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Abstract: We report the impact of oxygen (O2) plasma time on an amorphous indium–gallium–zinc
oxide (a-IGZO) thin-film surface that was carried out before TEOS deposition in order to optimize
the performance of thin-film transistors (TFTs). TheO2 plasma time of 60 s possessed the largest
on/off current ratio of >108, with a field-effect mobility (µFE) of 8.14 cm2 V−1 s−1, and the lowest
subthreshold swing (S.S.) of 0.395 V/decade, with a threshold voltage (Vth) of −0.14 V. However,
increases in Ioff and S.S. and decreases in the µFE were observed for the longer O2 plasma time of
120 s. As the O2 plasma time increased, the reduction in the carrier concentration in the IGZO channel
layer may have resulted in an increase in Vth for the IGZO TFT devices. With an increase in the O2

plasma time, the surface roughness of the IGZO channel layer was increased, the carbon content in
the TEOS oxide film was reduced, and the film stoichiometry was improved. The SIMS depth profile
results showed that the O/Si ratio of TEOS oxide for the sample with the O2 plasma time of 60 s was
2.64, and its IGZO TFT device had the best electrical characteristics. In addition, in comparison to the
IGZO TFT device without O2 annealing, larger clockwise hysteresis in the transfer characteristics
revealed that a greater number of electrons were trapped at the interface between TEOS oxide and
the a-IGZO channel layer. However, hysteresis curves of the O2-annealed IGZO TFTs with various O2

plasma times were greatly reduced, meaning that the electron traps were reduced by O2 annealing.

Keywords: O2 plasma time and annealing; hysteresis; top-gate IGZO thin-film transistors; TEOS
oxide gate dielectrics

1. Introduction

Due to fast advances in optoelectronic technology, the next generation of displays
will have thinner, lighter, and bigger screens. High-performance thin-film transistors
(TFTs) have received a lot of interest [1–6]. Because of their great field-effect mobility (µFE)
(>10 cm2 V−1 s−1) and lower processing temperatures, amorphous oxide semiconductors
(AOSs) are suitable for TFT channel materials [7,8] and make it possible to drive TFTs in
active-matrix organic light-emitting diode (AMOLED) displays. For amorphous indium–
gallium–zinc oxide (a-IGZO) TFTs, the traditional bottom gate structure has been researched
extensively [9,10] in our previous studies. However, due to large parasitic capacitance
and low scalability, this structure is inappropriate to integrate into the system peripheral
circuits on the glass and implement superior AMOLED displays. As a result, self-aligned
top-gate a-IGZO TFTs devices with high performance and good stability are required for
AMOLED display applications [11,12].

In general, the electrical properties of a-IGZO TFTs, including Vth, subthreshold
swing (S.S.), µFE, and Ion/Ioff current ratio, can clearly be controlled by varying the partial
pressure of oxygen (O2) during a-IGZO channel layer deposition with radio frequency
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sputtering [9,13]. Jeong et al. [14] reported that O2 plasma treatment on the a-IGZO
channel layer decreases the oxygen vacancy density of the IGZO films at low processing
temperatures, improving the IGZO channel layer material and the performance of IGZO
TFT devices. Pu et al. reported [15] the effects of O2 plasma treatment on solution-processed
a-IGZO TFTs. The plasma-treated devices not only showed greater mobility and a greater
on/off current ratio, but also a monotonic increase in the SS. with the plasma time. The
effects of several plasma treatments on a-IGZO TFTs, including O2, nitrogen (N2), and
argon (Ar), were observed [16] by Kim et al. They used X-ray photoelectron spectroscopy
(XPS) to investigate oxygen stoichiometry in a-IGZO TFTs in diverse plasma conditions.
The results indicated that O2 and N2 plasmas decreased oxygen vacancies, but Ar plasma
treatment increased them. Liu et al. recently reported [17] on IGZO thin films that were
treated with an Ar/O2 plasma combination with various oxygen content ratios, resulting
in the bottom-gate IGZO TFTs have improved device operation characteristics. Wang et al.
reported [18] the O2 plasma treatment on gate dielectrics (Al2Ox) for a-IGZO TFTs and
demonstrated that O2 plasma treatment can improve the gate dielectric performance. The
results were ascribed to passivating the interfacial and bulk traps by reducing the oxygen
vacancies. Most notably, this was the first study to our knowledge that focused on the
effects of the O2 plasma treatment prior to the tetraethyl–orthosilicate (TEOS) oxide gate
dielectric deposition and O2 annealing on the electrical characteristics of top-gate IGZO
TFTs, wherein the compositions of TEOS oxide interfaces with a-IGZO films were reported.

In this study, top-gate IGZO TFT devices with various O2 plasma times prior to TEOS
gate dielectric and O2 annealing after TEOS oxide deposition were fabricated using the
same plasma-enhanced chemical vapor deposition (PECVD) system. Moreover, the electri-
cal and hysteresis characteristics of the IGZO TFT devices using O2 annealing after TEOS
oxide deposition were evaluated. Additionally, atomic force microscope (AFM) and X-ray
photoelectron spectroscopy (XPS) tests were performed to investigate the surface morpholo-
gies and compositions of the IGZO films. A depth profile analysis of the secondary ion mass
spectrometer (SIMS) was conducted to verify the compositions of TEOS oxide interface
with a-IGZO films treated by different O2 plasma times. The best µFE of 8.14 cm2 V−1s−1,
S.S. of 0.395 V/decade, Vth of −0.14 V, and lower ∆Vth of 0.5 V from the hysteresis curve
were obtained in the IGZO TFTs that had been subjected to O2 plasma treatment for 60 s
and O2 annealing.

2. Experimental Methods

The cross-sectional schematic of the top-gate IGZO TFT structure employed in this
investigation is shown in Figure 1a. Details of the devices’ fabricating processes can be
found elsewhere [19]. The O2 plasma time was varied in order to verify the effects of
O2 plasma prior to depositing the TEOS gate dielectric on the electrical and hysteresis
characteristics of the IGZO TFT devices. The O2 plasma treatment was performed at various
treatment times using an Oxford PECVD system prior to depositing TEOS oxide at 350 ◦C
at a fixed deposition power of 40 W. The system working pressure was 700 m Torr with an
O2 flow of 250 sccm. After TEOS oxide deposition, the samples were annealed at 400 ◦C at
a working pressure of 5 mTorr in an O2 ambient atmosphere of 40 sccm for 1 h in the same
PECVD system. Figure 1b summarizes the process charts for each step of the top-gate IGZO
TFTs employed in this investigation. For the IDS-VGS transfer characteristics and IGS-VGS,
VGS varied from −15 V to +15 V in 0.3 V steps for VDS = 0.1 V in the tested devices. The
Agilent 4156A precision semiconductor parameter analyzer was employed to thoroughly
evaluate and compare the electrical and hysteresis characteristics of the tested devices, and
the measurement temperature was maintained at 25 ◦C.
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Figure 1. (a) Cross-sectional diagram of a top-gate IGZO thin-film transistor (TFT) structure. (b) 
Process charts of the top-gate IGZO TFTs used in this study. 
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analysis of the secondary ion mass spectrometer (SIMS, CAMECA IMS 7F) was con-
ducted to verify the compositions of the TEOS oxide interface with a-IGZO films treated 
with O2 plasma. In order to compare the effect of O2 annealing, we prepared the TEOS 
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Figure 1. (a) Cross-sectional diagram of a top-gate IGZO thin-film transistor (TFT) structure.
(b) Process charts of the top-gate IGZO TFTs used in this study.

In this experiment, the channel width W = 100 µm and the channel length L = 5 µm
were used. Figure 1a shows the source and drain offsets, which were designed at 1 µm.
The µFE was calculated using the following equation:

µFE =
L × Gm(max)

W × Cox × VDS
(1)

where Cox is the TEOS oxide capacitance per unit area and the maximum transconduc-
tance Gm(max) = (∂ IDS/∂ VGS)max at VDS = 0.1 V. The S.S. was taken as the value of
(dlog (IDS)/d VGS)−1 when the IDS was in the range of 10−10–10−9 A.

Film thickness was examined and fitted using the spectroscopic ellipsometer (SE)
(M-2000U) and CompleteEASE software (J. A. Woollam Co., Inc., Lincoln County, NE,
United States), respectively. Surface morphology tests were employed using an atomic force
microscope (AFM, Veeco Dimension 3100) at a scan area of 2 × 2 µm. X-ray photoelectron
spectroscopy (XPS, Thermo Fisher Scientific Theta Probe (Waltham, MA, USA)) was also
employed to characterize the composition of the IGZO films. The depth profile analysis
of the secondary ion mass spectrometer (SIMS, CAMECA IMS 7F) was conducted to
verify the compositions of the TEOS oxide interface with a-IGZO films treated with O2
plasma. In order to compare the effect of O2 annealing, we prepared the TEOS oxide on
the a-IGZO film without O2 annealing with an O2 plasma time of 60 s to determine the
hysteresis characteristics.

3. Results and Discussion
3.1. Surface Roughness Analysis of a-IGZO Films at Various O2 Plasma Times

Figure 2a–c compares the AFM surface morphology characterizations of the a-IGZO
channel layers with different O2 plasma times, and their z range, root mean square (RMS),
and average roughness (Ra) are summarized in Table 1. Plasma bombardment of the
channel surface is generally believed to increase surface roughness, as shown in Figure 2.
Although the RMS and Ra roughness monotonically increased with the increase in the O2
plasma time, the z range of the a-IGZO films with the O2 plasma times of 0 and 60 s was
lower than that of the O2 plasma time of 120 s. The deteriorated electrical properties of
the IGZO TFTs were found to be reasonably useful for ascribing the cause of the longer O2
plasma time to the surface roughness in a later section following the presentation of results
of the device characteristic analysis.
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Figure 2. AFM surface morphology characterization of the a-IGZO films at the O2 plasma times of
(a) 0, (b) 60, and (c) 120 s.

Table 1. Z range, root mean square (RMS) roughness, and average roughness (Ra) of the a-IGZO
films at various O2 plasma times.

O2 Plasma Time (s) Z Range (nm) RMS (nm) Ra (nm)

0 8.329 0.671 0.458

60 7.877 1.049 0.817

120 11.14 1.857 1.531

3.2. Electrical Characteristics of IGZO TFTs at Various O2 Plasma Times

Figure 3 shows the typical IDS-VGS transfer characteristics and IGS-VGS curves of
the IGZO TFTs at various O2 plasma times prior to the deposition of the TEOS oxide
gate dielectrics. Vth is set as the gate voltage (VGS) when the drain current (IDS) is at a
constant value (10−9 × (W/L) A). Measurements were performed with more than three
samples per device. The measured capacitance per unit area (Cox) of the gate dielectric was
4.98 × 10−8 F/cm2 in this study. Table 2 shows the average values and standard variations
in the electrical parameters extracted from the IGZO TFTs at various O2 plasma times. It is
clearly confirmed in Figure 3 that the transfer curves shifted positively as the O2 plasma
time increased as a result of the lower on-current (Ion) and higher off-current (Ioff) within
the IGZO TFT channel. In addition, a compliance cut-off phenomenon that was clearly
visible in the transfer curves at the O2 plasma times of 60 and 120 s was attributed to a
higher total resistance between the source and drain electrodes as the O2 plasma time
increased. Moreover, the gate leakage current (IGS) gradually increased from 10−13 to
10−12 A, which occurred as the O2 plasma time increased. As shown in Table 1, the a-IGZO
film’s roughness monotonically increased as the O2 plasma time increased; therefore, the
gate leakage current (IGS) of the IGZO TFTs gradually increased by one order of magnitude
from when the TEOS gate oxide was deposited after the O2 plasma treatment. From
the summary in Table 2, we determined that the O2 plasma time of 60 s possessed the
largest on/off current ratio of >108, a µFE of 8.14 cm2 V−1 s−1, and the lowest S.S. slope of
0.395 V/decade and a Vth of −0.14 V. However, increases in Ioff and S.S. and degradation in
µFE were observed at the longer O2 plasma time of 120 s. It is reasonable to ascribe higher
Ioff and S.S. deterioration to the higher surface roughness of the a-IGZO films after an O2
plasma time of 120 s, as shown in Figure 2. The effects of the various O2 plasma times and
O2 annealing on the hysteresis characteristics are discussed below.
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Figure 3. IDS-VGS transfer characteristics and IGS-VGS of IGZO TFTs with O2 plasma times of 0, 60,
and 120 s.

Table 2. Electrical parameters extracted from the IGZO TFTs at various O2 plasma times.

O2 Plasma Time (s) Vth (V) S.S. (V/Decade) µFE (cm2 V−1s−1) Ion (A) Ioff (A) ρ2.5V (Ω·cm)

0 −5.74 ± 0.31 1.045 ± 0.036 1.95 ± 0.31 2.4 × 10−6 3.0 × 10−14 6.26

60 −0.14 ± 0.08 0.395 ± 0.031 8.14 ± 0.86 1.3 × 10−6 1.1 × 10−14 7.64

120 5.14 ± 0.51 2.210 ± 0.204 2.98 ± 0.31 1.3 × 10−6 4.4 × 10−12 8.26

Figure 4 shows the typical output characteristics of the IGZO TFTs at various O2 plasma
times under different gate overdrives: VGS-Vth = 3–11 V. It can be seen that the saturation
current at the same gate overdrive clearly decreased as the O2 plasma time increased.
All of the devices demonstrated ohmic behavior, indicating good contact between the
a-IGZO channels and Mo electrodes. In a linear current model of a conventional metal
oxide semiconductor field-effect transistor (MOSFET), the resistivity (ρ) is expressed by the
following equation [16,20]:

ρ =
VDS
IDS

Wt
L

≈ 1
µFECox(VGS − Vth)

≈ 1
nqµFE

(2)

where Cox is the oxide capacitance per unit area; n is the charge carrier concentration
(cm−3); q is the electron unit charge; W, L, and t are the width, length, and thickness of
the channel, respectively; and VDS is the drain-source voltage. It should be noted that ρ is
primarily associated with Vth, and its corresponding n is determined according to Equation
(2). Table 2 indicates that ρ gradually increased from 6.26 to 8.26 Ω·cm as the O2 plasma
treatment time increased at VDS = 2.5 V and VGS-Vth = 11 V. Accordingly, the O2 plasma
treatment mainly affected the changes in n in the channel, and n was reduced by exposure
to the O2 plasma since it has already been demonstrated that oxygen atoms can fill oxygen
vacancies after O2 treatments in metal oxide-based semiconductors [15,16,21]. In addition,
it is clearly confirmed in Figure 3 that the transfer curves shifted positively as the O2 plasma
time increased. Details of the changes in the carrier concentrations are presented in a later
section and are based on the results of the XPS analysis.
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Figure 4. Output characteristics IDS-VDS of IGZO TFTs at O2 plasma times of (a) 0, (b) 60, and (c) 120 s.

The chemical characteristics of the a-IGZO channel layers treated with different O2
plasma times were investigted by analyzing the XPS results. The effect of the O2 plasma
time on oxygen scarcity after plasma processing was studied extensively by compaing and
analyzing from the O1s XPS data displayed in Figure 5. Figure 5a–c shows the XPS spectra
of the O1s peak of the a-IGZO films with the O2 plasma times of 0, 60, and 120 s, respectively.
Generally, for IGZO TFTs, the O1s spectra are composed of double Gaussian distributions,
the OI peak is observed at 530.2 eV and the OII peak is observed 531.6 eV [15,16,22,23].
The OI XPS signal peak shows covalent oxygen ion bonds with In, Ga, and Zn cations:
and the OII XPS signal peak represents oxygen scarcities in the IGZO film. As a result, the
integrated peak ratio of the OII/(OI+OII) intensity ratio of the O1s core levels of the a-IGZO
channel layer was employed to estimate the quality of the channel layer and the number of
oxygen scarcities in the a-IGZO channel layer with O2 plasma treatment. The estimated
XPS OII/(OI+OII) intensity ratios for the a-IGZO channel layer with increased O2 plasma
times of 0, 60, and 120 s were 0.44, 0.32, and 0.21, respectively. When O2 plasma treatment
was performed for a longer time, the low OII/(OI+OII) XPS intensity ratios indicated a
significant reduction in the oxygen scarcities and greater quality of the IGZO channel layer.
Because oxygen vacancies are important for electron donation in the a-IGZO channel layer,
the decreased OII peak intensity shown in the XPS analyses corresponded well with the
reduced carrier concentration, which could be ascribed to a higher resistivity as a result
of the increased O2 plasma time, as shown in Table 2. Therefore, as the O2 plasma time
increased, the reduced carrier concentration in the IGZO channel layer may have resulted
in an increase in the threshold voltage (Vth) of the IGZO TFT devices [13,17,24].
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For the analysis of the SIMS depth profile results, we fabricated test samples with
a 50 nm thick Mo/100 nm thick TEOS oxide/40 nm thick a-IGZO structure on silicon
substrates that were the same as the structure of the top-gate IGZO TFT devices. First, the
a-IGZO film was deposited on the silicon substrate, and then, it was subjected to O2 plasma
treatment on the a-IGZO film prior to the depositing of the TEOS oxide and O2 annealing
after TEOS oxide deposition in the same PECVD system. The SIMS analysis is able to
observe information on the impurity content and compositions of the TEOS oxide interface
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with a-IGZO films treated with O2 plasma. The area located 100–150 nm from the sample’s
surface was found to be related to the area across the TEOS oxide near the a-IGZO films.
Figure 6a–c shows the SIMS depth profiles of the Mo, Si, O, C, In, Ga, and Zn elements for
the test samples at various O2 plasma times. From analyzing the element intensities, we
found that the ratios of the elements Mo, In, Ga, and Zn remained essentially unchangeable
for these three samples. Figure 6a shows that the TEOS oxide film on the sample without
O2 plasma treatment contained more carbon (3.91%) than the others. Because the TEOS
oxide film reaction provided intermediate elements, such as the carbon impurity in the
film caused by the inadequate dissociation of TEOS oxide, the carbon dissociation inside
the TEOS oxide films of the O2 plasma-treated samples was enhanced. With the increased
O2 plasma times of 60 and 120 s, the ratio of the carbon content in the TEOS oxide film
decreased from 3.91% to the ratios of 2.42% and 2.71%, respectively, as shown in Figure 6a–c.
Rhee et al. reported that the use of oxygen gas plasma treatment during TEOS oxide gate
dielectric deposition was efficient in removing the impurities and in the densification of the
film. The carbon impurity was reduced by cyclic O2 plasma treatment [25]. Since TEOS
oxide is affected by O2 plasma treatment, the Si and O contents of the TEOS oxide film
clearly changed as the O2 plasma time increased. The O/Si ratios of TEOS oxide gradually
increased from 1.15 to the ratios of 2.64 and 3.54 with increased O2 plasma times of 60 and
120 s, respectively, as shown in Table 3. This is because the impurities on the surface of the
a-IGZO channel layer were mainly removed after O2 plasma time of 60 s and because the
low amount of O2

+ in the plasma has a tendency to catch electrons from shallow areas [15].
Therefore, applying the O2 plasma treatment before gate dielectric deposition would affect
the composition of the gate dielectric. In addition, increasing the O2 plasma time to 120 s
may allow the O2

+ accumulating on the surface to provide more oxygen atoms for TEOS
gate dielectrics. In this experiment, we observed that the O/Si ratio of TEOS oxide of the
sample with the O2 plasma time of 60 s was 2.64, and its IGZO TFT device had the best
electrical characteristics.

Coatings 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

strates that were the same as the structure of the top-gate IGZO TFT devices. First, the 
a-IGZO film was deposited on the silicon substrate, and then, it was subjected to O2 
plasma treatment on the a-IGZO film prior to the depositing of the TEOS oxide and O2 
annealing after TEOS oxide deposition in the same PECVD system. The SIMS analysis is 
able to observe information on the impurity content and compositions of the TEOS oxide 
interface with a-IGZO films treated with O2 plasma. The area located 100–150 nm from 
the sample’s surface was found to be related to the area across the TEOS oxide near the 
a-IGZO films. Figure 6a–c shows the SIMS depth profiles of the Mo, Si, O, C, In, Ga, and 
Zn elements for the test samples at various O2 plasma times. From analyzing the element 
intensities, we found that the ratios of the elements Mo, In, Ga, and Zn remained essen-
tially unchangeable for these three samples. Figure 6a shows that the TEOS oxide film on 
the sample without O2 plasma treatment contained more carbon (3.91%) than the others. 
Because the TEOS oxide film reaction provided intermediate elements, such as the car-
bon impurity in the film caused by the inadequate dissociation of TEOS oxide, the carbon 
dissociation inside the TEOS oxide films of the O2 plasma-treated samples was enhanced. 
With the increased O2 plasma times of 60 and 120 s, the ratio of the carbon content in the 
TEOS oxide film decreased from 3.91% to the ratios of 2.42% and 2.71%, respectively, as 
shown in Figure 6a–c. Rhee et al. reported that the use of oxygen gas plasma treatment 
during TEOS oxide gate dielectric deposition was efficient in removing the impurities 
and in the densification of the film. The carbon impurity was reduced by cyclic O2 plas-
ma treatment [25]. Since TEOS oxide is affected by O2 plasma treatment, the Si and O 
contents of the TEOS oxide film clearly changed as the O2 plasma time increased. The 
O/Si ratios of TEOS oxide gradually increased from 1.15 to the ratios of 2.64 and 3.54 with 
increased O2 plasma times of 60 and 120 s, respectively, as shown in Table 3. This is be-
cause the impurities on the surface of the a-IGZO channel layer were mainly removed 
after O2 plasma time of 60 s and because the low amount of O2+ in the plasma has a ten-
dency to catch electrons from shallow areas [15]. Therefore, applying the O2 plasma 
treatment before gate dielectric deposition would affect the composition of the gate die-
lectric. In addition, increasing the O2 plasma time to 120 s may allow the O2+ accumulat-
ing on the surface to provide more oxygen atoms for TEOS gate dielectrics. In this ex-
periment, we observed that the O/Si ratio of TEOS oxide of the sample with the O2 
plasma time of 60 s was 2.64, and its IGZO TFT device had the best electrical characteris-
tics. 

Figure 6. Cont.



Coatings 2022, 12, 383 8 of 12

Coatings 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

Figure 6. SIMS depth profiles for Si, O, and C of the test samples at the O2 plasma times of (a) 0, (b) 
60, and (c) 120 s with O2 annealing. 

Table 3. SIMS analytical results for the Si, O, C, and O/Si ratio of the test samples at various O2 
plasma times. 

O2 Plasma Time (s) Si (%) O (%) C (%) O/Si 
0 44.66 51.41 3.91 1.15 

60 26.77 70.80 2.42 2.64 
120 21.40 75.88 2.71 3.54 

Because the conduction channel layer is mainly formed in a very thin layer near the 
interface, the electrical properties of a TFT are determined by the interface roughness 
between the a-IGZO and the TEOS oxide gate dielectric. The existence of defect states 
that may lead to electron trapping primarily affects the S.S. and µFE of the a-IGZO chan-
nel layer [26,27]. 

For the sample with an O2 plasma time 60 s, a slight increase in the surface 
roughness of the a-IGZO channel layer was observed based on the AFM morphology, 
but the impurities on the surface of the a-IGZO channel layer were largely removed. In 
this case, the reaction of atomic oxygen and oxygen vacancies in the channel layer 
increased the µFE of the IGZO TFTs. Reductions in the oxygen vacancies and carbon 
content by the XPS and SIMS analyses, respectively, were observed. It has been reported 
that filling oxygen vacancies can enhance µFE because interface traps can act as scattering 

Figure 6. SIMS depth profiles for Si, O, and C of the test samples at the O2 plasma times of (a) 0,
(b) 60, and (c) 120 s with O2 annealing.

Table 3. SIMS analytical results for the Si, O, C, and O/Si ratio of the test samples at various O2

plasma times.

O2 Plasma Time (s) Si (%) O (%) C (%) O/Si

0 44.66 51.41 3.91 1.15
60 26.77 70.80 2.42 2.64
120 21.40 75.88 2.71 3.54

Because the conduction channel layer is mainly formed in a very thin layer near the
interface, the electrical properties of a TFT are determined by the interface roughness
between the a-IGZO and the TEOS oxide gate dielectric. The existence of defect states that
may lead to electron trapping primarily affects the S.S. and µFE of the a-IGZO channel
layer [26,27].

For the sample with an O2 plasma time 60 s, a slight increase in the surface roughness of
the a-IGZO channel layer was observed based on the AFM morphology, but the impurities
on the surface of the a-IGZO channel layer were largely removed. In this case, the reaction
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of atomic oxygen and oxygen vacancies in the channel layer increased the µFE of the
IGZO TFTs. Reductions in the oxygen vacancies and carbon content by the XPS and SIMS
analyses, respectively, were observed. It has been reported that filling oxygen vacancies
can enhance µFE because interface traps can act as scattering centers [28]. Similarly, the
interfacial roughness of the sample with an O2 plasma time of 120 s increased three times,
leading to enhanced carrier scattering and thus reduced fieled effect mobility. In addition,
the accumulation of O2

+ on the surface might clog the micropores and prevent the atoms
from reaching deep into the channel layer as the O2 plasma time increases, resulting in
large interfacial traps and degraded S.S. [15].

3.3. Effect of O2 Annealing on Hysteresis Characteristics of IGZO TFTs at Various O2
Plasma Times

We investigated the hysteresis sweeps of the IGZO TFTs at various O2 plasma times
prior to TEOS oxide deposition, thus studying the impacts of O2 annealing following
TEOS oxide deposition and their interaction with the a-IGZO channel layer. Figure 7a–c
shows the hysteresis curves of the IGZO TFTs at the O2 plasma times of 0, 60, and 120 s,
respectively, with O2 annealing being represented as VGS ranging from −15 V to +15 V. The
hysteresis curve of the IGZO TFT with the O2 plasma time of 60 s without O2 annealing
and represented as VGS ranging from −15 V to +15 V is shown in comparison with the
effect of O2 annealing in Figure 7d. Figure 7 shows that the on-current appeared to be
rather constant in the saturation region due to a compliance cut-off phenomenon, which
was attributed to a higher total resistance between the source and drain electrodes after the
O2 plasma treatment. In the lower threshold voltage shifts (∆Vth = 0.34, 0.5, and 0.51 V)
estimated from the individual hysteresis curves shown in Figure 7a–c with O2 annealing
after TEOS oxide deposition, a small number of electrons were trapped at or close to the
interface of the TEOS oxide/a-IGZO channel layer [19]. The largest threshold voltage shift
(∆Vth = 3.05 V) from the hysteresis curve without O2 annealing revealed that a greater
number of electrons were trapped at the interface between TEOS oxide and the a-IGZO
channel layer. However, the lower ∆Vth from the hysteresis curves displayed in Figure 7a–c
shows that O2 annealing after TEOS oxide deposition successfully limited the formation in
interface traps and charge trapping between the TEOS oxide gate dielectrics and the IGZO
channel layer. It has been already shown that the a-IGZO channel regions were patterned
and thermally annealed in the O2 atmosphere or in air, and the hysteresis disappeared
for the annealed bottom-gate IGZO TFTs, which suggests that thermal annealing reduces
electron traps [29,30].
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4. Conclusions

In this study, O2 plasma treatment was found to increase the surface roughness of the
IGZO channel layer. The O2 plasma time of 60 s possessed the largest on/off current ratio of
>108, with a µFE of 8.14 cm2 V−1 s−1, and the lowest S.S. slope of 0.395 V/decade, with a Vth
of −0.14 V. However, increases in Ioff and S.S. and degradation in µFE were observed for the
longer O2 plasma time of 120 s. It is reasonable to ascribe the higher Ioff and deteriorated
S.S. to the higher surface roughness of the a-IGZO channel layer for a longer O2 plasma
time of 120 s. The XPS observations of the OII peak intensity coincided well with the
lower carrier concentration due to larger resistivity with the increasing O2 plasma time.
Therefore, the decrease in the carrier concentration of the IGZO channel layer may lead to
an increase in Vth of the IGZO TFT device with the increasing O2 plasma time. As the O2
plasma time increased, the carbon content in the TEOS oxide film was reduced, and the film
stoichiometry was improved. From the SIMS depth profile results, we found that the O/Si
ratio of the TEOS oxide for the sample with the O2 plasma time of 60 s was 2.64, and its
IGZO TFT device had the best electrical characteristics. In addition, compared to the IGZO
TFT device without O2 annealing, more electrons were trapped at the interface between the
TEOS oxide and the a-IGZO channel layer, as shown by a significant clockwise hysteresis
in the transfer characteristics. However, the hysteresis curves of the O2-annealed IGZO
TFTs with various O2 plasma times were greatly diminished, meaning that the electron
traps were reduced by O2 annealing.
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