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Abstract: WSiN films were produced through hybrid pulse direct current/radio frequency magnetron
co-sputtering and evaluated as diffusion barriers for Cu metallization. The Cu/WSiN/Si assemblies
were annealed for 1 h in a vacuum at 500–900 ◦C. The structural stability and diffusion barrier
performance of the WSiN films were explored through X-ray diffraction, Auger electron spectroscopy,
and sheet resistance measurement. The results indicated that the Si content of WSiN films increased
from 0 to 9 at.% as the power applied to the Si target was increased from 0 to 150 W. The as-deposited
W76N24, W68Si0N32, and W63Si4N33 films formed a face-centered cubic W2N phase, whereas the
as-deposited W59Si9N32 film was near-amorphous. The lattice constants of crystalline WSiN films
decreased after annealing. The sheet resistance of crystalline WSiN films exhibited a sharp increase
as they were annealed at 800 ◦C, accompanied by the formation of a Cu3Si compound. The failure of
the near-amorphous W59Si9N32 barrier against Cu diffusion was observed when annealed at 900 ◦C.

Keywords: Cu metallization; Cu3Si; diffusion barrier; WSiN

1. Introduction

Cu metallization has been applied as an interconnecting conductor in ultra-large-scale
integrated circuits because of its high conductivity and excellent electromigration resis-
tance [1–3]. The prohibition of Cu diffusion in Si and SiO2 by introducing diffusion barriers
has become the crucial subject for preventing the deterioration of device performance [4,5].
The formation of Cu3Si after annealing is an indicator used to evaluate the failure of the
barrier, which is accompanied by an increase in the electrical resistance [6,7]. Distinct mate-
rials such as passive, stuffed, sacrificial, and amorphous barriers have been proposed as
thin-film diffusion barriers [8]. Amorphous materials without grain boundaries exhibited
excellent diffusion resistance [9,10] and were applied in the field of Cu metallization. Ta and
W films play the role of diffusion barriers against Cu at 600 ◦C in H2 for 1 h [11], which is
attributed to their high melting temperatures and immiscibility with Cu [7,12]. Amorphous
binary and ternary nitrides (TaNx [7,13], WNx [14,15], Ta–W–N [16], and W–Ti–N [17]) have
been used to raise the barrier temperatures to 600–800 ◦C. High-entropy alloy nitride films,
such as (AlMoNbSiTaTiVZr)50N50 [10], (AlCrTaTiZr)N [18], and (AlCrTaTiZrMo)N [19],
with amorphous structures and large lattice distortions, have been applied as diffusion
barriers [20]. The phase transformation of the aforementioned nitride films at elevated
temperatures affected the performance of diffusion barriers. Dalili et al. [7] reported that
amorphous TaNx films crystallized into a Ta2N structure at 600 ◦C when annealed in a 5%
H2–N2 mixture for 30 min. Similarly, Uekubo et al. [14] stated that amorphous WNx films
crystallized when annealed at 600 ◦C in 5% H2–N2 for 30 min. The annealing temperature
for Cu to penetrate the diffusion barrier in a fixed time was correlated to the film thickness
because of the diffusion-controlled process [7]. Suh et al. [15] reported that the as-deposited
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100 nm-thick WNx films with 16%–32% N were X-ray amorphous, which crystallized after
being annealed at 500–600 ◦C, and the barrier property was maintained up to 800 ◦C. Shen
et al. [21] reported that 150 nm-thick amorphous WNx films crystallized above 600 ◦C
when annealed in a vacuum for 30 min, and the crystallized W2N decomposed by releasing
nitrogen above 820 ◦C. As-deposited WNx films could be either crystalline [22,23] or amor-
phous [21,23]. Si has been introduced into WNx films to change structures from crystalline
to nanocomposite or amorphous, and the formed WSiN films exhibited improved mechan-
ical properties [24,25], thermal stability [25], oxidation resistance [25–27], and corrosion
resistance [28]. Thermal stability is a vital characteristic of the diffusion barrier. Louro and
Cavaleiro [24] reported that amorphous WSiN films crystallized at 750–950 ◦C. Atomic
layer deposition (ALD)-grown WSiN films were amorphous up to 800 ◦C and crystallized
at 900 ◦C [29]. The diffusion of Cu into Si was prevented by a 6-nm-thick ALD-WSiN film
when annealed in a vacuum at temperatures up to 600 ◦C for 30 min [29]. In contrast, a
sputtered WSiN film with a thickness of 10 nm underwent 1 min annealing in N2 up to
750 ◦C [30]. Chemical vapor deposition-prepared W47Si9N44 films (100 nm thick) were
useful barriers up to 700 ◦C [31]. In addition to the achievement of amorphous films,
crystalline nitride films have also been applied as diffusion barriers [6]. Zhang et al. [32]
reported that crystalline W2N films were stable up to 600 ◦C and decomposed at 800 ◦C
in a vacuum. Takeyama and Noya [33] reported that a W65N35 film in the W2N phase
exhibited barrier properties up to 800 ◦C for 1 h annealing. A 5-nm-thick TaWN film with a
(111) orientation exhibited barrier properties against Cu diffusion at 500 ◦C in a vacuum
for 1 h [34]. Crystalline CrWN films were applied as a diffusion barrier up to 650 ◦C in a
vacuum for 1 h, as reported in a previous study [35]. In [36], a co-sputtered W28Si24N48
film exhibited high oxidation resistance at 600 ◦C in an oxygen-containing atmosphere
because of its amorphous structure and the formation of the SiO2 scale, which implied
its potential application for diffusion barriers. In this study, WSiN films were fabricated
through hybrid pulse direct current/radio frequency magnetron co-sputtering. Crystalline
and near-amorphous WSiN films with various Si contents were produced. The evolution in
the crystalline structure and the variation in the diffusion barrier property caused by Si ad-
dition were investigated and correlated. The diffusion barrier characteristics of WSiN films
that experienced annealing treatments in a vacuum at 500–900 ◦C for 1 h were evaluated.

2. Materials and Methods

WSiN films were co-sputtered with a W target (99.95%, 76.2 mm in diameter) linked to
a pulse power supply and an Si target (99.999%, 50.8 mm in diameter) attached to a radio
frequency (RF) power generator. The distance between targets and the substrate holder
was 120 mm. The sputter guns were titled at an angle of 30◦ with respect to the substrate
holder, which focused plasma toward the center of the substrate holder. The average power
applied on W target (PW) was fixed at 200 W, whereas the RF power on Si target (PSi) varied
from 0 to 50, 100, and 150 W, which fabricated samples S0, S50, S100, and S150, respectively,
as Table 1 shows. The substrate holder was rotated at 10 rpm and maintained at 150 ◦C. The
flow rates of Ar and N2 gas were, respectively, set at 30 and 9 sccm for reactive sputtering.
The working pressure was 0.4 Pa. Table 1 lists the experimental parameters for co-sputtering
WSiN films. These samples were also designated by their chemical compositions examined
using Auger electron spectroscopy (AES, PHI700, ULVAC-PHI, Kanagawa, Japan). The
sputter etching rate for analyzing AES depth profiles was set at 9.1 or 9.5 nm/min for
SiO2. The chemical compositions of the WSiN films were determined as the average values
related to depth ranges with sputter times of 11–25, 13–28, 15–30, and 10–20 min for samples
S0, S50, S100, and S150, respectively, which exhibited W76N24, W68Si0N32, W63Si4N33, and
W59Si9N32, respectively, as the O content was ignored. These samples were laminated with
a 107-nm-thick Cu layer prepared through direct current (DC) magnetron sputtering with a
Cu target (99.99%, 76.2 mm in diameter) and DC power of 100 W for 18.5 min in a 30 sccm
Ar flow and a working pressure of 0.4 Pa. Annealing experiments for evaluating the
diffusion barrier characteristics were performed at 500–900 ◦C in a vacuum of 7 × 10−4 Pa
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for 1 h. The bonding characteristics of films were analyzed by using an X-ray photoelectron
spectroscope (XPS, PHI 1600, PHI, Kanagawa, Japan). The C 1s line of the free surface of the
W76N24 films was 283.97 eV. The C 1s line was calibrated using the Greczynski–Hultman
method [37–39], which suggested a value of 0.18 eV for correcting binding energy levels
in this study. The sputter etching rate in XPS analyses was 8.4 nm/min for SiO2. An
X-ray diffractometer (XRD, X’Pert PRO MPD, PANalytical, Almelo, The Netherlands) in
the grazing incidence mode was used to analyze the phases. The lattice constants, a0, of
crystalline films were determined according to the following equation

a = a0 + K× cos2 θ

sin θ
(1)

where a is the lattice constant for the (111), (200), (220), and (311) reflection; K is the constant;
θ is the diffraction angle. The sheet resistance of the Cu/WSiN/Si samples was determined
using a four-point probe [35]. The standard deviations for sheet resistance data were
calculated from 3 measurements.

Table 1. Co-sputtering parameters of WSiN films.

Sample S0 S50 S100 S150

Average pulse power PW (W) 200 200 200 200
W target voltage (V) 712 715 729 734
W peak current (A) 8.0 7.8 7.6 7.6

W power density (kW/cm2) 0.22 0.22 0.22 0.22
RF power PSi (W) 0 50 100 150

Thickness (nm) 101 109 104 112
Deposition time (min) 29.0 21.8 20.1 18.4

Deposition rate (nm/min) 3.48 5.00 5.18 6.10
Chemical composition W76N24 W68Si0N32 W63Si4N33 W59Si9N32

3. Results and Discussion
3.1. Chemical Compositions and Phase Structures of As-Deposited W–Si–N Films

Figure 1 displays the AES depth profiles of the as-deposited Cu/WSiN/Si samples.
The O content was contributed from the residual gas in the vacuum chamber. The relatively
high O contents at the Cu/WSiN interfaces were attributed to the exposure of the chamber
to the ambient environment for target changing from W to Cu. The chemical composition of
the WNx films prepared without applying an RF power to the Si target (PSi) was determined
to be W76N24 after ignoring the O content. The WSiN films prepared with PSi levels of 50,
100, and 150 W exhibited chemical compositions of W68Si0N32, W63Si4N33, and W59Si9N32,
respectively. The Si content of the W68Si0N32 films prepared with a PSi level of 50 W was not
detectable. The N content of the WSiN films was maintained at a level of 32 at.%–33 at.%,
which was close to the stoichiometric ratio of 2:1 for W:N in the W2N lattice [40]. The stan-
dard formation enthalpies for W2N and Si3N4 at 298 K are −22 [41] and −745 kJ/mol [42],
respectively, which indicates a low affinity between N and W. Therefore, the W76N24 film
exhibited a low N content. Moreover, the reactive co-sputtering with a Si target assisted in
raising the N content in the films. However, the re-sputtering of light Si adatoms on the
substrate affected the Si contents of the fabricated WSiN films [43]. The deposition rate
increased from 3.48 to 5.00, 5.18, and 6.10 nm/min as the PSi was increased from 0 to 50,
100, and 150 W. The film thicknesses were fixed at 101–112 nm by controlling the deposition
times (Table 1). Figure 2 exhibits the GIXRD patterns of the as-deposited WSiN films.
The W76N24, W68Si0N32, and W63Si4N33 films formed a W2N phase (ICDD 00-025-1257),
whereas the W59Si9N32 film was nanocrystalline or near-amorphous. The dash lines in
Figure 2 indicate the standard 2θ values of the W2N reflections (ICDD 00-025-1257) with
a lattice constant of 0.4126 nm. The reflections of WSiN films shifted left with respect to
the standard values of W2N, implying expanded lattices for the WSiN films. The lattice
constants of crystalline WSiN films were determined to be 0.4220, 0.4240, and 0.4229 nm
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for the W76N24, W68Si0N32, and W63Si4N33 films, respectively. Similar peak shifts and
lattice expansion were reported for the W–N films [21,22], which was attributed to excess
nitrogen interstitials and intrinsic compressive stress [43]. The W68Si0N32 films exhibited a
higher lattice constant than the W76N24 films because of the N-deficient compositions for
the W76N24 films, whereas the W63Si4N33 films exhibited a lattice constant lower than that
of the W68Si0N32 films, which implied the substitution of small Si atoms replacing W atoms
in the W2N lattice. Ju et al. [26] reported that the addition of Si into W–N films decreased
the lattice constant; the films with a Si content < 5.2 at.% exhibited a W2N phase, whereas
the films with a Si content in the range of 14.3 at.%–28.8 at.% were X-ray amorphous. The
lattice shrinkage of these crystalline WSiN films after annealing is further discussed in
Section 3.2.
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Figure 3 shows the XPS profiles at a depth of 33.6 nm of the as-deposited WSiN films
without a Cu top layer. The profiles of the W 4f, Si 2p, and N 1s core levels of the afore-
mentioned WSiN films are displayed. The W signals were split into two doublets, W–W
and W–N, overlapped with a minor W 5p3/2 component (Figure 3a). Table 2 summarizes
the XPS analysis results at depths of 8.4, 16.8, 25.2, and 33.6 nm. The binding energies of
W 4f7/2 were 30.97–31.17 and 32.13–32.19 eV for the W–W and W–N bonds, respectively,
which were comparable to the reported values of 31.26–31.52 and 32.36–32.56 eV [44],
respectively. Figure 3b exhibits the Si 2p signals. The Si signal of the W68Si0N32 films was
not observed because of the low Si content, whereas the Si signals of the W63Si4N33 and
W59Si9N32 films comprised two components for the Si–Si and Si–N bonds. The binding
energies were 98.96–99.06 and 101.03–101.06 eV for the Si–Si and Si–N bonds, respectively,
which were comparable with the reported values of 99.29–99.53 and 101.25–101.42 eV [44].
Figure 3c shows the N 1s signals, which comprise N–W and N–Si bonds of 397.20–397.65
and 396.84–396.88 eV, respectively.
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Table 2. XPS analysis results for the WSiN films at depths of 8.39–33.56 nm.

Sample
W 4f7/2 (eV) Si 2p (eV) N 1s (eV)

W–W W–N Si–Si Si–N N–W N–Si

W76N24 31.17 ± 0.03 32.19 ± 0.01 - - 397.55 ± 0.01 -
W68Si0N32 30.98 ± 0.03 32.15 ± 0.02 - - 397.20 ± 0.03 -
W63Si4N33 30.97 ± 0.02 32.14 ± 0.01 98.96 ± 0.04 101.06 ± 0.07 397.49 ± 0.09 396.84 ± 0.09
W59Si9N32 31.07 ± 0.01 32.13 ± 0.04 99.06 ± 0.04 101.03 ± 0.09 397.65 ± 0.05 396.88 ± 0.01



Coatings 2022, 12, 811 6 of 11

3.2. Structural Evolution after Annealing

Figure 4 exhibits the GIXRD patterns of the Cu/WSiN/Si samples after 1 h annealing in
a vacuum at 500–900 ◦C. The samples with crystalline W76N24, W68Si0N32, and W63Si4N33
barrier films maintained Cu (ICDD 00-004-0836) and W2N phases after they were annealed
up to 750 ◦C, and an extra Cu3Si (300) phase (ICDD 00-051-0916) was observed for the
800 ◦C-annealed samples. Moreover, these W2N reflections shifted toward higher 2θ val-
ues when increasing the annealing temperature, which resulted in the overlap of W2N
(200) and Cu (111) reflections. Figure 5 shows the lattice constants of the aforementioned
annealed WSiN films determined using (111), (220), and (311) reflections, which reveals a
common decreasing tendency toward the standard lattice constant of the W2N phase when
increasing the annealing temperatures. These originally expanded lattices shrunk after an-
nealing, indicating that these crystalline WSiN films became more ordered after annealing.
The low decreasing slope of the lattice constants of the W63Si4N33 films with respect to
annealing temperature was because of the formation of a certain volume of amorphous
SiNx. In contrast, the Cu/W59Si9N32/Si samples were maintained as near-amorphous
after annealing up to 800 ◦C, as indicated by a weak and broad W2N (111) reflection in
the XRD patterns. Moreover, a tiny W (110) reflection (ICDD 00-004-0806) was observed
at annealing temperatures higher than 750 ◦C. Furthermore, a Cu3Si (300) reflection was
observed for the 850 ◦C and 1 h-annealed Cu/W59Si9N32/Si sample. However, the Cu3Si
(300) reflection was not shown for the XRD pattern of an 850 ◦C and 30 min-annealed
Cu/W59Si9N32/Si sample. Figure 6 depicts the GIXRD pattern of the 900 ◦C-annealed
Cu/W59Si9N32/Si sample, and Cu and W2N phases are replaced by Cu3Si and WSi2 (ICDD
01-081-2168) phases.
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3.3. Diffusion Barrier Properties

Figure 7 displays the sheet resistance of the Cu/WSiN/Si samples at the as-deposited
state and after annealing in a vacuum for 1 h at various temperatures. The sheet resistance
of these Cu/WSiN/Si samples decreased from 0.9–1.2 Ω/� to approximately 0.3 Ω/�
after they were annealed at 500 ◦C because of the defect annihilation and grain growth
of Cu films [35,45], and then the sheet resistance of the aforementioned samples was
maintained at the level of 0.3 Ω/� up to 700 ◦C annealing. The sheet resistance of the
aforementioned samples with crystalline WSiN barriers slightly increased to 0.4 Ω/� when
annealed at 750 ◦C and abruptly increased to 28–94 Ω/� when annealed at 800 ◦C, which
was accompanied by the formation of Cu3Si (Figure 4). In contrast, the sheet resistance of
the Cu/W59Si9N32/Si sample was maintained at 0.3 Ω/� up to 800 ◦C annealing, slightly
increased to 0.4 Ω/� after annealing at 850 ◦C, and abruptly increased to 5 Ω/� after
annealing at 900 ◦C.

Figure 8 shows the AES analysis results of the 650, 750, and 800 ◦C-annealed Cu/W76N24/
Si samples. Correlated to the AES analysis results of the as-deposited Cu/W76N24/Si
sample (Figure 1a), both the interdiffusion across the interfaces between Cu/W76N24 and
W76N24/Si at 650 and 750 ◦C were limited; however, the formation of the Cu–Si compound
did not happen, which agreed with that shown in the XRD pattern (Figure 4a). Further
raising the annealing temperature to 800 ◦C resulted in the intermixing of the original Cu
and W76N24 layers, the diffusion of Cu into the Si substrate, and the formation of a Cu3Si
phase as indicated in the XRD pattern, which was accompanied by a sharp increase in the
sheet resistance of the Cu/W76N24/Si sample (Figure 7). Figure 9 displays the AES depth
profiles of the 650, 800, 850, and 900 ◦C-annealed Cu/W59Si9N32/Si samples. Both the
interdiffusion behaviors across the interfaces between Cu/W59Si9N32 and W59Si9N32/Si
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at 650–800 ◦C were restricted. The intermixing of the original Cu and W59Si9N32 layers
occurred after 850 ◦C annealing. Because Cu and W were immiscible and Cu and N formed
no compound, the newborn phase formed due to the intermixing of Cu and W59Si9N32
layers was Cu3Si, as shown in the XRD pattern (Figure 4d); however, the amount of Cu3Si
phase was little, and the sheet resistance increased from 0.3 Ω/� for samples annealed
below 800 ◦C to 0.4 Ω/� for the sample annealed at 850 ◦C. Moreover, the nitrogen-loss
behavior was observed above 850 ◦C. Shen et al. [21] reported that the W2N phase was
stable up to 800 ◦C and started to evaporate at 820 ◦C in a vacuum. Further raising the
annealing temperature to 900 ◦C resulted in the inward diffusion of Cu into the Si substrate,
the disappearance of the Cu layer, the outward diffusion of Si, the formation of Cu3Si
and WSi2 phases, and an increase in sheet resistance to 5 Ω/�. The sheet resistance
measurement and AES analyses confirmed the diffusion barrier characteristics for both the
crystalline and near-amorphous WSiN films.
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4. Conclusions

The feasibility of WSiN films as diffusion barriers for Cu metallization was explored in
this study. Both crystalline and near-amorphous WSiN films behaved as excellent diffusion
barriers. The crystalline WSiN films with Si contents of 0 at.%–4 at.% exhibited diffusion
barrier characteristics after annealing up to 750 ◦C in a vacuum for 1 h. The formation of the
Cu3Si phase observed from XRD patterns, the inward diffusion of Cu through the films into
Si substrates verified by AES analyses, and the sharp increase in sheet resistance indicated
the failure of these crystalline WSiN barrier films when they were annealed at 800 ◦C for 1 h.
The diffusion barrier characteristics of the WSiN films were further improved by raising
the Si content to 9 at.%, which formed a near-amorphous structure in the as-deposited state
and increased the failure temperature against Cu diffusion to 900 ◦C. Further research on
shrinking the depth of WSiN films to the nano-scale accompanied by compatible diffusion
barrier characteristics is crucial.
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