranes. This study showed that a greener wastewater treatment
can be realized with the developed plasma synthesis technology.

Keywords: polycaprolactone (PCL); chitosan (CS); polyethylenimine (PEI); atmospheric pressure
nitrogen plasma (APNP); electrospinning; adsorption

1. Introduction

Over the past two years, Taiwan, like Korea and other semiconductor manufacturing
countries, has played an indispensable role and carried the burden in producing microchips
in extremely high demand for industries across the globe amid unprecedented disruption
brought by the pandemic [1], and the worsened conflicts in many economic centers [2,3].
Concurrently, the semiconductor manufacturing industries are required to develop strategic
plans to reduce or reuse potential pollutants to align with the United Nations Sustainable
Development Goals (SDGs). Thus, a different and cleaner approach in handling heavy
metals in wastewater is pivotal.

Nickel, zinc, silver, lead, iron, chromium, copper, arsenic, and cadmium are some of the
heavy metals often found in industrial wastewater [4–7]. Copper, among most heavy metals,
is commonly identified in wastewater due to its wide range of applications [8–10]. Several
conventional methods, including electrocoagulation [11], chemical precipitation [12–14],
oxidation [15], ion exchange [16,17], adsorption [18,19], and membrane separation [20,21]
have been applied to remove heavy metal ions. However, the methods mentioned above
may have several drawbacks, such as high operating costs, insufficient removal efficiencies,
and the production of large amounts of toxic secondary waste residue [22,23]. Adsorption,
compared with these treatment methods, has many merits, and offers high removal efficacy,
practical operation, and an affordable cost [24].

The use of biomass for adsorption of copper ion is considered a relatively environ-
mentally friendly route [25–28]. Nevertheless, lack of physical and chemical stabilities
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from biomass substance, and requiring complicated processing of biomass may limit their
practical use. Polycaprolactone (PCL) has been used widely in biomedical research for its
biocompatibility, biodegradability, non-toxicity, and superior mechanical properties [29,30].
These properties are favorable for environmental research such as air [31,32] and wa-
ter treatment [33,34]. For instance, Maio et al. showed that graphene oxide-decorated
polycaprolactone membranes possessed sorption capacity of phenol molecules on its nano-
surfaces, and can offer a cost-effective approach for water treatment [35]. Meanwhile,
Nivedita et al. prepared polyethylene glycol tailored PCL/TiO2 nanocomposites, which
can effectively filter proteins in effluents from the dairy industry [36].

Chitosan (CS), a polycationic natural polymer extracted from crustaceans, has been
used in conjunction with PCL to fabricate composites with advantageous properties of
antimicrobial [37], high sorption [38], and processability. Together with chitosan, the amino-
rich polyethylenimine (PEI) composites have been used to boost copper ion scavenging
effectiveness and selectivity [39–42]. Furthermore, the feasibility of cold plasma treatment
on hybrid chitosan-SiO2/PCL membranes [43], and amine functionalization by plasma
polymerization on polypropylene surface were also reported by Mangindaan et al. [44].

The main target of the current study is to utilize atmospheric pressure plasma as
a green and simple technique to hybridize the superior qualities of PCL, CS, and PEI
into a membrane with copper ion adsorption capability. The conditions of CS/PCL fiber
formation were investigated. The effects of atmospheric pressure nitrogen plasma on
CS/PCL and grafting of PEI onto CS/PCL were evaluated. Moreover, the adsorption of
copper ion was also assessed with SEM and EDX analyses.

2. Materials and Methods
2.1. Materials

The polyethylenimine (PEI) used in this work was EPOMIN®, purchased from MPES
(Taipei, Taiwan); it is a cationic water-soluble polymer suitable for chelation of metal ions.
High quality natural polymer chitosan (CS) by Chang Chun Petrochemical Co., Ltd. (Taipei,
Taiwan) was added to the polycaprolactone (PCL), acquired from Sigma-Aldrich (St. Louis,
MO, USA), matrix to enhance structural stability and functionality.

2.2. Membranes Fabrication

PCL-based membranes, containing different amounts of chitosan (from 2 up to
30 wt.%), were dissolved in a mixture of formic acid and acetic acid solvent [45], and
fabricated by electrospinning with voltage and flowrate in the range of 15 to 25 kV, and
0.4 to 1.5 mL·h−1, respectively. The prepared CS/PCL membranes were activated via
an atmospheric pressure nitrogen plasma (APNP) with operating voltage, air flowrate,
distance between the tip of the plasma torch and membranes, and exposure time of 6 kV,
15 L·min−1, 1 cm, and 5 to 380 s, respectively. The grafting of PEI onto CS/PCL was carried
out by injecting 7 wt.% PEI mist into nitrogen plasma torch, of the same plasma parameters,
while limiting the exposure time to only one minute. All samples were kept in a desiccator
for two days before performing characterizations.

2.3. Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) was essential to assessing the surface topography
after each treatment, especially after nitrogen plasma exposure. The surface of the prepared
CS/PCL and PEI grafted CS/PCL membranes were investigated by Hitachi (S-3400N,
Tokyo, Japan) scanning electron microscope at an accelerating voltage between 5 and 20 kV,
and mounted with energy dispersive X-ray analysis (EDX). The samples were sputter-
coated with gold prior to microscopy to prevent charge build-up.

2.4. Fourier-Transform Infrared Spectroscopy (FT-IR)

Fourier-transform infrared (FT-IR) spectra were recorded using a Fourier-transform
infrared spectrophotometer (Thermo Nicolet iS5 FTIR, Waltham, MA, USA), and collected
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over the range 4000–400 cm–1. All the FT-IR measurements were repeated three times for
each sample and are well reproducible.

2.5. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy was carried out on a PHI 5000 VersaProbe supplied
by ULVAC-PHI Inc. (Chigasaki, Japan), equipped with a monochromatic Al Kα X-ray
irradiation (hυ = 1486.6 eV). The take-off angle of the photoelectron was fixed at 45◦.
The spectra were recorded from at least three different locations on each sample, with a
1 mm × 1 mm area of analysis. For a wide-scan survey, spectra were recorded in 0.25 eV
steps with 80 eV pass energy, while high resolution spectra were in 0.1 eV steps with 20 eV
pass energy. The binding energies were calibrated with reference to the C1s main peak at
284.5 eV [46].

3. Results and Discussion
3.1. Chacterizations of CS/PCL Nanofibers

FT-IR spectroscopy was performed to detect the presence of CS in the fabricated PCL
fibers (Figure 1). The main peaks of the spectrum of chitosan included 3400 cm−1 and
1580 cm−1, which were assigned to the -OH and -NH stretching, and the amide II bands
of chitosan [47]. A strong peak at 1750 cm−1, was attributed to the C=O stretching, and
distinctive peaks at 2940 cm−1 and 2861 cm−1 were ascribed to the CH2 stretching in
PCL [48]. The feature peaks of PCL were not seen in CS, and their intensity decreased
with increasing CS content. The FT-IR results showed that CS and PCL were compounded
successfully without any new chemical bonds being identified.
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Figure 1. FT-IR spectra for CS, PCL, and CS/PCL nanofibers of various chitosan weight percentages.

PCL fibers produced at 15, 18, and 25 kV with CS addition in the range of 2 to 30 wt.%
are shown in Figure 2a. For CS/PCL blends, the average diameter is affected by CS
concentration. Reduction of the fiber diameter in higher CS concentration is observed
because of increasing electrical conductivity in the polymeric solution [49]. Multiple beads
are seen across the fibrous membranes for incompletely dissolved (2, 8, 14 wt.%) and
excessive amounts (30 wt.%) of CS due to low viscosity [45] and clogging of the needle [49].
At 23 wt.% CS, less or zero-bead nanofibers were obtained. In general, the increase of the
electric field from enhanced applied voltage would lead to reduction in fiber diameter [50].
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In our case, using CS/PCL blends at a higher voltage (18 and 25 kV), a strong electrical
interaction between the jet and the electric field encouraged the formation of thinner
secondary jet split fibers [51]. These branching fibers then formed smaller beads along
several main fibers. At the balance of surface tension (23 wt.% CS) and the electrical field
(15 kV), bead-free CS/PCL fibers ranging from 58 to 131 nm were obtained (Figure 2b).
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applied voltage; and (b) fiber diameter distribution of CS/PCL produced at applied voltage of 15 kV
with 23 wt.% CS.

3.2. Chacterizations of CS/PCL Nanofibers after APNP

Electrospun CS/PCL nanofibers were subjected to atmospheric pressure nitrogen
plasma (APNP) for fiber activation. In Figure 3, a noticeable decrease of intensity in -NH
bending vibration (assigned to 1580 cm−1) when increasing the plasma exposure time,
while significant increase in C-O-C stretching bands (1295, 1245, 1195, 1045 cm−1) are
observed [52]. Sites originally with amino functional groups are being replaced with
newly formed ether, secondary alcohol, methyl functional group or even crosslinking
from activated hydrogen, oxygen, and other free radicals [53]. In our prior study, amine-
terminated peptide bonds were being grafted and removed as the result of simultaneous
activation and etching reactions during plasma process [54]. This competing phenomenon
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is also observed in the two enlarged regions (-NH stretching and in C-O-C stretching) such
that the correlation of plasma exposure time and the change in functional group intensities
is not easily identifiable.

Coatings 2022, 12, x FOR PEER REVIEW 5 of 11 
 

 

formed ether, secondary alcohol, methyl functional group or even crosslinking from acti-
vated hydrogen, oxygen, and other free radicals [53]. In our prior study, amine-terminated 
peptide bonds were being grafted and removed as the result of simultaneous activation 
and etching reactions during plasma process [54]. This competing phenomenon is also 
observed in the two enlarged regions (-NH stretching and in C-O-C stretching) such that 
the correlation of plasma exposure time and the change in functional group intensities is 
not easily identifiable. 

 
Figure 3. FT-IR spectra of CS/PCL with various APNP exposure time. 

As shown in Figure 4, notable change in fiber morphologies is observed as plasma 
exposure time increase from 5 to 380 s. No obvious change is observed for CS/PCL nano-
fibers underwent 5 and 40 s exposure time (Figure 4a,b). At an extended exposure time of 
200 s (Figure 4c), fiber fusion starts to take place as result of crosslinking between fibers. 
Plasma-initiated surface can create numerous active sites for rapid reactions, and thus 
junction fusion continues to expand horizontally and vertically under prolonged plasma 
exposure time (Figure 4d) [55]. 

Figure 3. FT-IR spectra of CS/PCL with various APNP exposure time.

As shown in Figure 4, notable change in fiber morphologies is observed as plasma
exposure time increase from 5 to 380 s. No obvious change is observed for CS/PCL
nanofibers underwent 5 and 40 s exposure time (Figure 4a,b). At an extended exposure
time of 200 s (Figure 4c), fiber fusion starts to take place as result of crosslinking between
fibers. Plasma-initiated surface can create numerous active sites for rapid reactions, and
thus junction fusion continues to expand horizontally and vertically under prolonged
plasma exposure time (Figure 4d) [55].

3.3. Chacterizations of PEI Grafted CS/PCL Nanofibers

In Figure 5, an identifiable characteristic absorption of bending vibration of N-H at
1690 cm−1 is clearly seen in PEI-CS/PCL with 30 and 60 s plasma exposure time. The
intensity of the 1690 cm−1 peak is slightly reduced after the washing off of unreacted PEI
on the fiber surface. It is worth noting that the absorption band at 1750 cm−1, assigned
to the C=O stretching, is not perceptible in the PEI grafted samples, but showing a weak
shoulder peak next to (short wavenumber side) the 1690 cm−1 absorption peak after
washing. Can-Herrera et al. reported that superficial changes caused by plasma treatment
was not observed mainly because of the physical detection limit of FTIR-ATR [56].
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Figure 5. FT-IR spectra of CS/PCL, PEI, and PEI- CS/PCL before and after washing.

In order to gain better insight on the plasma-induced nitrogen containing function-
alities, a deconvolution of high resolution N1s spectra is performed for CS/PCL and PEI
grafted CS/PCL samples. The N1s envelope of the CS/PCL sample could be decomposed
into two distinct peaks: a peak at 398.8 eV corresponds to N−C bonds, and a peak at 399 eV,
which can be attributed to −NH2 groups [57,58]. After plasma treatment for PEI grafting,
one peak at 399.4 eV that can be ascribed to the presence of amine or imine groups, and
another peak at 401.7 eV accredited to the protonated amines presented in PEI [59–61]. The
results of increasing N1s percentage value with the increase in plasma treatment time in
Table 1 not only align well with the results in Figures 5 and 6, but also highlight the role
of plasma treatment in PEI grafting, and demonstrate that high concentrations of surface
nitrogen can be translated into high contents of amine.
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Table 1. XPS atomic concentration table for CS/PCL and PEI-CS/PCL.

C1s N1s O1s

CS/PCL 74.4 1.5 24.2
PEI-CS/PCL_0s 72.2 1.8 26.0
PEI-CS/PCL_15s 70.5 2.0 27.5
PEI-CS/PCL_30s 70.3 2.1 27.7
PEI-CS/PCL_60s 70.1 3.3 26.6
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3.4. Adsorption of PEI Grafted CS/PCL Nanofibers

The prepared PEI-CS/PCL_60s membrane was immersed in 100 ppm copper(II) sul-
fate pentahydrate solution up to two hours (Figure A1). The distinct color change on the
prepared membranes from pale blue to azure (left to right) suggests the adsorption of
copper ion (Figure A1a), while the solution bottles show a reverse color change in the same
direction (Figure A1b). Reduction of copper ion concentration from 100 to 75.80 ppm is indi-
cated, however the adsorption of copper ions merely reaches 19.1% after 120 min of contact
time with the selected membrane (Table 2). This outcome may be attributed to the insuffi-
cient overall amine concentration on the membrane surface which shall be investigated
further [62]. Curl and ball-like features are seen on the surface of PEI-CS/PCL membranes
(Figure 7a), which may be shown in other polymeric fibers treated with plasma [63]. How-
ever, fibers produced from solvent-blended PEI/PCL via electrospinning would appear
rather smooth otherwise [64]. After being exposed to copper-contained solution, a veil-like
layer is observed on top of the prepared membrane (Figure 7b). The presence of copper
ions is stipulated by the elemental mapping analysis in Figure 7c. Although a direct proof
is not found, the literature suggests it can be complexes of PEI with copper(II) ions [65].

Table 2. Adsorption of copper onto PEI-CS/PCL_60s membrane.

Contact Time (min) Copper Ion Concentration (ppm) Adsorption (%)

0 100 –
10 88.13 7.76
20 86.40 11.7
30 78.80 15.9
60 77.06 17.7

120 75.80 19.1
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4. Conclusions

An innovative method to graft PEI onto electrospun CS/ PCL membranes was pro-
posed. The results showed that nitrogen plasma activated membranes have a distinct
structural feature of a fibrous network at 5 and 40 s of plasma treatment time. FT-IR and
XPS results suggest that via the nitrogen plasma-assisted approach, PEI can be grafted
onto CS/PCL without the use of any solvent. Consequently, copper ions were detected
on the PEI-CS/PCL membranes with the confirmation of EDX analysis. The findings of
the adsorption results reveal that the fabricated membranes have the potential to be a
sustainable solution for removing heavy metal ions.
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